1
|
Lu T, Ma P, Fang H, Chen A, Xu J, Kuang X, Wang M, Su L, Wang S, Zhang Y, Wang J, Yang B, Shi DL, Zhou Y, Gong Q, Liu X, Mao B, Shao M. Prkra dimer senses double-stranded RNAs to dictate global translation efficiency. Mol Cell 2025; 85:2032-2047.e9. [PMID: 40280134 DOI: 10.1016/j.molcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Double-stranded RNAs (dsRNAs), known as conserved pathogen-associated molecular patterns, activate the integrated stress response via interferon-induced protein kinase R (PKR), leading to global translation inhibition. However, the interferon system is inactive in pluripotent cells, leaving the mechanisms of dsRNA sensing and translational control unclear. In this study, we utilized early zebrafish embryos as a model of pluripotent cells and discovered a PKR-independent blockage of translation initiation by dsRNA stimulation. Prkra dimer was identified as the genuine dsRNA sensor. Upon dsRNA binding, the dimerized dsRNA-binding domain 3 of Prkra becomes activated to sequester the eIF2 complexes from the translation machinery, inhibiting global protein synthesis. This distinctive embryonic stress response restricts RNA virus replication in zebrafish embryos, is conserved in mouse embryonic stem cells, and compensates PKR function in differentiated cells. Therefore, the Prkra-mediated dsRNA sensing and translation control may serve as a common strategy for cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Jianlin Xu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xi Kuang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Qingdao 266237, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Qingdao 266237, China
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation, and Ageing, Paris, France; Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China; Shandong University, Yuanchen Joint Biomedical Technology Laboratory, Qingdao 266237, China.
| | - Bingyu Mao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China; Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Qingdao 266237, China; Shandong University, Yuanchen Joint Biomedical Technology Laboratory, Qingdao 266237, China.
| |
Collapse
|
2
|
Ahmad S, Zou T, Hwang J, Zhao L, Wang X, Davydenko A, Buchumenski I, Zhuang P, Fishbein AR, Capcha-Rodriguez D, Orgel A, Levanon EY, Myong S, Chou J, Meyerson M, Hur S. PACT prevents aberrant activation of PKR by endogenous dsRNA without sequestration. Nat Commun 2025; 16:3325. [PMID: 40199855 PMCID: PMC11978871 DOI: 10.1038/s41467-025-58433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The innate immune sensor PKR for double-stranded RNA (dsRNA) is critical for antiviral defense, but its aberrant activation by cellular dsRNA is linked to various diseases. The dsRNA-binding protein PACT plays a critical yet controversial role in this pathway. We show that PACT directly suppresses PKR activation by endogenous dsRNA ligands, such as inverted-repeat Alu RNAs, which robustly activate PKR in the absence of PACT. Instead of competing for dsRNA binding, PACT prevents PKR from scanning along dsRNA-a necessary step for PKR molecules to encounter and phosphorylate each other for activation. While PKR favors longer dsRNA for increased co-occupancy and scanning-mediated activation, longer dsRNA is also more susceptible to PACT-mediated regulation due to increased PACT-PKR co-occupancy. Unlike viral inhibitors that constitutively suppress PKR, this RNA-dependent mechanism allows PACT to fine-tune PKR activation based on dsRNA length and quantity, ensuring self-tolerance without sequestering most cellular dsRNA.
Collapse
Affiliation(s)
- Sadeem Ahmad
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tao Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jihee Hwang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Wang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anton Davydenko
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ilana Buchumenski
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Patrick Zhuang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alyssa R Fishbein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Diego Capcha-Rodriguez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aaron Orgel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Sua Myong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Mboukou A, Rajendra V, Messmer S, Mandl TC, Catala M, Tisné C, Jantsch MF, Barraud P. Dimerization of ADAR1 modulates site-specificity of RNA editing. Nat Commun 2024; 15:10051. [PMID: 39572551 PMCID: PMC11582362 DOI: 10.1038/s41467-024-53777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Adenosine-to-inosine editing is catalyzed by adenosine deaminases acting on RNA (ADARs) in double-stranded RNA (dsRNA) regions. Although three ADARs exist in mammals, ADAR1 is responsible for the vast majority of the editing events and acts on thousands of sites in the human transcriptome. ADAR1 has been proposed to form a stable homodimer and dimerization is suggested to be important for editing activity. In the absence of a structural basis for the dimerization of ADAR1, and without a way to prevent dimer formation, the effect of dimerization on enzyme activity or site specificity has remained elusive. Here, we report on the structural analysis of the third double-stranded RNA-binding domain of ADAR1 (dsRBD3), which reveals stable dimer formation through a large inter-domain interface. Exploiting these structural insights, we engineered an interface-mutant disrupting ADAR1-dsRBD3 dimerization. Notably, dimerization disruption did not abrogate ADAR1 editing activity but intricately affected editing efficiency at selected sites. This suggests a complex role for dimerization in the selection of editing sites by ADARs, and makes dimerization a potential target for modulating ADAR1 editing activity.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Vinod Rajendra
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Serafina Messmer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Therese C Mandl
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France.
| |
Collapse
|
5
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
6
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
7
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs (miRNAs): Novel potential therapeutic targets in colorectal cancer. Front Oncol 2022; 12:1054846. [PMID: 36591525 PMCID: PMC9794577 DOI: 10.3389/fonc.2022.1054846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant tumor and one of the most lethal malignant tumors in the world. Despite treatment with a combination of surgery, radiotherapy, and/or systemic treatment, including chemotherapy and targeted therapy, the prognosis of patients with advanced CRC remains poor. Therefore, there is an urgent need to explore novel therapeutic strategies and targets for the treatment of CRC. MicroRNAs (miRNAs/miRs) are a class of short noncoding RNAs (approximately 22 nucleotides) involved in posttranscriptional gene expression regulation. The dysregulation of its expression is recognized as a key regulator related to the development, progression and metastasis of CRC. In recent years, a number of miRNAs have been identified as regulators of drug resistance in CRC, and some have gained attention as potential targets to overcome the drug resistance of CRC. In this review, we introduce the miRNAs and the diverse mechanisms of miRNAs in CRC and summarize the potential targeted therapies of CRC based on the miRNAs.
Collapse
|
8
|
Peng T, He Y, Wang T, Yu J, Ma X, Zhou Z, Sheng Y, Li L, Peng H, Li S, Zou J, Yuan Y, Zhao Y, Shi H, Li F, Liu W, Hu K, Lu X, Zhang G, Wang F. Discovery of a Novel Small-Molecule Inhibitor Disrupting TRBP-Dicer Interaction against Hepatocellular Carcinoma via the Modulation of microRNA Biogenesis. J Med Chem 2022; 65:11010-11033. [PMID: 35695407 DOI: 10.1021/acs.jmedchem.2c00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key players in human hepatocellular carcinoma (HCC) tumorigenesis. Therefore, small molecules targeting components of miRNA biogenesis may provide new therapeutic means for HCC treatment. By a high-throughput screening and structural simplification, we identified a small molecule, CIB-3b, which suppresses the growth and metastasis of HCC in vitro and in vivo by modulating expression profiles of miRNAome and proteome in HCC cells. Mechanistically, CIB-3b physically binds to transactivation response (TAR) RNA-binding protein 2 (TRBP) and disrupts the TRBP-Dicer interaction, thereby altering the activity of Dicer and mature miRNA production. Structure-activity relationship study via the synthesis of 45 CIB-3b derivatives showed that some compounds exhibited a similar inhibitory effect on miRNA biogenesis to CIB-3b. These results support TRBP as a potential therapeutic target in HCC and warrant further development of CIB-3b along with its analogues as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Tao Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiawei Zou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi Yuan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yongyun Zhao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hailong Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
9
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
10
|
Abel Y, Charron C, Virciglio C, Bourguignon-Igel V, Quinternet M, Chagot ME, Robert MC, Verheggen C, Branlant C, Bertrand E, Manival X, Charpentier B, Rederstorff M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2172-2189. [PMID: 35150569 PMCID: PMC8887487 DOI: 10.1093/nar/gkac086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.
Collapse
Affiliation(s)
| | | | | | | | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLOR, F-54000, Nancy, France
| | | | - Marie-Cécile Robert
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Céline Verheggen
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | | | - Edouard Bertrand
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
11
|
Komori C, Takahashi T, Nakano Y, Ui-Tei K. TRBP-Dicer interaction may enhance HIV-1 TAR RNA translation via TAR RNA processing, repressing host-cell apoptosis. Biol Open 2020; 9:bio050435. [PMID: 32051109 PMCID: PMC7055394 DOI: 10.1242/bio.050435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
The transactivating response (TAR) RNA-binding protein (TRBP) has been identified as a double-stranded RNA (dsRNA)-binding protein, which associates with a stem-loop region known as the TAR element in human immunodeficiency virus-1 (HIV-1). However, TRBP is also known to be an enhancer of RNA silencing, interacting with Dicer, an enzyme that belongs to the RNase III family. Dicer cleaves long dsRNA into small dsRNA fragments called small interfering RNA or microRNA (miRNA) to mediate RNA silencing. During HIV-1 infection, TAR RNA-mediated translation is suppressed by the secondary structure of 5'UTR TAR RNA. However, TRBP binding to TAR RNA relieves its inhibitory action of translation and Dicer processes HIV-1 TAR RNA to generate TAR miRNA. However, whether the interaction between TRBP and Dicer is necessary for TAR RNA translation or TAR miRNA processing remains unclear. In this study, we constructed TRBP mutants that were unable to interact with Dicer by introducing mutations into amino acid residues necessary for the interaction. Furthermore, we established cell lines expressing such TRBP mutants. Then, we revealed that the TRBP-Dicer interaction is essential for both the TAR-containing RNA translation and the TAR miRNA processing in HIV-1.
Collapse
Affiliation(s)
- Chiaki Komori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Tomoko Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Yuko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwano-ha, Chiba 277-8561, Japan
| |
Collapse
|
12
|
Ankush Jagtap PK, Müller M, Masiewicz P, von Bülow S, Hollmann NM, Chen PC, Simon B, Thomae AW, Becker PB, Hennig J. Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Nucleic Acids Res 2019; 47:4319-4333. [PMID: 30805612 PMCID: PMC6486548 DOI: 10.1093/nar/gkz125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Maleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR and SAXS data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAXK RNA binding motifs. NMR titrations combined with filter binding experiments and isothermal titration calorimetry (ITC) document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Marisa Müller
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Pawel Masiewicz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Sören von Bülow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Andreas W Thomae
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Peter B Becker
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
13
|
Bou-Nader C, Barraud P, Pecqueur L, Pérez J, Velours C, Shepard W, Fontecave M, Tisné C, Hamdane D. Molecular basis for transfer RNA recognition by the double-stranded RNA-binding domain of human dihydrouridine synthase 2. Nucleic Acids Res 2019; 47:3117-3126. [PMID: 30605527 PMCID: PMC6451096 DOI: 10.1093/nar/gky1302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022] Open
Abstract
Double stranded RNA-binding domain (dsRBD) is a ubiquitous domain specialized in the recognition of double-stranded RNAs (dsRNAs). Present in many proteins and enzymes involved in various functional roles of RNA metabolism, including RNA splicing, editing, and transport, dsRBD generally binds to RNAs that lack complex structures. However, this belief has recently been challenged by the discovery of a dsRBD serving as a major tRNA binding module for human dihydrouridine synthase 2 (hDus2), a flavoenzyme that catalyzes synthesis of dihydrouridine within the complex elbow structure of tRNA. We here unveil the molecular mechanism by which hDus2 dsRBD recognizes a tRNA ligand. By solving the crystal structure of this dsRBD in complex with a dsRNA together with extensive characterizations of its interaction with tRNA using mutagenesis, NMR and SAXS, we establish that while hDus2 dsRBD retains a conventional dsRNA recognition capability, the presence of an N-terminal extension appended to the canonical domain provides additional residues for binding tRNA in a structure-specific mode of action. Our results support that this extension represents a feature by which the dsRBD specializes in tRNA biology and more broadly highlight the importance of structural appendages to canonical domains in promoting the emergence of functional diversity.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Pierre Barraud
- Institut de biologie physico-chimique (IBPC), CNRS, UMR 8261 CNRS/Université Paris Diderot, 13 rue Pierre et Marie Curie, Paris 75005, France.,Laboratoire de cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette Cedex, France
| | - Christophe Velours
- Macromolecular interaction platform of I2BC, UMR9198, Centre de Recherche de Gif-sur-Yvette, France
| | - William Shepard
- Synchrotron Soleil, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette Cedex, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Carine Tisné
- Institut de biologie physico-chimique (IBPC), CNRS, UMR 8261 CNRS/Université Paris Diderot, 13 rue Pierre et Marie Curie, Paris 75005, France.,Laboratoire de cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
14
|
Kuo YP, Ma CP, Chen HW, Chen YT, Lai YH, Liu H, Kuo RL, Chin-Ming Tan B. A novel antisense RNA ASPACT confers multi-level suppression of PACT and associated signalling. RNA Biol 2019; 16:1263-1274. [PMID: 31135270 DOI: 10.1080/15476286.2019.1624471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The innate immune system is the frontline host protection against pathogens. Effective antiviral immunity is elicited upon recognition of viral RNAs by the host pattern recognition receptors. One of the major viral RNA sensors is retinoic acid inducible gene-1, which triggers the production of interferons (IFNs). In turn, this protective response requires another viral sensor and immunity factor interferon-inducible protein kinase RNA activator (PACT/PRKRA). Here, we report the identification and characterization of a novel antisense PACT gene that expresses a non-coding RNA in a convergent and interferon-inducible manner. Publicly available gene structure and expression data revealed that this gene, that we termed ASPACT, overlaps with the 3' -end of the PACT locus and is highly expressed during viral infection. Our results confirm the IFN-β-inducibility of ASPACT, which is dependent on STAT-1/2. We further discovered that downregulation of ASPACT impacts both the expression and localization of the PACT transcript. At the transcription level, ChIP and ChIRP assays demonstrated that the ASPACT non-coding RNA occupies distinct chromatin regions of PACT gene and is important for promoter recruitment of the epigenetic silencer HDAC1. In parallel, ASPACT was also found to mediate nuclear retention of the PACT mRNA via direct RNA-RNA interaction, as revealed by RNA antisense purification assay. In summary, our results support the model that the non-coding RNA ASPACT acts as a negative regulator of PACT at multiple levels, and reveal a novel regulator of the viral counteractive response.
Collapse
Affiliation(s)
- Yu-Ping Kuo
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Chung-Pei Ma
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Wen Chen
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Tung Chen
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Lai
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hsuan Liu
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,c Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Cell and Molecular Biology, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,e Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Rei-Lin Kuo
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,f Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,g Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,h Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Bertrand Chin-Ming Tan
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,g Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,i Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
15
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|