1
|
Medved N, Cevec M, Javornik U, Lah J, Hadži S, Plavec J. Beyond Structure: Methylation Fine-Tunes Stability and Folding Kinetics of bcl2Mid G-Quadruplex. Angew Chem Int Ed Engl 2025:e202507544. [PMID: 40194922 DOI: 10.1002/anie.202507544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
Cytosine methylation, a key epigenetic modification in the regulation of gene expression, raises intriguing questions about its role in the formation and thermodynamic stability of G-quadruplex (G4) structures. We investigated the impact of the 5-methylcytosine residue (Cm) on the well-characterized bcl2Mid G4 structure that forms in a GC-rich region of the B-cell lymphoma 2 (BCL2) gene promoter, which influences its expression. Using solution-state NMR and biophysical techniques, we discovered an unexpected sequence-specific effect of Cm on the folding kinetics of bcl2Mid G4. Specifically, substituting cytosine at position C6 with C6m slows down G4 folding kinetics and influences the equilibrium between major and minor structures in the presence of K+ ions. Notably, the increased population of the minor structure enabled the characterization of its previously unidentified topology. Additionally, the presence of a single Cm residue induces local structural rearrangements in the major G4 structure and decreases its thermodynamic stability. Furthermore, we found that the zinc finger 3 motif of the Sp1 transcription factor preferentially binds to the minor G4 structure. These results suggest that Cm not only influences G4 polymorphism but may also regulate interactions with transcription factors, potentially affecting the regulation of gene expression.
Collapse
Affiliation(s)
- Nataša Medved
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Mirko Cevec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia
| | - San Hadži
- Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia
- EN- FIST Centre of Excellence, Trg OF 13, Ljubljana, Slovenia
| |
Collapse
|
2
|
Iwase R, Ishiguro T, Hara RI, Nagata T, Yokota T. G-Quadruplex-Based Splice Switching as a Therapeutic Approach in Duchenne Muscular Dystrophy. ACS Chem Biol 2025; 20:670-679. [PMID: 40029284 PMCID: PMC11934080 DOI: 10.1021/acschembio.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
RNA guanine (G)-quadruplexes (rG4) are unique noncanonical structures composed of stacked guanine quadruplexes that play diverse roles in regulating gene expression, from transcription to protein synthesis. This study proposes a new splice-switching therapy using G-quadruplex-inducing antisense oligonucleotides (G-ASOs) to reinstate dystrophin expression in Duchenne muscular dystrophy (DMD) models. G-ASOs consist of two functionally independent domains that enable the formation of RNA/DNA hetero-G-quadruplex (hG4) structures. The antisense domain binds to complementary sequences within the target RNA, while the G-rich domain, which contains a sequence of continuous guanines (G-tract), interacts with the G-rich region of target RNA to form an hG4 structure. This precise binding forms an hG4 structure that effectively interrupts alternative splicing. In contrast to the traditional methods that block sterically, this technique employs steric hindrance by forming hG4 structures. Significantly, our findings show that hG4 structures can still form effectively even when the G-rich region of the target RNA and the antisense sequence are as much as 70 nucleotides apart. To address the challenges associated with G-quadruplex formation via G-ASO self-assembly, we developed bulge-containing G-ASOs. This enhancement improves both the efficiency of hG4 formation and the induction of exon-skipping therapy. In summary, this study highlights the potential of G-ASOs in gene therapy, specifically DMD, and marks significant progress in the development of novel therapeutic strategies. These findings highlight the effectiveness of G-ASOs in exon-skipping therapy and demonstrate the advancements in RNA structural manipulation.
Collapse
Affiliation(s)
- Ryo Iwase
- Department of Neurology
and
Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taro Ishiguro
- Department of Neurology
and
Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rintaro I. Hara
- Department of Neurology
and
Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuya Nagata
- Department of Neurology
and
Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takanori Yokota
- Department of Neurology
and
Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
3
|
Barr J, Cadoni E, Schellinck S, Laudadio E, Martins JC, Madder A. Locking up G-Quadruplexes with Light-Triggered Staples Leads to Increased Topological, Thermodynamic, and Metabolic Stability. Angew Chem Int Ed Engl 2025; 64:e202420592. [PMID: 39585944 DOI: 10.1002/anie.202420592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity. Their less intensively studied counterparts, the elusive tetraplexed intercalated-motifs (IMs) are typically unstable at neutral pH, hampering the investigation of their potential involvement in a biological context. We herein report on a photochemical method for "stapling" such tetraplexed-structures, to increase their stability, lock their topology and enhance their enzymatic resistance, while maintaining biological activity. The chemical structure and topology of the stapled Thrombin Binding Aptamer (TBA) was spectroscopically characterised and rationalised in silico. The method was then extended to other biologically relevant G4- and IM-prone sequences, hinting towards potential application of such stapled structures in a therapeutic context.
Collapse
Affiliation(s)
- Jack Barr
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Sofie Schellinck
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Gent, Belgium
| |
Collapse
|
4
|
Gualtieri G, Citriniti EL, Rocca R, Arciuolo V, Amato J, Randazzo A, Alcaro S. Kanamycin and G-Quadruplexes: An Exploration of Binding Interactions. Molecules 2024; 29:5932. [PMID: 39770021 PMCID: PMC11676551 DOI: 10.3390/molecules29245932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
G-quadruplexes (G4s) are distinctive four-stranded nucleic acid structures formed by guanine-rich sequences, making them attractive targets for drug repurposing efforts. Modulating their stability and function holds promise for treating diseases like cancer. To identify potential drug candidates capable of interacting with these complex DNA formations, docking studies and molecular dynamics (MDs) simulations were conducted. Our analysis revealed kanamycin's ability to bind to various G4 structures, offering valuable insights into its potential as a modulator of G4 activity. Kanamycin exhibited favorable interactions with both parallel and hybrid G4 topologies in human structures, suggesting a broader mechanism of action for aminoglycosides. These findings may also shed light on aminoglycoside-associated toxicities, indicating that their effects might extend to binding non-ribosomal RNA structures. In summary, this research highlights kanamycin's potential as a promising tool for influencing G4 dynamics, paving the way for innovative therapeutic strategies targeting G4-related pathways.
Collapse
Affiliation(s)
- Gianmarco Gualtieri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
| | - Emanuele Liborio Citriniti
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Basu P, Kejnovská I, Gajarský M, Šubert D, Mikešová T, Renčiuk D, Trantírek L, Mergny JL, Vorlíčková M. RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed? Nucleic Acids Res 2024; 52:13224-13242. [PMID: 39494519 PMCID: PMC11602125 DOI: 10.1093/nar/gkae927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
Collapse
Affiliation(s)
- Pritha Basu
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Gajarský
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Denis Šubert
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Tereza Mikešová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Department of Biochemistry, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Daniel Renčiuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
6
|
Juribašić Kulcsár M, Gabelica V, Plavec J. Solution-State Structure of a Long-Loop G-Quadruplex Formed Within Promoters of Plasmodium falciparum B var Genes. Chemistry 2024; 30:e202401190. [PMID: 38647110 DOI: 10.1002/chem.202401190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
We report the high-resolution NMR solution-state structure of an intramolecular G-quadruplex with a diagonal loop of ten nucleotides. The G-quadruplex is formed by a 34-nt DNA sequence, d[CAG3T2A2G3TATA2CT3AG4T2AG3T2], named UpsB-Q-1. This sequence is found within promoters of the var genes of Plasmodium falciparum, which play a key role in malaria pathogenesis and evasion of the immune system. The [3+1]-hybrid G-quadruplex formed under physiologically relevant conditions exhibits a unique equilibrium between two structures, both stabilized by base stacking and non-canonical hydrogen bonding. Unique equilibrium of the two closely related 3D structures originates from a North-South repuckering of deoxyribose moiety of residue T27 in the lateral loop. Besides the 12 guanines involved in three G-quartets, most residues in loop regions are involved in interactions at both G-quartet-loop interfaces.
Collapse
Affiliation(s)
- Marina Juribašić Kulcsár
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Valérie Gabelica
- School of Pharmaceutical Sciences, University of Geneva, 1 rue Michel-Servet, CH-1211, Geneva 4, Switzerland
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Shtemenko N, Galiana-Rosello C, Gil-Martínez A, Blasco S, Gonzalez-García J, Velichko H, Holichenko O, Shtemenko O, García-España E. Two rhenium compounds with benzimidazole ligands: synthesis and DNA interactions. RSC Adv 2024; 14:19787-19793. [PMID: 38903672 PMCID: PMC11187564 DOI: 10.1039/d4ra02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Two rhenium compounds: cis-tetrachlorotetrabenzimidazoldirhenium(iii) chloride - I and tetrabenzimidazoldioxorhenium(v) - II have been synthesized and characterized. X-ray data are presented for the new complex II. I and II show strong emission that has been used to investigate their interaction with several non-canonical DNA structures. Both compounds have a quenching effect on the fluorescence intensity upon addition of the investigated oligonucleotides; I was more selective for binding G4-than II. Association constant values obtained for I and II with G-quadruplexes reached 106 M-1, which suggests a strong interaction between both complexes and these sequences. FRET-melting assays show that I and II have a rather high level of stabilization of ckit1 and ckit2 quadruplexes. I is toxic against macrophages RAW267.7 only in high concentrations, while complex II shows no toxicity against these cells. I and II accumulate inside cells in different degrees. Molecular dynamic simulation studies have provided insights into the binding modes of II with ckit1 and ckit2 G-quadruplexes. The results obtained show the DNA binding activity of the rhenium complexes and their ability to be players in the anti-cancer fight since they can bind to non-canonical DNA forms in oncogene promoters, accumulate in some cancer cells, and influence the cancer cells microenvironment.
Collapse
Affiliation(s)
- Nataliia Shtemenko
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
- Oles Honchar National University Haharina Ave, 72 Dnipro 49000 Ukraine
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Cristina Galiana-Rosello
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Ariadna Gil-Martínez
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Salvador Blasco
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Jorge Gonzalez-García
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Helen Velichko
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Oleksandr Holichenko
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Olexandr Shtemenko
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Enrique García-España
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
8
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JCA. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. Nucleic Acids Res 2024; 52:4702-4722. [PMID: 38572746 PMCID: PMC11077067 DOI: 10.1093/nar/gkae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Farag M, Mouawad L. Comprehensive analysis of intramolecular G-quadruplex structures: furthering the understanding of their formalism. Nucleic Acids Res 2024; 52:3522-3546. [PMID: 38512075 DOI: 10.1093/nar/gkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
G-quadruplexes (G4) are helical structures found in guanine-rich DNA or RNA sequences. Generally, their formalism is based on a few dozen structures, which can produce some inconsistencies or incompleteness. Using the website ASC-G4, we analyzed the structures of 333 intramolecular G4s, of all types, which allowed us to clarify some key concepts and present new information. To each of the eight distinguishable topologies corresponds a groove-width signature and a predominant glycosidic configuration (gc) pattern governed by the directions of the strands. The relative orientations of the stacking guanines within the strands, which we quantified and related to their vertical gc successions, determine the twist and tilt of the helices. The latter impact the minimum groove widths, which represent the space available for lateral ligand binding. The G4 four helices have similar twists, even when these twists are irregular, meaning that they have various angles along the strands. Despite its importance, the vertical gc succession has no strict one-to-one relationship with the topology, which explains the discrepancy between some topologies and their corresponding circular dichroism spectra. This study allowed us to introduce the new concept of platypus G4s, which are structures with properties corresponding to several topologies.
Collapse
Affiliation(s)
- Marc Farag
- Chemistry and Modeling for the Biology of Cancer, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, CS 90030, 91401 ORSAYCedex, France
| | - Liliane Mouawad
- Chemistry and Modeling for the Biology of Cancer, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, CS 90030, 91401 ORSAYCedex, France
| |
Collapse
|
10
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JC. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558871. [PMID: 37790366 PMCID: PMC10542165 DOI: 10.1101/2023.09.21.558871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L. Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J. Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C.A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
13
|
Monsen RC. Higher-order G-quadruplexes in promoters are untapped drug targets. Front Chem 2023; 11:1211512. [PMID: 37351517 PMCID: PMC10282141 DOI: 10.3389/fchem.2023.1211512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid secondary structures that form within guanine-rich regions of chromatin. G4 motifs are abundant in the genome, with a sizable proportion (∼40%) existing within gene promoter regions. G4s are proven epigenetic features that decorate the promoter landscape as binding centers for transcription factors. Stabilizing or disrupting promoter G4s can directly influence adjacent gene transcription, making G4s attractive as indirect drug targets for hard-to-target proteins, particularly in cancer. However, no G4 ligands have progressed through clinical trials, mostly owing to off targeting effects. A major hurdle in G4 drug discovery is the lack of distinctiveness of the small monomeric G4 structures currently used as receptors. This mini review describes and contrasts monomeric and higher-order G-quadruplex structure and function and provides a rationale for switching focus to the higher-order forms as selective molecular targets. The human telomerase reverse transcriptase (hTERT) core promoter G-quadruplex is then used as a case study that highlights the potential for higher-order G4s as selective indirect inhibitors of hard-to-target proteins in cancer.
Collapse
|
14
|
D'Anna L, Rubino S, Pipitone C, Serio G, Gentile C, Palumbo Piccionello A, Giannici F, Barone G, Terenzi A. Salphen metal complexes as potential anticancer agents: interaction profile and selectivity studies toward the three G-quadruplex units in the KIT promoter. Dalton Trans 2023; 52:2966-2975. [PMID: 36444991 DOI: 10.1039/d2dt03229e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA G-rich sequences can organize in four-stranded structures called G-quadruplexes (G4s). These motifs are enriched in significant sites within the human genomes, including telomeres and promoters of cancer related genes. For instance, KIT proto-oncogene promoter, associated with diverse cancers, contains three adjacent G4 units, namely Kit2, SP, and Kit1. Aiming at finding new and selective G-quadruplex binders, we have synthesized and characterized five non-charged metal complexes of Pt(II), Pd(II), Ni(II), Cu(II) and Zn(II) of a chlorine substituted Salphen ligand. The crystal structure of the Pt(II) and Pd(II) complexes was determined by XRPD. FRET measurements indicated that Pt(II) and Pd(II) compounds stabilize Kit1 and Kit2 G4s but not SP, telomeric and double stranded DNA. Spectroscopic investigations (UV-Vis, circular dichroism and fluorescence) suggested the Cu(II) complex as the most G4-selective compound. Interestingly, docking simulations indicate that the synthesized compounds fit groove binding pockets of both Kit1 and Kit2 G4s. Moreover, they exhibited dose-dependent cytotoxic activity in MCF-7, HepG2 and HeLa cancer cells.
Collapse
Affiliation(s)
- Luisa D'Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Simona Rubino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Candida Pipitone
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Francesco Giannici
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
15
|
Kristoffersen E, Coletta A, Lund L, Schiøtt B, Birkedal V. Inhibited complete folding of consecutive human telomeric G-quadruplexes. Nucleic Acids Res 2023; 51:1571-1582. [PMID: 36715345 PMCID: PMC9976873 DOI: 10.1093/nar/gkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.
Collapse
Affiliation(s)
- Emil Laust Kristoffersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Andrea Coletta
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | |
Collapse
|
16
|
Zhu BC, He J, Xia XY, Jiang J, Liu W, Liu LY, Liang BB, Yao HG, Ke Z, Xia W, Mao ZW. Solution structure of a thrombin binding aptamer complex with a non-planar platinum(ii) compound. Chem Sci 2022; 13:8371-8379. [PMID: 35919711 PMCID: PMC9297526 DOI: 10.1039/d2sc01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombin Binding Aptamer (TBA) is a monomolecular well-defined two G-tetrad antiparallel G-quadruplex DNA that inhibits the activity of human α-thrombin. In this report, we synthesized a quasi-cross-shaped platinum(ii) compound (L'2LPt) with one cyclometalated and two carbene ligands. We found L'2LPt has selective affinity to bind the TBA G-quadruplex. A fibrinogen clotting assay revealed that L'2LPt can abrogate the inhibitory activity of TBA against thrombin. We solved the 1 : 1 L'2LPt-TBA complex structure by NMR, which revealed a unique self-adaptive property of L'2LPt upon binding to TBA. In the complex, a carbene ligand of L'2LPt rotates to pair with the cyclometalated ligand to form a plane stacking over half of the TBA G-tetrad and covered by lateral TT loops. It is notable that the heavy atom Pt stays out of the G-tetrad. Meanwhile, the other carbene ligand remains relatively perpendicular and forms a hydrogen bond with a guanine to anchor the L'2LPt position. This structure exhibits a quasi-cross-shaped Pt(ii) compound bound to the G-quadruplex with an unusual "wall-mounted" binding mode. Our structures provide insights into the specific recognition of antiparallel G-quadruplex DNA by a self-adaptive Pt(ii) compound and useful information for the design of selective G-quadruplex targeting non-planar molecules.
Collapse
Affiliation(s)
- Bo-Chen Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Juan He
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Xiao-Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Jingxing Jiang
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Bing-Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hua-Gang Yao
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
17
|
Cagirici HB, Budak H, Sen TZ. G4Boost: a machine learning-based tool for quadruplex identification and stability prediction. BMC Bioinformatics 2022; 23:240. [PMID: 35717172 PMCID: PMC9206279 DOI: 10.1186/s12859-022-04782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background G-quadruplexes (G4s), formed within guanine-rich nucleic acids, are secondary structures involved in important biological processes. Although every G4 motif has the potential to form a stable G4 structure, not every G4 motif would, and accurate energy-based methods are needed to assess their structural stability. Here, we present a decision tree-based prediction tool, G4Boost, to identify G4 motifs and predict their secondary structure folding probability and thermodynamic stability based on their sequences, nucleotide compositions, and estimated structural topologies.
Results G4Boost predicted the quadruplex folding state with an accuracy greater then 93% and an F1-score of 0.96, and the folding energy with an RMSE of 4.28 and R2 of 0.95 only by the means of sequence intrinsic feature. G4Boost was successfully applied and validated to predict the stability of experimentally-determined G4 structures, including for plants and humans. Conclusion G4Boost outperformed the three machine-learning based prediction tools, DeepG4, Quadron, and G4RNA Screener, in terms of both accuracy and F1-score, and can be highly useful for G4 prediction to understand gene regulation across species including plants and humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04782-z.
Collapse
Affiliation(s)
- H Busra Cagirici
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA
| | | | - Taner Z Sen
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
18
|
Rigo R, Groaz E, Sissi C. Polymorphic and Higher-Order G-Quadruplexes as Possible Transcription Regulators: Novel Perspectives for Future Anticancer Therapeutic Applications. Pharmaceuticals (Basel) 2022; 15:ph15030373. [PMID: 35337170 PMCID: PMC8950063 DOI: 10.3390/ph15030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In the past two decades, significant efforts have been put into designing small molecules to target selected genomic sites where DNA conformational rearrangements control gene expression. G-rich sequences at oncogene promoters are considered good points of intervention since, under specific environmental conditions, they can fold into non-canonical tetrahelical structures known as G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein, which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes along with their highly polymorphic behavior may account for this scenario, suggesting the need for more focused drug design strategies. Here, we will summarize the G4 structural features that can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary structures might cooperate to control genome architecture at a higher level. If this holds true, the link between drug–DNA complex formation and the associated cellular effects will need to be revisited.
Collapse
Affiliation(s)
- Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Elisabetta Groaz
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-Box 1041, 3000 Leuven, Belgium
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- Correspondence:
| |
Collapse
|
19
|
Grün JT, Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers 2021; 113:e23477. [PMID: 34664713 DOI: 10.1002/bip.23477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence.
Collapse
Affiliation(s)
- J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt/M, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/M, Germany
| |
Collapse
|
20
|
Jana J, Weisz K. Thermodynamic Stability of G-Quadruplexes: Impact of Sequence and Environment. Chembiochem 2021; 22:2848-2856. [PMID: 33844423 PMCID: PMC8518667 DOI: 10.1002/cbic.202100127] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Indexed: 12/19/2022]
Abstract
G-quadruplexes have attracted growing interest in recent years due to their occurrence in vivo and their possible biological functions. In addition to being promising targets for drug design, these four-stranded nucleic acid structures have also been recognized as versatile tools for various technological applications. Whereas a large number of studies have yielded insight into their remarkable structural diversity, our current knowledge on G-quadruplex stabilities as a function of sequence and environmental factors only gradually emerges with an expanding collection of thermodynamic data. This minireview provides an overview of general rules that may be used to better evaluate quadruplex thermodynamic stabilities but also discusses present challenges in predicting most stable folds for a given sequence and environment.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| | - Klaus Weisz
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| |
Collapse
|
21
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
22
|
Vesco G, Lamperti M, Salerno D, Marrano CA, Cassina V, Rigo R, Buglione E, Bondani M, Nicoletto G, Mantegazza F, Sissi C, Nardo L. Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene. Nucleic Acids Res 2021; 49:9724-9737. [PMID: 34478543 PMCID: PMC8464035 DOI: 10.1093/nar/gkab674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/13/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022] Open
Abstract
G-quadruplexes embedded within promoters play a crucial role in regulating the gene expression. KIT is a widely studied oncogene, whose promoter contains three G-quadruplex forming sequences, c-kit1, c-kit2 and c-kit*. For these sequences available studies cover ensemble and single-molecule analyses, although for kit* the latter were limited to a study on a promoter domain comprising all of them. Recently, c-kit2 has been reported to fold according to a multi-step process involving folding intermediates. Here, by exploiting fluorescence resonance energy transfer, both in ensemble and at the single molecule level, we investigated the folding of expressly designed constructs in which, alike in the physiological context, either c-kit2 or c-kit* are flanked by double stranded DNA segments. To assess whether the presence of flanking ends at the borders of the G-quadruplex affects the folding, we studied under the same protocols oligonucleotides corresponding to the minimal G-quadruplex forming sequences. Data suggest that addition of flanking ends results in biasing both the final equilibrium state and the folding kinetics. A previously unconsidered aspect is thereby unravelled, which ought to be taken into account to achieve a deeper insight of the complex relationships underlying the fine tuning of the gene-regulatory properties of these fascinating DNA structures.
Collapse
Affiliation(s)
- Guglielmo Vesco
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| | - Marco Lamperti
- Department of Physics, Polytechnic of Milan, 23900 Lecco, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Maria Bondani
- Institute for Photonics and Nanotechnology, IFN-CNR, 22100 Como, Italy
| | - Giulia Nicoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Luca Nardo
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| |
Collapse
|
23
|
Pavlova AV, Kubareva EA, Monakhova MV, Zvereva MI, Dolinnaya NG. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021; 11:1284. [PMID: 34572497 PMCID: PMC8472537 DOI: 10.3390/biom11091284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| |
Collapse
|
24
|
Kejnovská I, Stadlbauer P, Trantírek L, Renčiuk D, Gajarský M, Krafčík D, Palacký J, Bednářová K, Šponer J, Mergny JL, Vorlíčková M. G-Quadruplex Formation by DNA Sequences Deficient in Guanines: Two Tetrad Parallel Quadruplexes Do Not Fold Intramolecularly. Chemistry 2021; 27:12115-12125. [PMID: 34145655 DOI: 10.1002/chem.202100895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/05/2023]
Abstract
Guanine quadruplexes (G4s) are noncanonical forms of nucleic acids that are frequently found in genomes. The stability of G4s depends, among other factors, on the number of G-tetrads. Three- or four-tetrad G4s and antiparallel two-tetrad G4s have been characterized experimentally; however, the existence of an intramolecular (i. e., not dimeric or multimeric) two-tetrad parallel-stranded DNA G4 has never been experimentally observed. Many sequences compatible with two-tetrad G4 can be found in important genomic regions, such as promoters, for which parallel G4s predominate. Using experimental and theoretical approaches, the propensity of the model sequence AATGGGTGGGTTTGGGTGGGTAA to form an intramolecular parallel-stranded G4 upon increasing the number of GGG-to-GG substitutions has been studied. Deletion of a single G leads to the formation of intramolecular G4s with a stacked G-triad, whose topology depends on the location of the deletion. Removal of another guanine from another G-tract leads to di- or multimeric G4s. Further deletions mostly prevent the formation of any stable G4. Thus, a solitary two-tetrad parallel DNA G4 is not thermodynamically stable and requires additional interactions through capping residues. However, transiently populated metastable two-tetrad species can associate to form stable dimers, the dynamic formation of which might play additional delicate roles in gene regulation. These findings provide essential information for bioinformatics studies searching for potential G4s in genomes.
Collapse
Affiliation(s)
- Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/3, 625 00, Brno, Czech Republic
| | - Daniel Renčiuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Martin Gajarský
- Central European Institute of Technology, Masaryk University, Kamenice 753/3, 625 00, Brno, Czech Republic
| | - Daniel Krafčík
- Central European Institute of Technology, Masaryk University, Kamenice 753/3, 625 00, Brno, Czech Republic
| | - Jan Palacký
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Klára Bednářová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
25
|
Peterková K, Durník I, Marek R, Plavec J, Podbevšek P. c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry. Nucleic Acids Res 2021; 49:8947-8960. [PMID: 34365512 PMCID: PMC8421218 DOI: 10.1093/nar/gkab659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π–π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.
Collapse
Affiliation(s)
- Kateřina Peterková
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Grün JT, Blümler A, Burkhart I, Wirmer-Bartoschek J, Heckel A, Schwalbe H. Unraveling the Kinetics of Spare-Tire DNA G-Quadruplex Folding. J Am Chem Soc 2021; 143:6185-6193. [PMID: 33872503 DOI: 10.1021/jacs.1c01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The folding of DNA G-quadruplexes (G4) is essential to regulate expression of oncogenes and involves polymorphic long-lived intermediate states. G4 formation requires four G-tracts, but human gene-promoters often contain multiple G-tracts that act as spare-tires. These additional G-tracts are highly conserved and add multiple layers of functional complexity, as they are crucial to maintain G4 function after oxidative damage. Herein, we unravel the folding dynamics of the G4 sequence containing five G-tracts from cMYC, the major proliferation-driving oncogene. We devise a general method to induce folding at constant experimental conditions using a photochemical trapping strategy. Our data dissect the individual kinetics and thermodynamics of the spare-tire mechanism of cMYC-G4.
Collapse
Affiliation(s)
- J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60323, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60323, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60323, Germany
| | - Ines Burkhart
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60323, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60323, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60323, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60323, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60323, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60323, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60323, Germany
| |
Collapse
|
27
|
Bielskutė S, Plavec J, Podbevšek P. Oxidative lesions modulate G-quadruplex stability and structure in the human BCL2 promoter. Nucleic Acids Res 2021; 49:2346-2356. [PMID: 33638996 PMCID: PMC7913773 DOI: 10.1093/nar/gkab057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Misregulation of BCL2 expression has been observed with many diseases and is associated with cellular exposure to reactive oxygen species. A region upstream of the P1 promoter in the human BCL2 gene plays a major role in regulating transcription. This G/C-rich region is highly polymorphic and capable of forming G-quadruplex structures. Herein we report that an oxidative event simulated with an 8-oxo-7,8-dihydroguanine (oxoG) substitution within a long G-tract results in a reduction of structural polymorphism. Surprisingly, oxoG within a 25-nt construct boosts thermal stability of the resulting G-quadruplex. This is achieved by distinct hydrogen bonding properties of oxoG, which facilitate formation of an antiparallel basket-type G-quadruplex with a three G-quartet core and a G·oxoG·C base triad. While oxoG has previously been considered detrimental for G-quadruplex formation, its stabilizing effect within a promoter described in this study suggests a potential novel regulatory role of oxidative stress in general and specifically in BCL2 gene transcription.
Collapse
Affiliation(s)
- Stasė Bielskutė
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Laddachote S, Ishii R, Yoshida W. Effects of CpG methylation on the thermal stability of c-kit2, c-kit*, and c-kit1 G-quadruplex structures. BBA ADVANCES 2021; 1:100007. [PMID: 37082005 PMCID: PMC10074881 DOI: 10.1016/j.bbadva.2021.100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
In genomic DNA, G-quadruplex (G4)-forming DNA can form either a duplex or G4 structure, suggesting that understanding the factors regulating G4 formation is important for revealing the cellular functions controlled by G4 formation. Cytosine DNA methylation in the CpG islands is known to play an important role in transcriptional regulation. Additionally, CpG methylation increases the thermal stability of G4 structures such as BCL2 and VEGF G4. In this study, we evaluated the effects of CpG methylation in three G4 structures (c-kit2, c-kit*, and c-kit1) produced by the c-KIT promoter. Each was analyzed using circular dichroism (CD) melting analysis. The results demonstrate that CpG methylation does not alter the thermal stability of c-kit2 G4 structure when formed in the presence of K+; a single-CpG methylation at C1 or C11 decreases the thermal stability of any c-kit2 G4 structure formed in the presence of Na+ and Mg2+ while methylation at C5 increases the thermal stability; CpG methylation does not alter the thermal stability of c-kit1 or c-kit* G4 structures formed in the presence of K+; and the c-kit1 and c-kit* G4-forming oligonucleotides do not form G4 structures in the presence of Na+ and Mg2+. These results provide important clues for understanding the regulatory mechanisms underlying the formation of CpG methylation-induced G4 structures.
Collapse
|
29
|
Da Ros S, Nicoletto G, Rigo R, Ceschi S, Zorzan E, Dacasto M, Giantin M, Sissi C. G-Quadruplex Modulation of SP1 Functional Binding Sites at the KIT Proximal Promoter. Int J Mol Sci 2020; 22:E329. [PMID: 33396937 PMCID: PMC7795597 DOI: 10.3390/ijms22010329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/17/2022] Open
Abstract
The regulation of conformational arrangements of gene promoters is a physiological mechanism that has been associated with the fine control of gene expression. Indeed, it can drive the time and the location for the selective recruitment of proteins of the transcriptional machinery. Here, we address this issue at the KIT proximal promoter where three G-quadruplex forming sites are present (kit1, kit2 and kit*). On this model, we focused on the interplay between G-quadruplex (G4) formation and SP1 recruitment. By site directed mutagenesis, we prepared a library of plasmids containing mutated sequences of the WT KIT promoter that systematically exploited different G4 formation attitudes and SP1 binding properties. Our transfection data showed that the three different G4 sites of the KIT promoter impact on SP1 binding and protein expression at different levels. Notably, kit2 and kit* structural features represent an on-off system for KIT expression through the recruitment of transcription factors. The use of two G4 binders further helps to address kit2-kit* as a reliable target for pharmacological intervention.
Collapse
Affiliation(s)
- Silvia Da Ros
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (S.D.R.); (G.N.); (R.R.); (S.C.)
| | - Giulia Nicoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (S.D.R.); (G.N.); (R.R.); (S.C.)
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (S.D.R.); (G.N.); (R.R.); (S.C.)
| | - Silvia Ceschi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (S.D.R.); (G.N.); (R.R.); (S.C.)
| | - Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (E.Z.); (M.D.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (E.Z.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (E.Z.); (M.D.)
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (S.D.R.); (G.N.); (R.R.); (S.C.)
- CRIBI Biotechnology Center (Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative), University of Padua, 35131 Padua, Italy
| |
Collapse
|
30
|
Zhang M, Liang J, Jiang SK, Xu L, Wu YL, Awadasseid A, Zhao XY, Xiong XQ, Sugiyama H, Zhang W. Design, synthesis and anti-cancer activity of pyrrole-imidazole polyamides through target-downregulation of c-kit gene expression. Eur J Med Chem 2020; 207:112704. [DOI: 10.1016/j.ejmech.2020.112704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
|
31
|
A two-quartet G-quadruplex topology of human KIT2 is conformationally selected by a perylene derivative. Biochimie 2020; 179:77-84. [DOI: 10.1016/j.biochi.2020.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
|
32
|
Popenda M, Miskiewicz J, Sarzynska J, Zok T, Szachniuk M. Topology-based classification of tetrads and quadruplex structures. Bioinformatics 2020; 36:1129-1134. [PMID: 31588513 PMCID: PMC7031778 DOI: 10.1093/bioinformatics/btz738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 12/02/2022] Open
Abstract
Motivation Quadruplexes attract the attention of researchers from many fields of bio-science. Due to a specific structure, these tertiary motifs are involved in various biological processes. They are also promising therapeutic targets in many strategies of drug development, including anticancer and neurological disease treatment. The uniqueness and diversity of their forms cause that quadruplexes show great potential in novel biological applications. The existing approaches for quadruplex analysis are based on sequence or 3D structure features and address canonical motifs only. Results In our study, we analyzed tetrads and quadruplexes contained in nucleic acid molecules deposited in Protein Data Bank. Focusing on their secondary structure topology, we adjusted its graphical diagram and proposed new dot-bracket and arc representations. We defined the novel classification of these motifs. It can handle both canonical and non-canonical cases. Based on this new taxonomy, we implemented a method that automatically recognizes the types of tetrads and quadruplexes occurring as unimolecular structures. Finally, we conducted a statistical analysis of these motifs found in experimentally determined nucleic acid structures in relation to the new classification. Availability and implementation https://github.com/tzok/eltetrado/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mariusz Popenda
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Miskiewicz
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan 60-965, Poland
| | - Joanna Sarzynska
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan 60-965, Poland.,Poznan Supercomputing and Networking Center, Poznan 61-139, Poland
| | - Marta Szachniuk
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.,Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
33
|
Islam B, Stadlbauer P, Vorlíčková M, Mergny JL, Otyepka M, Šponer J. Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. J Chem Theory Comput 2020; 16:3447-3463. [PMID: 32163706 DOI: 10.1021/acs.jctc.9b01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are four-stranded noncanonical DNA and RNA architectures that can be formed by guanine-rich sequences. The stability of GQs increases with the number of G-quartets, and three G-quartets generally form stable GQs. However, the stability of two-quartet GQs is an open issue. To understand the intrinsic stability of two-quartet GQ stems, we have carried out a series of unbiased molecular dynamics (MD) simulations (505 μs in total) of two- and four-quartet DNA and RNA GQs, with attention paid mainly to parallel-stranded arrangements. We used AMBER DNA parmOL15 and RNA parmOL3 force fields and tested different ion and water models. Two-quartet parallel-stranded DNA GQs unfolded in all the simulations, while the equivalent RNA GQ was stable in most of the simulations. GQs composed of two stacked units of two-quartet GQs were stable for both DNA and RNA. The simulations suggest that a minimum of three quartets are needed to form an intrinsically stable all-anti parallel-stranded DNA GQ. Parallel two-quartet DNA GQ may exist if substantially stabilized by another molecule or structural element, including multimerization. On the other hand, we predict that isolated RNA two-quartet parallel GQs may form, albeit being weakly stable. We also show that ionic parameters and water models should be chosen with caution because some parameter combinations can cause spurious instability of GQ stems. Some in-so-far unnoticed limitations of force-field description of multiple ions inside the GQs are discussed, which compromise the capability of simulations to fully capture the effect of increase in the number of quartets on the GQ stability.
Collapse
Affiliation(s)
- Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
34
|
Salsbury AM, Dean TJ, Lemkul JA. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J Chem Theory Comput 2020; 16:3430-3444. [PMID: 32307997 DOI: 10.1021/acs.jctc.0c00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are highly ordered nucleic acid structures that play fundamental roles in regulating gene expression and maintaining genomic stability. GQs are topologically diverse and enriched in promoter sequences of growth regulatory genes and proto-oncogenes, suggesting that they may serve as attractive targets for drug design at the level of transcription rather than inhibiting the activity of the protein products of these genes. The c-kit promoter contains three adjacent GQ-forming sequences that have proposed antagonistic effects on gene expression and thus are promising drug targets for diseases such as gastrointestinal stromal tumors, mast cell disease, and leukemia. Because GQ stability is influenced by primary structure, secondary structure, and ion interactions, a greater understanding of GQ structure, dynamics, and ion binding properties is needed to develop novel, GQ-targeting therapeutics. Here, we performed molecular dynamics simulations to systematically study the c-kit2 and c-kit* GQs, evaluating nonpolarizable and polarizable force fields (FFs) and examining the effects of base substitutions and cation type (K+, Na+, and Li+) on the dynamics of their isolated and linked structures. We found that the Drude polarizable FF outperformed the additive CHARMM36 FF in two- and three-tetrad GQs and solutions of KCl, NaCl, and LiCl. Drude simulations with different cations agreed with the known GQ stabilization preference (K+ > Na+ > Li+) and illustrated that tetrad core-ion coordination differs as a function of cation type. Finally, we showed that differences in primary and secondary structure influence loop sampling, ion binding, and core-ion energetics of GQs.
Collapse
Affiliation(s)
- Alexa M Salsbury
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tanner J Dean
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
35
|
Golenkina EA, Viryasova GM, Dolinnaya NG, Bannikova VA, Gaponova TV, Romanova YM, Sud’ina GF. The Potential of Telomeric G-quadruplexes Containing Modified Oligoguanosine Overhangs in Activation of Bacterial Phagocytosis and Leukotriene Synthesis in Human Neutrophils. Biomolecules 2020; 10:E249. [PMID: 32041263 PMCID: PMC7072695 DOI: 10.3390/biom10020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Human neutrophils are the first line of defense against bacterial and viral infections. They eliminate pathogens through phagocytosis, which activate the 5-lipoxygenase (5-LOX) pathway resulting in synthesis of leukotrienes. Using HPLC analysis, flow cytometry, and other biochemical methods, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs) able to fold into G-quadruplex structures on the main functions of neutrophils. Designed ODNs contained four human telomere TTAGGG repeats (G4) including those with phosphorothioate oligoguanosines attached to the end(s) of G-quadruplex core. Just modified analogues of G4 was shown to more actively than parent ODN penetrate into cells, improve phagocytosis of Salmonella typhimurium bacteria, affect 5-LOX activation, the cytosol calcium ion level, and the oxidative status of neutrophils. As evident from CD and UV spectroscopy data, the presence of oligoguanosines flanking G4 sequence leads to dramatic changes in G-quadruplex topology. While G4 folds into a single antiparallel structure, two main folded forms have been identified in solutions of modified ODNs: antiparallel and dominant, more stable parallel. Thus, both the secondary structure of ODNs and their ability to penetrate into the cytoplasm of cells are important for the activation of neutrophil cellular effects. Our results offer new clues for understanding the role of G-quadruplex ligands in regulation of integral cellular processes and for creating the antimicrobial agents of a new generation.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| | - Galina M. Viryasova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| | - Nina G. Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow 119234, Russia; (N.G.D.); (V.A.B.)
| | - Valeria A. Bannikova
- Lomonosov Moscow State University, Department of Chemistry, Moscow 119234, Russia; (N.G.D.); (V.A.B.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow 125167, Russia;
| | - Yulia M. Romanova
- Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow 123098, Russia;
| | - Galina F. Sud’ina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| |
Collapse
|
36
|
Geng Y, Liu C, Zhou B, Cai Q, Miao H, Shi X, Xu N, You Y, Fung CP, Din RU, Zhu G. The crystal structure of an antiparallel chair-type G-quadruplex formed by Bromo-substituted human telomeric DNA. Nucleic Acids Res 2019; 47:5395-5404. [PMID: 30957851 PMCID: PMC6547763 DOI: 10.1093/nar/gkz221] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Human telomeric guanine-rich DNA, which could adopt different G-quadruplex structures, plays important roles in protecting the cell from recombination and degradation. Although many of these structures were determined, the chair-type G-quadruplex structure remains elusive. Here, we present a crystal structure of the G-quadruplex composed of the human telomeric sequence d[GGGTTAGG8GTTAGGGTTAGG20G] with two dG to 8Br-dG substitutions at positions 8 and 20 with syn conformation in the K+ solution. It forms a novel three-layer chair-type G-quadruplex with two linking trinucleotide loops. Particularly, T5 and T17 are coplanar with two water molecules stacking on the G-tetrad layer in a sandwich-like mode through a coordinating K+ ion and an A6•A18 base pair. While a twisted Hoogsteen A12•T10 base pair caps on the top of G-tetrad core. The three linking TTA loops are edgewise and each DNA strand has two antiparallel adjacent strands. Our findings contribute to a deeper understanding and highlight the unique roles of loop and water molecule in the folding of the G-quadruplex.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingying You
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rahman Ud Din
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
37
|
Benabou S, Mazzini S, Aviñó A, Eritja R, Gargallo R. A pH-dependent bolt involving cytosine bases located in the lateral loops of antiparallel G-quadruplex structures within the SMARCA4 gene promotor. Sci Rep 2019; 9:15807. [PMID: 31676783 PMCID: PMC6825181 DOI: 10.1038/s41598-019-52311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Some lung and ovarian tumors are connected to the loss of expression of SMARCA4 gene. In its promoter region, a 44-nucleotides long guanine sequence prone to form G-quadruplex structures has been studied by means of spectroscopic techniques (circular dichroism, molecular absorption and nuclear magnetic resonance), size exclusion chromatography and multivariate analysis. The results have shown that the central 21-nucleotides long sequence comprising four guanine tracts of disparate length is able to fold into a pH-dependent ensemble of G-quadruplex structures. Based on acid-base titrations and melting experiments of wild and mutated sequences, the formation of a C·C+ base pair between cytosine bases present at the two lateral loops is shown to promote a reduction in conformational heterogeneity, as well as an increase in thermal stability. The formation of this base pair is characterized by a pKa value of 7.1 ± 0.2 at 20 °C and 150 mM KCl. This value, higher than those usually found in i-motif structures, is related to the additional stability provided by guanine tetrads in the G-quadruplex. To our knowledge, this is the first thermodynamic description of this base pair in loops of antiparallel G-quadruplex structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
38
|
Karg B, Mohr S, Weisz K. Duplex‐Guided Refolding into Novel G‐Quadruplex (3+1) Hybrid Conformations. Angew Chem Int Ed Engl 2019; 58:11068-11071. [DOI: 10.1002/anie.201905372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Beatrice Karg
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Swantje Mohr
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Klaus Weisz
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
39
|
Karg B, Mohr S, Weisz K. Duplex‐gesteuerte Umfaltung in neuartige G‐Quadruplex‐(3+1)‐ Hybridkonformationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Beatrice Karg
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Swantje Mohr
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Klaus Weisz
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
40
|
Ducani C, Bernardinelli G, Högberg B, Keppler BK, Terenzi A. Interplay of Three G-Quadruplex Units in the KIT Promoter. J Am Chem Soc 2019; 141:10205-10213. [PMID: 31244182 DOI: 10.1021/jacs.8b12753] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proto-oncogene KIT encodes for a tyrosine kinase receptor, which is a clinically validated target for treating gastrointestinal stromal tumors. The KIT promoter contains a G-rich domain within a relatively long sequence potentially able to form three adjacent G-quadruplex (G4) units, namely, K2, SP, and K1. These G4 domains have been studied mainly as single quadruplex units derived from short truncated sequences and are currently considered promising targets for anticancer drugs, alternatively to the encoded protein. Nevertheless, the information reported so far does not contemplate the interplay between those neighboring G4s in the context of the whole promoter, possibly thwarting drug-discovery efforts. Here we report the structural and functional study of the KIT promoter core sequence, in both single- and double-stranded forms, which includes all three predicted G4 units. By preventing the formation of alternatively one or two G4 units and by combining biophysical techniques and biological assays, we show for the first time that these quadruplexes cannot be analyzed independently, but they are correlated to each other. Our data suggest that, while K2 and K1 G-rich sequences retain the ability to fold into parallel G4 motifs within a long sequence, the SP G-rich domain contributes to G4 structure only together with K2. Remarkably, we have found that, in the context of a dynamic equilibrium between the three G4 units, the G4 formed by K1 has the most significant influence on the structure stability and on the biological role of the whole promoter.
Collapse
Affiliation(s)
- Cosimo Ducani
- Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm 171 65 , Sweden
| | - Giulio Bernardinelli
- Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm 171 65 , Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm 171 65 , Sweden
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry , University of Vienna , Waehringerstrasse 42 , A-1090 Vienna , Austria
| | - Alessio Terenzi
- Institute of Inorganic Chemistry , University of Vienna , Waehringerstrasse 42 , A-1090 Vienna , Austria
| |
Collapse
|