1
|
Rajinikanth N, Chauhan R, Prabakaran S. Harnessing Noncanonical Proteins for Next-Generation Drug Discovery and Diagnosis. WIREs Mech Dis 2025; 17:e70001. [PMID: 40423871 DOI: 10.1002/wsbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Noncanonical proteins, encoded by previously overlooked genomic regions (part of the "dark genome"), are emerging as crucial players in human health and disease, expanding our understanding of the "dark proteome." This review explores their landscape, including proteins derived from long non-coding RNAs, circular RNAs, and alternative open reading frames. Recent advances in ribosome profiling, mass spectrometry, and proteogenomics have unveiled their involvement in critical cellular processes. We examine their roles in cancer, neurological disorders, cardiovascular diseases, and infectious diseases, highlighting their potential as novel biomarkers and therapeutic targets. The review addresses challenges in identifying and characterizing these proteins, particularly recently evolved ones, and discusses implications for drug discovery, including cancer immunotherapy and neoantigen sources. By synthesizing recent findings, we underscore the significance of noncanonical proteins in expanding our understanding of the human genome and proteome, and their promise in developing innovative diagnostic tools and targeted therapies. This overview aims to stimulate further research into this unexplored biological space, potentially revolutionizing approaches to disease treatment and personalized medicine.
Collapse
Affiliation(s)
- Nachiket Rajinikanth
- University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | | | - Sudhakaran Prabakaran
- NonExomics, Inc., Acton, Massachusetts, USA
- Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Needham JM, Greco TM, Cristea IM, Thompson SR. Ribosomal protein S25 promotes cell cycle entry for a productive BK polyomavirus infection. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230390. [PMID: 40045781 PMCID: PMC11883431 DOI: 10.1098/rstb.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 01/19/2025] [Indexed: 03/09/2025] Open
Abstract
Many viruses use alternate mechanisms to initiate protein translation owing to their limited coding capacity. The ribosomal protein S25 (RPS25/eS25) is required for efficient non-canonical mechanisms of translation initiation, such as internal ribosomal entry site (IRES) initiation or ribosomal shunting, but eS25 is not required for efficient cap-dependent initiation. Thus, eS25 knockdown can be used to evaluate whether a virus relies on alternative mechanisms of initiation. Since earlier studies suggest that simian virus 40 (SV40) uses an IRES to translate a minor capsid protein VP3, which is translated from the same transcript as VP2, we sought to test if BK polyomavirus (BKPyV) also used an IRES by examining viral production with and without eS25. Instead, we found that BKPyV required eS25 for robust viral production prior to gene expression, suggesting that it affected an early step in the viral life cycle. These studies revealed a role for eS25 in cell cycle control. When eS25 was knocked down in primary kidney cells, it decreased the proportion of cycling cells, causing arrest at both G0/G1 and G2/M. These data suggest that the timing of BKPyV infection depends on the initial cell cycle state of the host cell.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- J. M. Needham
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL35205, USA
| | - T. M. Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ08544, USA
| | - I. M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ08544, USA
| | - S. R. Thompson
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL35205, USA
| |
Collapse
|
3
|
Fernández-García L, Angulo J, López-Lastra M. The Polypyrimidine Tract-Binding Protein Is a Transacting Factor for the Dengue Virus Internal Ribosome Entry Site. Viruses 2024; 16:1757. [PMID: 39599871 PMCID: PMC11599071 DOI: 10.3390/v16111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Dengue virus (DENV) is an enveloped, positive sense, single-stranded RNA virus belonging to the Flaviviridae. Translation initiation of the DENV mRNA (vRNA) can occur following a cap-dependent, 5'-3'end-dependent internal ribosome entry site (IRES)-independent or IRES-dependent mechanism. This study evaluated the activity of DENV IRES in BHK-21 cells and the role of the polypyrimidine-tract binding protein (PTB) isoforms PTB1, PTB2, and PTB4 as IRES-transacting factors (ITAFs) for the DENV IRES. The results show that DENV-IRES activity is stimulated in DENV-replicating BHK-21 cells and cells expressing the Foot-and-mouth disease virus leader or Human rhinovirus 2A proteases. Protease activity was necessary, although a complete shutdown of cap-dependent translation initiation was not a requirement to stimulate DENV IRES activity. Regarding PTB, the results show that PTB1 > PTB2 > PTB4 stimulates DENV-IRES activity in BHK-21 cells. Mutations in the PTB RNA recognition motifs (RRMs), RRM1/RRM2 or RRM3/RRM4, differentially impact PTB1, PTB2, and PTB4's ability to promote DENV IRES-mediated translation initiation in BHK-21 cells. PTB1-induced DENV-IRES stimulation is rescinded when RRM1/RRM2 or RRM3/RRM4 are disrupted. Mutations in RRM1/RRM2 or RRM3/RRM4 do not affect the ITAF activity of PTB2. Mutating RRM3/RRM4, but not RRM1/RRM2, abolishes the ability of PTB4 to stimulate the DENV IRES. Thus, PTB1, PTB2, and PTB4 are ITAFs for the DENV IRES.
Collapse
Affiliation(s)
- Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
| |
Collapse
|
4
|
Fuentes Y, Olguín V, López-Ulloa B, Mendonça D, Ramos H, Abdalla A, Guajardo-Contreras G, Niu M, Rojas-Araya B, Mouland A, López-Lastra M. Heterogeneous nuclear ribonucleoprotein K promotes cap-independent translation initiation of retroviral mRNAs. Nucleic Acids Res 2024; 52:2625-2647. [PMID: 38165048 PMCID: PMC10954487 DOI: 10.1093/nar/gkad1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES. In HIV-1-expressing cells, the depletion of hnRNPK reduced HIV-1 vRNA translation. Furthermore, both the depletion and overexpression of hnRNPK modulated HIV-1 IRES activity. Phosphorylations and protein arginine methyltransferase 1 (PRMT1)-induced asymmetrical dimethylation (aDMA) of hnRNPK strongly impacted the protein's ability to promote the activity of the HIV-1 IRES. We also show that hnRNPK acts as an ITAF for the human T cell lymphotropic virus-type 1 (HTLV-1) IRES, present in the 5'UTR of the viral sense mRNA, but not for the IRES present in the antisense spliced transcript encoding the HTLV-1 basic leucine zipper protein (sHBZ). This study provides evidence for a novel role of the host hnRNPK as an ITAF that stimulates IRES-mediated translation initiation for the retroviruses HIV-1 and HTLV-1.
Collapse
Affiliation(s)
- Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Dafne Mendonça
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Barbara Rojas-Araya
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
5
|
Fernández-García L, Ahumada-Marchant C, Lobos-Ávila P, Brauer B, Bustos FJ, Arriagada G. The Mytilus chilensis Steamer-like Element-1 Retrotransposon Antisense mRNA Harbors an Internal Ribosome Entry Site That Is Modulated by hnRNPK. Viruses 2024; 16:403. [PMID: 38543768 PMCID: PMC10974842 DOI: 10.3390/v16030403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 05/23/2024] Open
Abstract
LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 83700071, Chile; (L.F.-G.); (C.A.-M.); (P.L.-Á.); (B.B.); (F.J.B.)
| |
Collapse
|
6
|
Kendle W, Hoang K, Korleski E, Panfil AR, Polakowski N, Lemasson I. Upregulation of Neuropilin-1 Inhibits HTLV-1 Infection. Pathogens 2023; 12:831. [PMID: 37375521 DOI: 10.3390/pathogens12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) can produce a spectrum of pathological effects ranging from inflammatory disorders to leukemia. In vivo, HTLV-1 predominantly infects CD4+ T-cells. Infectious spread within this population involves the transfer of HTLV-1 virus particles from infected cells to target cells only upon cell-to-cell contact. The viral protein, HBZ, was found to enhance HTLV-1 infection through transcriptional activation of ICAM1 and MYOF, two genes that facilitate viral infection. In this study, we found that HBZ upregulates the transcription of COL4A1, GEM, and NRP1. COL4A1 and GEM are genes involved in viral infection, while NRP1, which encodes neuropilin 1 (Nrp1), serves as an HTLV-1 receptor on target cells but has no reported function on HTLV-1-infected cells. With a focus on Nrp1, cumulative results from chromatin immunoprecipitation assays and analyses of HBZ mutants support a model in which HBZ upregulates NRP1 transcription by augmenting recruitment of Jun proteins to an enhancer downstream of the gene. Results from in vitro infection assays demonstrate that Nrp1 expressed on HTLV-1-infected cells inhibits viral infection. Nrp1 was found to be incorporated into HTLV-1 virions, and deletion of its ectodomain removed the inhibitory effect. These results suggest that inhibition of HTLV-1 infection by Nrp1 is caused by the ectodomain of Nrp1 extended from virus particles, which may inhibit the binding of virus particles to target cells. While HBZ has been found to enhance HTLV-1 infection using cell-based models, there may be certain circumstances in which activation of Nrp1 expression negatively impacts viral infection, which is discussed.
Collapse
Affiliation(s)
- Wesley Kendle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kimson Hoang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Erica Korleski
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Polakowski
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Isabelle Lemasson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
7
|
Angulo J, Cáceres CJ, Contreras N, Fernández-García L, Chamond N, Ameur M, Sargueil B, López-Lastra M. Polypyrimidine-Tract-Binding Protein Isoforms Differentially Regulate the Hepatitis C Virus Internal Ribosome Entry Site. Viruses 2022; 15:8. [PMID: 36680049 PMCID: PMC9864772 DOI: 10.3390/v15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Translation initiation of the hepatitis C virus (HCV) mRNA depends on an internal ribosome entry site (IRES) that encompasses most of the 5'UTR and includes nucleotides of the core coding region. This study shows that the polypyrimidine-tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the HCV 5'UTR, stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Our results show that PTB1 and PTB4, but not PTB2, stimulate HCV IRES activity in HuH-7 and HEK293T cells. In HuH-7 cells, PTB1 promotes HCV IRES-mediated initiation more strongly than PTB4. Mutations in PTB1, PTB4, RRM1/RRM2, or RRM3/RRM4, which disrupt the RRM's ability to bind RNA, abrogated the protein's capacity to stimulate HCV IRES activity in HuH-7 cells. In HEK293T cells, PTB1 and PTB4 stimulate HCV IRES activity to similar levels. In HEK293T cells, mutations in RRM1/RRM2 did not impact PTB1's ability to promote HCV IRES activity; and mutations in PTB1 RRM3/RRM4 domains reduced, but did not abolish, the protein's capacity to stimulate HCV IRES activity. In HEK293T cells, mutations in PTB4 RRM1/RRM2 abrogated the protein's ability to promote HCV IRES activity, and mutations in RRM3/RRM4 have no impact on PTB4 ability to enhance HCV IRES activity. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity in a cell type-specific manner. We conclude that PTB1 and PTB4, but not PTB2, act as IRES transacting factors of the HCV IRES.
Collapse
Affiliation(s)
- Jenniffer Angulo
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Facultad de Odontología, Universidad Finis Terrae, Santiago 7501015, Chile
| | - C. Joaquín Cáceres
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Nathalie Chamond
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Melissa Ameur
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Bruno Sargueil
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
8
|
Barba-Aliaga M, Alepuz P. Role of eIF5A in Mitochondrial Function. Int J Mol Sci 2022; 23:1284. [PMID: 35163207 PMCID: PMC8835957 DOI: 10.3390/ijms23031284] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
9
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
10
|
Ramos H, Monette A, Niu M, Barrera A, López-Ulloa B, Fuentes Y, Guizar P, Pino K, DesGroseillers L, Mouland A, López-Lastra M. The double-stranded RNA-binding protein, Staufen1, is an IRES-transacting factor regulating HIV-1 cap-independent translation initiation. Nucleic Acids Res 2022; 50:411-429. [PMID: 34893869 PMCID: PMC8754648 DOI: 10.1093/nar/gkab1188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5'untranslated region (5'UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.
Collapse
Affiliation(s)
- Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Paola Guizar
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Luc DesGroseillers
- Department of Biochemistry and Molecular Medicine, University of Montreal, P.O. Box 6128, Station Centre Ville, Montreal, Québec H3C 3J7, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
11
|
Vera-Otarola J, Castillo-Vargas E, Angulo J, Barriga FM, Batlle E, Lopez-Lastra M. The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirus small mRNA. PLoS Pathog 2021; 17:e1009931. [PMID: 34547046 PMCID: PMC8454973 DOI: 10.1371/journal.ppat.1009931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The capped Small segment mRNA (SmRNA) of the Andes orthohantavirus (ANDV) lacks a poly(A) tail. In this study, we characterize the mechanism driving ANDV-SmRNA translation. Results show that the ANDV-nucleocapsid protein (ANDV-N) promotes in vitro translation from capped mRNAs without replacing eukaryotic initiation factor (eIF) 4G. Using an RNA affinity chromatography approach followed by mass spectrometry, we identify the human RNA chaperone Mex3A (hMex3A) as a SmRNA-3’UTR binding protein. Results show that hMex3A enhances SmRNA translation in a 3’UTR dependent manner, either alone or when co-expressed with the ANDV-N. The ANDV-N and hMex3A proteins do not interact in cells, but both proteins interact with eIF4G. The hMex3A–eIF4G interaction showed to be independent of ANDV-infection or ANDV-N expression. Together, our observations suggest that translation of the ANDV SmRNA is enhanced by a 5’-3’ end interaction, mediated by both viral and cellular proteins. Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is unique among other members of the Hantaviridae family of viruses because of its ability to spread from person to person. The molecular mechanisms driving ANDV protein synthesis remain poorly understood. A previous report showed that translation of the Small segment mRNA (SmRNA) of ANDV relied on both the 5’cap and the 3’untranslated region (UTR) of the SmRNA. In this new study, we further characterize the mechanism by which the 5’ and 3’end of the SmRNA interact to assure viral protein synthesis. We establish that the viral nucleocapsid protein N and the cellular protein hMex3A participate in the process. These observations indicated that both viral and cellular proteins regulate viral gene expression during ANDV infection by enabling the viral mRNA to establish a non-covalent 5’-3’end interaction.
Collapse
Affiliation(s)
- Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Unidad de Virología Aplicada, Dirección de Investigación y Doctorados de la Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefania Castillo-Vargas
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco M. Barriga
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology. Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology. Barcelona, Spain
- ICREA, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited. J Virol 2021; 95:JVI.01998-20. [PMID: 33298544 PMCID: PMC8092825 DOI: 10.1128/jvi.01998-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is an enveloped, positive-sense, single-stranded RNA virus belonging to the Flaviviridae family. Translation initiation of the DENV mRNA can occur following a cap-dependent or a cap-independent mechanism. Two non-mutually exclusive cap-independent mechanisms of translation initiation have been described for the DENV mRNA. The first corresponds to a 5'end-dependent internal ribosome entry site (IRES)-independent mechanism, while the second relies on IRES-dependent initiation. In this report, we study the recently discovered DENV IRES. Results show that the DENV IRES is functional in the rabbit reticulocyte (RRL) in vitro translation system. In accordance, the activity of DENV IRES was resistant to the cleavage of eIF4G by the Foot-and-mouth disease virus leader protease in RRL. In cells, the DENV IRES exhibited only a marginal activity under standard culture conditions. The DENV IRES showed weak activity in HEK 293T cells; however, the DENV IRES activity was significantly enhanced in HEK 293T cells expressing the Human rhinovirus 2A protease. These findings suggest that the DENV IRES enables viral protein synthesis under conditions that suppress canonical translation initiation.IMPORTANCE Dengue virus (DENV), the etiological agent of Dengue, a febrile and hemorrhagic disease, infects millions of people per year in tropical and subtropical countries. When infecting cells, DENV induces stress conditions known to inhibit canonical protein synthesis. Under these conditions, DENV mRNA thrives using non-canonical modes of translation initiation. In this study, we characterize the mechanism dependent upon an internal ribosome entry site (IRES). Herein, we describe the activity of the DENV IRES in vitro and cells. We show that in cells, DENV IRES enables the viral mRNA to translate under conditions that suppress canonical translation initiation.
Collapse
|
13
|
Barrera A, Ramos H, Vera-Otarola J, Fernández-García L, Angulo J, Olguín V, Pino K, Mouland AJ, López-Lastra M. Post-translational modifications of hnRNP A1 differentially modulate retroviral IRES-mediated translation initiation. Nucleic Acids Res 2020; 48:10479-10499. [PMID: 32960212 PMCID: PMC7544202 DOI: 10.1093/nar/gkaa765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
The full-length mRNAs of the human immunodeficiency virus type-1 (HIV-1), the human T-cell lymphotropic virus type-1 (HTLV-1), and the mouse mammary tumor virus (MMTV) harbor IRESs. The activity of the retroviral-IRESs requires IRES-transacting factors (ITAFs), being hnRNP A1, a known ITAF for the HIV-1 IRES. In this study, we show that hnRNP A1 is also an ITAF for the HTLV-1 and MMTV IRESs. The MMTV IRES proved to be more responsive to hnRNP A1 than either the HTLV-1 or the HIV-1 IRESs. The impact of post-translational modifications of hnRNP A1 on HIV-1, HTLV-1 and MMTV IRES activity was also assessed. Results show that the HIV-1 and HTLV-1 IRESs were equally responsive to hnRNP A1 and its phosphorylation mutants S4A/S6A, S4D/S6D and S199A/D. However, the S4D/S6D mutant stimulated the activity from the MMTV-IRES to levels significantly higher than the wild type hnRNP A1. PRMT5-induced symmetrical di-methylation of arginine residues of hnRNP A1 enabled the ITAF to stimulate the HIV-1 and HTLV-1 IRESs while reducing the stimulatory ability of the ITAF over the MMTV IRES. We conclude that retroviral IRES activity is not only dependent on the recruited ITAFs but also relies on how these proteins are modified at the post-translational level.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
14
|
The splice 1 variant of HTLV-1 bZIP factor stabilizes c-Jun. Virology 2020; 549:51-58. [PMID: 32841759 DOI: 10.1016/j.virol.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
HBZ is expressed by the complex retrovirus, Human T-cell Leukemia Virus type 1, and implicated in pathological effects associated with viral infection. From the nucleus, HBZ alters gene expression by interacting with a variety of transcriptional regulatory proteins, among which is c-Jun. Previously, one of the three HBZ variants, HBZUS, was reported to decrease c-Jun expression by promoting its degradation. Here we show that another variant, HBZS1, produces the opposite effect. In the presence of HBZS1, c-Jun expression increases due to its stabilization. Our data suggest that this effect requires the ability of HBZS1 to interact with c-Jun. We provide evidence that HBZS1 inhibits the proteosomal degradation of c-Jun initiated by the Cop1-containing ubiquitin ligase complex. HBZS1 is the most abundant variant in HTLV-1-infected T-cells, and our data indicate that levels of c-Jun expression in infected cells are consistent with effects of HBZS1.
Collapse
|
15
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
16
|
Yasunaga JI. Strategies of Human T-Cell Leukemia Virus Type 1 for Persistent Infection: Implications for Leukemogenesis of Adult T-Cell Leukemia-Lymphoma. Front Microbiol 2020; 11:979. [PMID: 32508789 PMCID: PMC7248384 DOI: 10.3389/fmicb.2020.00979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 01/21/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection in vivo in two distinct ways: de novo infection and clonal proliferation of infected cells. Two viral genes, Tax and HTLV-1 bZIP factor (HBZ) play critical roles in viral transcription and promotion of T-cell proliferation, respectively. Tax is a potent transactivator not only for viral transcription but also for many cellular oncogenic pathways, such as the NF-κB pathway. HBZ is a suppressor of viral transcription and has the potential to change the immunophenotype of infected cells, conferring an effector regulatory T cell (eTreg)-like signature (CD4+ CD25+ CCR4+ TIGIT+ Foxp3+) and enhancing the proliferation of this subset. Reports that mice transgenic for either gene develop malignant tumors suggest that both Tax and HBZ are involved in leukemogenesis by HTLV-1. However, the immunogenicity of Tax is very high, and its expression is generally suppressed in vivo. Recently, it was found that Tax can be expressed transiently in a small subpopulation of adult T-cell leukemia-lymphoma (ATL) cells and plays a critical role in maintenance of the overall population. HBZ is expressed in almost all infected cells except for the rare Tax-expressing cells, and activates the pathways associated with cell proliferation. These findings indicate that HTLV-1 fine-tunes the expression of viral genes to control the mode of viral propagation. The interplay between Tax and HBZ is the basis of a sophisticated strategy to evade host immune surveillance and increase transmission - and can lead to ATL as a byproduct.
Collapse
Affiliation(s)
- Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Wu GQ, Xu YM, Lau ATY. Recent insights into eukaryotic translation initiation factors 5A1 and 5A2 and their roles in human health and disease. Cancer Cell Int 2020; 20:142. [PMID: 32368188 PMCID: PMC7191727 DOI: 10.1186/s12935-020-01226-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic translation initiation factor 5A1 (eIF5A1) and its homolog eIF5A2 are the only two human proteins containing the unique post-translational modification-hypusination, which is essential for the function of these two proteins. eIF5A1 was initially identified as a translation initiation factor by promoting the first peptide bond formation of protein during translation; however, recent results suggest that eIF5A1 also functions as a translation elongation factor. It has been shown that eIF5A1 is implicated in certain human diseases, including diabetes, several human cancer types, viral infections and diseases of neural system. Meanwhile, eIF5A2 is overexpressed in many cancers, and plays an important role in the development and progression of cancers. As multiple roles of these two factors were observed among these studies, therefore, it remains unclear whether they act as oncogene or tumor suppressor. In this review, the recent literature of eIF5As and their roles in human diseases, especially in human cancers, will be discussed.
Collapse
Affiliation(s)
- Gao-Qi Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 People’s Republic of China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 People’s Republic of China
| |
Collapse
|