1
|
Xu G, Zhang Y, Xiang X, Luo H, Han X, Zhao B, Wang H, Guo X. Classification and recognition of noncanonical DNA secondary structures by surface-enhanced Raman spectroscopy and principal component analysis. Talanta 2025; 291:127869. [PMID: 40054215 DOI: 10.1016/j.talanta.2025.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
The investigation of DNA secondary structures is of significance for understanding the function and regulation of nucleic acids. However, traditional techniques still face challenges in high-throughput, label-free analysis of DNA secondary structure diversity. Herein, principal component analysis (PCA) was used to optimize the substrate in surface-enhanced Raman spectroscopy (SERS) for the classification and recognition of noncanonical DNA secondary structures. In this assay, 3 kind of anions (Cl-, Br-, and I-) were used to modify the surface of sliver nanoparticles and gold nanoparticles, and 12 kinds of cations were optimized as the aggregation regent. On the basis of the featured peaks corresponding to DNA secondary structures, I- ions modified AgNPs with Ba2+ ions as aggregating agent (Ag IMNPs-Ba2+), and Br- ions modified AuNPs with Ba2+ ions as aggregating agent (Au BrMNPs-Ba2+) were selected as optimal substrates. With these two optimal substrates, the parallel, hybrid, and antiparallel G4 structures with different numbers of G-quartets, iM with different numbers of C:CH+ base pairs, and antiparallel and parallel double-strand DNA, were unambiguously classified. In addition, the complex DNA secondary structures in a mixed solution were accurately identified. This study provides a universal platform for DNA secondary structure analysis, and is implicated for further large-scale screening of SERS substrates.
Collapse
Affiliation(s)
- Guantong Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Hong Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, PR China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Stephens C, Goodey NM, Gubler U. A beginners guide to SELEX and DNA aptamers. Anal Biochem 2025; 703:115890. [PMID: 40320157 DOI: 10.1016/j.ab.2025.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
SELEX stands for "Systematic Evolution of Ligands by Exponential Enrichment." It is an in vitro, iterative, PCR-based, target-specific selection strategy used to generate single-stranded DNA (ssDNA) aptamers that bind a target of interest. Properly selected aptamers bind their targets with high affinity and specificity and have utility in a multitude of detection assays. They are thus similar to antibodies but have the advantage of being more stable and cheaper to produce. The SELEX process encompasses several steps, some of which are critical to the successful isolation of an aptamer. Careful analysis and optimization of the SELEX process are thus important. This review summarizes our own experience when we, as complete novices, were setting up the SELEX system in our lab. It is thus meant to give some general and practical but concise pointers for anyone interested in initiating their own SELEX experiments. As such, the review covers key elements of the SELEX process, including library design, target selection and immobilization strategies, aptamer binding conditions, partitioning techniques, and PCR optimization. We also discuss common pitfalls such as by-product formation and single-stranded DNA recovery challenges, along with practical strategies to overcome them. Emerging trends and post-SELEX considerations, such as sequencing, structure prediction, and chemical modifications, are included to guide beginners through every stage of aptamer development.
Collapse
Affiliation(s)
- Cameron Stephens
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA
| | - Nina M Goodey
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA.
| | - Ueli Gubler
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA.
| |
Collapse
|
3
|
Wu M, Liu Y, Zhu X, Zhang X, Kong Q, Lu W, Yuan X, Liu Y, Lu K, Dai Y, Zhang B. Advances in i-motif structures: Stability, gene expression, and therapeutic applications. Int J Biol Macromol 2025:143555. [PMID: 40294675 DOI: 10.1016/j.ijbiomac.2025.143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The i-motif, a cytosine-rich DNA structure formed under acidic conditions, plays a pivotal role in regulating gene expression and holds significant therapeutic potential across various diseases. Found in the promoter regions of oncogenes such as Bcl-2, C-MYC, and KRAS, i-motifs dynamically interact with transcription factors and ligands to modulate oncogene activity. Their pH-sensitive nature enables innovative applications, including cellular pH sensors like the "i-switch" and drug delivery platforms such as DNA hydrogels that release therapeutics in acidic tumor microenvironments. However, challenges remain in developing specific ligands and detection methods. Advances in nanotechnology and multi-target therapies highlight the transformative potential of i-motifs in precision medicine. This review underscores the importance of i-motifs as therapeutic targets and tools, bridging fundamental research with clinical applications in oncology, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengqing Wu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China; School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiaoke Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qinghong Kong
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Yuan
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yunlai Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Keyu Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Yangxue Dai
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
4
|
Pu Q, Lai X, Peng Y, Wu Q. A controllable DNA: structural features and advanced applications of i-motif. Analyst 2025; 150:1726-1740. [PMID: 40183738 DOI: 10.1039/d4an01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The i-motif consists of two parallel-stranded duplexes, stabilized by intercalated semi-protonated cytosine-cytosine (C·C+) pairing. Initially, the i-motif was thought to be unstable under physiological pH, which limited its biological interest. However, recent studies have demonstrated the presence of i-motifs in regulatory regions of the human genome at neutral pH, making their study biologically relevant. In addition, in the field of nanotechnology, the reversible pH-responsive properties of i-motif structures have been utilized to construct functional nanostructures for biomedical diagnostics and therapeutics. In this review, we present an overview of the structural features of i-motifs, the factors affecting their stability, and detection methods. Furthermore, we focus on summarizing recent advances in the application of i-motif-based functional nanostructures at the cellular level. The challenges and future prospects of i-motifs in nanomedicine are also discussed at the end of this paper.
Collapse
Affiliation(s)
- Qiumei Pu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Yanan Peng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| |
Collapse
|
5
|
Ashida K, Kitabayashi A, Nishiyama K, Nakano SI. Comprehensive Analysis of Stability and Variability of DNA Minimal I-Motif Structures. Molecules 2025; 30:1831. [PMID: 40333875 PMCID: PMC12029255 DOI: 10.3390/molecules30081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Cytosine-rich DNA sequences form i-motif structures associated with various cellular functions including gene regulation. DNA sequences containing consecutive C residues are widely deemed essential for i-motif formation; however, some sequences lacking C-tracts have been reported to form minimal i-motif structures. We systematically investigated the variability in the minimal i-motif-forming DNA sequence comprising two TCGTTCCGT sequence units, which forms two C:C+ pairs and two G:C:G:T base tetrads. A comprehensive analysis of structural stability by DNA thermal melting temperature measurements revealed that oligonucleotides disrupting the formation of the base tetrad or its stacking interactions with a C:C+ pair prevent stable i-motif formation, and modifications to the sequence context and length of the lateral loops are difficult. This study further demonstrated that spermine effectively restores the stability reduction caused by creating a bulge, long loop, or dangling end within the minimal i-motif structure, which is less pronounced in the C-rich i-motif. The results suggest that the formation of minimal i-motifs with various sequences is facilitated in polyamine-rich environments, such as the nucleus of mammalian cells. These findings are valuable for identifying potential i-motif-forming sites lacking C-tracts in genomes and provide insights into the electrostatic interactions between i-motif structures and biological polyamines.
Collapse
Affiliation(s)
| | | | | | - Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
6
|
Xu G, Bao Y, Zhang Y, Xiang X, Luo H, Guo X. Applying Machine Learning and SERS for Precise Typing of DNA Secondary Structures. Anal Chem 2024; 96:17109-17117. [PMID: 39413285 DOI: 10.1021/acs.analchem.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been demonstrated as an effective method for elucidating secondary structural characteristics of DNA. However, the inherent complexity of the DNA conformation and the lack of SERS samples pose challenges for identifying numerous secondary structures. To address these issues, a synergistic method integrating machine learning with SERS was proposed so as to analyze the SERS spectra of 54 well-defined conformational oligonucleotides, namely, G-quadruplex (G4), i-motif (iM), double-strand (DS), and single-strand (SS) configurations. Principal component analysis (PCA) effectively segregated the oligonucleotides into three distinct conformational groups (G4s, iMs, and others). Furthermore, linear discriminant analysis (LDA), K-nearest neighbor (KNN), and support vector machine (SVM) approaches were utilized to improve the typing accuracy of 54 trained sequences. This enabled the correct classification of the structures of five untrained sequences, as well as the identification of the predominant conformations including G4, iM, and DS formed by two complementary G-rich and C-rich sequences in acidic and neutral pH conditions. The results of this study demonstrated the potential of the proposed methodology for rapid screening and prediction of secondary DNA conformations.
Collapse
Affiliation(s)
- Guantong Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying Bao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hong Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Tao S, Run Y, Monchaud D, Zhang W. i-Motif DNA: identification, formation, and cellular functions. Trends Genet 2024; 40:853-867. [PMID: 38902139 DOI: 10.1016/j.tig.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yonghang Run
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6302, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
8
|
Peña Martinez CD, Zeraati M, Rouet R, Mazigi O, Henry JY, Gloss B, Kretzmann JA, Evans CW, Ruggiero E, Zanin I, Marušič M, Plavec J, Richter SN, Bryan TM, Smith NM, Dinger ME, Kummerfeld S, Christ D. Human genomic DNA is widely interspersed with i-motif structures. EMBO J 2024; 43:4786-4804. [PMID: 39210146 PMCID: PMC11480443 DOI: 10.1038/s44318-024-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells. Validated by biolayer interferometry and circular dichroism spectroscopy, our approach aimed to identify DNA sequences capable of i-motif formation on a genome-wide scale, revealing that such sequences are widely distributed throughout the human genome and are common in genes upregulated in G0/G1 cell cycle phases. Our findings provide experimental evidence for the widespread formation of i-motif structures in human genomic DNA and a foundational resource for future studies of their genomic, structural, and molecular roles.
Collapse
Affiliation(s)
- Cristian David Peña Martinez
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Mahdi Zeraati
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Brian Gloss
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Jessica A Kretzmann
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Maja Marušič
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
- Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sarah Kummerfeld
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia.
| |
Collapse
|
9
|
Boissieras J, Bonnet H, Susanto MF, Gomez D, Defrancq E, Granzhan A, Dejeu J. iMab antibody binds single-stranded cytosine-rich sequences and unfolds DNA i-motifs. Nucleic Acids Res 2024; 52:8052-8062. [PMID: 38908025 PMCID: PMC11317162 DOI: 10.1093/nar/gkae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.
Collapse
Affiliation(s)
- Joseph Boissieras
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Maria Fidelia Susanto
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Eric Defrancq
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Anton Granzhan
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Jérôme Dejeu
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
- SUPMICROTECH, Université Franche-Comté, Institut FEMTO-ST, 25000 Besançon, France
| |
Collapse
|
10
|
Zhou W, Wan W, Miao W, Bao Y, Liu Y, Jia G, Li C. K +-Specification with Flavone P0 Probe in a G-Quadruplex DNA. Anal Chem 2024; 96:10835-10840. [PMID: 38889097 DOI: 10.1021/acs.analchem.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.
Collapse
Affiliation(s)
- Wenqin Zhou
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wang Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Bao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
11
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
12
|
Zhao R, Bai Y, Guo Y, Feng F, Shuang S. Aptamer-Modified Tetrahedral DNA Nanostructures as Drug Delivery System for Cancer Targeted Therapy. Macromol Biosci 2024; 24:e2300420. [PMID: 38088938 DOI: 10.1002/mabi.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Indexed: 12/22/2023]
Abstract
Improving the selective delivery and uptake efficiency of chemotherapeutic drugs remains a challenge for cancer-targeted therapy. In this work, a DNA tetrahedron is constructed as a targeted drug delivery system for efficient delivery of doxorubicin (Dox) into cancer cells. The DNA tetrahedron is composed of a tetrahedral DNA nanostructure (TDN) with two strands of AS1411 aptamer as recognition elements which can target the nucleolin protein on the cell membrane of cancer cells. The prepared DNA tetrahedron has a high drug-loading capacity and demonstrates pH-responsive Dox release properties. This enables efficient delivery of Dox into targeted cancer cells while reducing side effects on nontarget cells. The proposed drug delivery system exhibits significant therapeutic efficacy in vitro compared to free Dox. Accordingly, this work provides a good paradigm for developing a targeted drug delivery system for cancer therapy based on DNA tetrahedrons.
Collapse
Affiliation(s)
- Ruirui Zhao
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China
| | - Yujing Guo
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
13
|
Trizna L, Olajoš J, Víglaský V. DNA minicircles capable of forming a variety of non-canonical structural motifs. Front Chem 2024; 12:1384201. [PMID: 38595699 PMCID: PMC11002140 DOI: 10.3389/fchem.2024.1384201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Although more than 10% of the human genome has the potential to fold into non-B DNA, the formation of non-canonical structural motifs as part of long dsDNA chains are usually considered as unfavorable from a thermodynamic point of view. However, recent experiments have confirmed that non-canonical motifs do exist and are non-randomly distributed in genomic DNA. This distribution is highly dependent not only on the DNA sequence but also on various other factors such as environmental conditions, DNA topology and the expression of specific cellular factors in different cell types. In this study, we describe a new strategy used in the preparation of DNA minicircles containing different non-canonical motifs which arise as a result of imperfect base pairing between complementary strands. The approach exploits the fact that imperfections in the pairing of complementary strands thermodynamically weaken the dsDNA structure at the expense of enhancing the formation of non-canonical motifs. In this study, a completely different concept of stable integration of a non-canonical motif into dsDNA is presented. Our approach allows the integration of various types of non-canonical motifs into the dsDNA structure such as hairpin, cruciform, G-quadruplex and i-motif forms but also combinations of these forms. Small DNA minicircles have recently become the subject of considerable interest in both fundamental research and in terms of their potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Viktor Víglaský
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
14
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Martinez-Fernandez L, Improta R. The photophysics of protonated cytidine and hemiprotonated cytidine base pair: A computational study. Photochem Photobiol 2024; 100:314-322. [PMID: 37409732 DOI: 10.1111/php.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+ ), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+ , the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Naples, Italy
| |
Collapse
|
16
|
Yazdani K, Seshadri S, Tillo D, Yang M, Sibley CD, Vinson C, Schneekloth JS. Decoding complexity in biomolecular recognition of DNA i-motifs with microarrays. Nucleic Acids Res 2023; 51:12020-12030. [PMID: 37962331 PMCID: PMC10711443 DOI: 10.1093/nar/gkad981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Desiree Tillo
- Genome Analysis Unit, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892, USA
| | - Mo Yang
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Christopher D Sibley
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| |
Collapse
|
17
|
Sengupta P, Jamroskovic J, Sabouri N. A beginner's handbook to identify and characterize i-motif DNA. Methods Enzymol 2023; 695:45-70. [PMID: 38521590 DOI: 10.1016/bs.mie.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Genomic DNA exhibits an innate ability to manifest diverse sequence-dependent secondary structures, serving crucial functions in gene regulation and cellular equilibrium. While extensive research has confirmed the formation of G-quadruplex structures by guanine-rich sequences in vitro and in cells, recent investigations have turned the quadruplex community's attention to the cytosine (C)-rich complementary strands that can adopt unique tetra-stranded conformation, termed as intercalated motif or i-motif. I-motifs are stabilized by hemi-protonated C:CH+ base pairs under acidic conditions. Initially, the in vivo occurrence of i-motifs was underestimated because their formation is favored at non-physiological pH. However, groundbreaking research utilizing the structure-specific iMab antibody and high-throughput sequencing have recently detected their conserved dispersion throughout the genome, challenging previous assumptions. Given the evolving nature of this research field, it becomes imperative to conduct independent in vitro experiments aimed at identifying potential i-motif formation in C-rich sequences and consolidating the findings to address the properties of i-motifs. This chapter serves as an introductory guide for the swift identification of novel i-motifs, where we present an experimental framework for investigating and characterizing i-motif sequences in vitro. In this chapter, we selected a synthetic oligonucleotide (C7T3) sequence and outlined appropriate methodologies for annealing the i-motif structure into suitable buffers. Then, we validated its formation by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopy. Finally, we provided a thorough account of the step-by-step procedures to investigate the effect of i-motif formation on the stalling or retardation of DNA replication using high resolution primer extension assays.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
18
|
Ghezzo M, Trajkovski M, Plavec J, Sissi C. A Screening Protocol for Exploring Loop Length Requirements for the Formation of a Three Cytosine-Cytosine + Base-Paired i-Motif. Angew Chem Int Ed Engl 2023; 62:e202309327. [PMID: 37611164 DOI: 10.1002/anie.202309327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA sequences containing at least four runs of repetitive cytosines can fold into tetra-helical structures called i-Motifs (iMs). The interest in these DNA secondary structures is increasing due to their therapeutical and technological applications. Still, limited knowledge of their folding requirements is currently available. We developed a novel step-by-step pipeline for the systematic screening of putative iM-forming model sequences. Focusing on structures comprising only three cytosine-cytosine+ base pairs, we investigated what the minimal lengths of the loops required for formation of an intra-molecular iM are. Our data indicate that two and three nucleotides are required to connect the strands through the minor and majorgrooves of the iM, respectively. Additionally, they highlight an asymmetric behavior according to the distribution of the cytosines. Specifically, no sequence containing a single cytosine in the first and third run was able to fold into intra-molecular iMs with the same stability of those formed when the first and the third run comprise two cytosines. This knowledge represents a step forward toward the development of prediction tools for the proper identification of biologically functional iMs, as well as for the rational design of these secondary structures as technological devices.
Collapse
Affiliation(s)
- Michele Ghezzo
- Department of Pharmaceutical and Pharmacological Science, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| |
Collapse
|
19
|
Zanin I, Ruggiero E, Nicoletto G, Lago S, Maurizio I, Gallina I, Richter SN. Genome-wide mapping of i-motifs reveals their association with transcription regulation in live human cells. Nucleic Acids Res 2023; 51:8309-8321. [PMID: 37528048 PMCID: PMC10484731 DOI: 10.1093/nar/gkad626] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
i-Motifs (iMs) are four-stranded DNA structures that form at cytosine (C)-rich sequences in acidic conditions in vitro. Their formation in cells is still under debate. We performed CUT&Tag sequencing using the anti-iM antibody iMab and showed that iMs form within the human genome in live cells. We mapped iMs in two human cell lines and recovered C-rich sequences that were confirmed to fold into iMs in vitro. We found that iMs in cells are mainly present at actively transcribing gene promoters, in open chromatin regions, they overlap with R-loops, and their abundance and distribution are specific to each cell type. iMs with both long and short C-tracts were recovered, further extending the relevance of iMs. By simultaneously mapping G-quadruplexes (G4s), which form at guanine-rich regions, and comparing the results with iMs, we proved that the two structures can form in independent regions; however, when both iMs and G4s are present in the same genomic tract, their formation is enhanced. iMs and G4s were mainly found at genes with low and high transcription rates, respectively. Our findings support the in vivo formation of iM structures and provide new insights into their interplay with G4s as new regulatory elements in the human genome.
Collapse
Affiliation(s)
- Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giulia Nicoletto
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Ilaria Maurizio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Irene Gallina
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
- Microbiology and Virology Unit, Padua University Hospital, 35121 Padua, Italy
| |
Collapse
|
20
|
Improta R. Shedding Light on the Photophysics and Photochemistry of I-Motifs Using Quantum Mechanical Calculations. Int J Mol Sci 2023; 24:12614. [PMID: 37628797 PMCID: PMC10454157 DOI: 10.3390/ijms241612614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
I-motifs are non-canonical DNA structures formed by intercalated hemiprotonated (CH·C)+ pairs, i.e., formed by a cytosine (C) and a protonated cytosine (CH+), which are currently drawing great attention due to their biological relevance and promising nanotechnological properties. It is important to characterize the processes occurring in I-motifs following irradiation by UV light because they can lead to harmful consequences for genetic code and because optical spectroscopies are the most-used tools to characterize I-motifs. By using time-dependent DFT calculations, we here provide the first comprehensive picture of the photoactivated behavior of the (CH·C)+ core of I-motifs, from absorption to emission, while also considering the possible photochemical reactions. We reproduce and assign their spectral signatures, i.e., infrared, absorption, fluorescence and circular dichroism spectra, disentangling the underlying chemical-physical effects. We show that the main photophysical paths involve C and CH+ bases on adjacent steps and, using this basis, interpret the available time-resolved spectra. We propose that a photodimerization reaction can occur on an excited state with strong C→CH+ charge transfer character and examine some of the possible photoproducts. Based on the results reported, some future perspectives for the study of I-motifs are discussed.
Collapse
Affiliation(s)
- Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
21
|
Walczak M, Mancini L, Xu J, Raguseo F, Kotar J, Cicuta P, Di Michele L. A Synthetic Signaling Network Imitating the Action of Immune Cells in Response to Bacterial Metabolism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301562. [PMID: 37156014 PMCID: PMC11475590 DOI: 10.1002/adma.202301562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Indexed: 05/10/2023]
Abstract
State-of-the-art bottom-up synthetic biology allows to replicate many basic biological functions in artificial-cell-like devices. To mimic more complex behaviors, however, artificial cells would need to perform many of these functions in a synergistic and coordinated fashion, which remains elusive. Here, a sophisticated biological response is considered, namely the capture and deactivation of pathogens by neutrophil immune cells, through the process of netosis. A consortium consisting of two synthetic agents is designed-responsive DNA-based particles and antibiotic-loaded lipid vesicles-whose coordinated action mimics the sought immune-like response when triggered by bacterial metabolism. The artificial netosis-like response emerges from a series of interlinked sensing and communication pathways between the live and synthetic agents, and translates into both physical and chemical antimicrobial actions, namely bacteria immobilization and exposure to antibiotics. The results demonstrate how advanced life-like responses can be prescribed with a relatively small number of synthetic molecular components, and outlines a new strategy for artificial-cell-based antimicrobial solutions.
Collapse
Affiliation(s)
- Michal Walczak
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Leonardo Mancini
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Jiayi Xu
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Federica Raguseo
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
- fabriCELLMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
| | - Jurij Kotar
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Pietro Cicuta
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Lorenzo Di Michele
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
- fabriCELLMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
22
|
Yazdani K, Seshadri S, Tillo D, Vinson C, Schneekloth JS. DECODING COMPLEXITY IN BIOMOLECULAR RECOGNITION OF DNA I-MOTIFS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537548. [PMID: 37131644 PMCID: PMC10153190 DOI: 10.1101/2023.04.19.537548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10,976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone, and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702
| | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702
| | - Desiree Tillo
- Genome Analysis Unit, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892
| | - Charles Vinson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Bethesda MD 20892
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702
| |
Collapse
|
23
|
Kim SE, Hong SC. Two Opposing Effects of Monovalent Cations on the Stability of i-Motif Structure. J Phys Chem B 2023; 127:1932-1939. [PMID: 36811958 DOI: 10.1021/acs.jpcb.2c07069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
At acidic pH, cytosine-rich single-stranded DNA can be folded into a tetraplex structure called i-motif (iM). In recent studies, the effect of monovalent cations on the stability of iM structure has been addressed, but a consensus about the issue has not been reached yet. Thus, we investigated the effects of various factors on the stability of iM structure using fluorescence resonance energy transfer (FRET)-based analysis for three types of iM derived from human telomere sequences. We confirmed that the protonated cytosine-cytosine (C:C+) base pair is destabilized as the concentration of monovalent cations (Li+, Na+, K+) increases and that Li+ has the greatest tendency of destabilization. Intriguingly, monovalent cations would play an ambivalent role in iM formation by making single-stranded DNA flexible and pliant for an iM structure. In particular, we found that Li+ has a notably greater flexibilizing effect than Na+ and K+. All taken together, we conclude that the stability of iM structure is controlled by the subtle balance of the two counteractive effects of monovalent cations: electrostatic screening and disruption of cytosine base pairing.
Collapse
Affiliation(s)
- Sung Eun Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea, Department of Physics, Korea University, Seoul 02841, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea, Department of Physics, Korea University, Seoul 02841, Korea
| |
Collapse
|
24
|
Tian T, Zhang T, Shi S, Gao Y, Cai X, Lin Y. A dynamic DNA tetrahedron framework for active targeting. Nat Protoc 2023; 18:1028-1055. [PMID: 36670289 DOI: 10.1038/s41596-022-00791-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 01/22/2023]
Abstract
An active targeting strategy-enabled DNA tetrahedron delivery vehicle could facilitate stable drug encapsulation and stimuli-responsive on-demand release, building a universal platform for different drug delivery requirements. Owing to the excellent biocompatible nature, programmability and remarkable cell and tissue permeability, the tetrahedral DNA nanostructure (TDN) has proven its value in the delivery of various bioactive molecules. We previously described this as a static multifunctional complex in our earlier protocol. However, static structures and passive targeting behavior might introduce off-target effects under complicated biological conditions. Therefore, in this Protocol Extension, we present a major update of the TDN delivery vehicle enabling an active targeting strategy to be used for stimuli-sensitive conformation changes and on-site cargo release, which could avoid drawbacks, including complex and time-consuming fabrication processes and undetermined cell penetration ability of other DNA-based delivery vehicles. Upon exquisite design of TDN size based on cargo type, one-pot annealing is applied to fabricate the Tiamat-designed TDN exoskeleton. Then the design of the dynamic DNA apparatus can be based on the target and environmental stimuli, including DNA strand hybridization-based and pH-sensitive DNA apparatus, and careful titration of strand lengths and mismatches is achieved using polyacrylamide and agarose gel electrophoresis, or fluorophore modifications. Finally, cargo loading strategies are designed, including site and stand titration and cargo encapsulation verification. The dynamic structures show promising targetability and effectiveness in antitumor and anti-inflammatory treatment in vitro and in vivo. Assembly and characterization in the lab takes ~5 d, and the timing for the verification of biostability and biological applications depends on the uses.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
25
|
Yang T, Xu Q, Chen J, Jia PK, Xie BB, Wang D, Zhou X, Shao Y. Selectively Identifying Exposed-over-Unexposed C-C + Pairs in Human Telomeric i-Motif Structures with Length-Dependent Polymorphism. Anal Chem 2022; 94:14994-15001. [PMID: 36263663 DOI: 10.1021/acs.analchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The i-motif structure (iM) has attracted much attention, because of its in vivo bioactivity and wide in vitro applications such as DNA-based switches. Herein, the length-dependent folding of cytosine-rich repeats of the human telomeric 5'-(CCCTAA)n-1CCC-3' (iM-n, where n = 2-8) was fully explored. We found that iM-4, iM-5, and iM-8 mainly form the intramolecular monomer iM structures, while a tetramolecular structure populates only for iM-3. However, iM-6 and iM-7 have the potential to fold as well into the dimeric iM structures besides the monomer ones. The natural hypericin (Hyp) was used as the polymorphism-selective probe to recognize the iM structures. Interestingly, only iM-3, iM-6, and iM-7 can efficiently switch on the Hyp fluorescence by specifically binding with the outmost C-C+ base pairs that are exposed directly to solution. However, other iM structures that fold in a way with a coverage of the outmost C-C+ pairs by loop sequences are totally unavailable for the Hyp binding. Theoretical modeling indicates that adaptive π-π and cation-π interactions contribute to the Hyp recognition toward the exposed C-C+ pairs. This specific iM recognition can be boosted by a photocatalytic DNAzyme construct. Our work provides a reliable fluorescence method to selectively explore the polymorphism of iM structures.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, People's Republic of China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, People's Republic of China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
26
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
27
|
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res 2022; 10:40. [PMID: 35606345 PMCID: PMC9125017 DOI: 10.1038/s41413-022-00212-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
The physicochemical nature of DNA allows the assembly of highly predictable structures via several fabrication strategies, which have been applied to make breakthroughs in various fields. Moreover, DNA nanostructures are regarded as materials with excellent editability and biocompatibility for biomedical applications. The ongoing maintenance and release of new DNA structure design tools ease the work and make large and arbitrary DNA structures feasible for different applications. However, the nature of DNA nanostructures endows them with several stimulus-responsive mechanisms capable of responding to biomolecules, such as nucleic acids and proteins, as well as biophysical environmental parameters, such as temperature and pH. Via these mechanisms, stimulus-responsive dynamic DNA nanostructures have been applied in several biomedical settings, including basic research, active drug delivery, biosensor development, and tissue engineering. These applications have shown the versatility of dynamic DNA nanostructures, with unignorable merits that exceed those of their traditional counterparts, such as polymers and metal particles. However, there are stability, yield, exogenous DNA, and ethical considerations regarding their clinical translation. In this review, we first introduce the recent efforts and discoveries in DNA nanotechnology, highlighting the uses of dynamic DNA nanostructures in biomedical applications. Then, several dynamic DNA nanostructures are presented, and their typical biomedical applications, including their use as DNA aptamers, ion concentration/pH-sensitive DNA molecules, DNA nanostructures capable of strand displacement reactions, and protein-based dynamic DNA nanostructures, are discussed. Finally, the challenges regarding the biomedical applications of dynamic DNA nanostructures are discussed.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanjing Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
28
|
Martella M, Pichiorri F, Chikhale RV, Abdelhamid MAS, Waller ZAE, Smith S. i-Motif formation and spontaneous deletions in human cells. Nucleic Acids Res 2022; 50:3445-3455. [PMID: 35253884 PMCID: PMC8989526 DOI: 10.1093/nar/gkac158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/01/2022] [Accepted: 02/26/2022] [Indexed: 01/14/2023] Open
Abstract
Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.
Collapse
Affiliation(s)
- Marianna Martella
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steven S Smith
- Department of Hematologic Malignancies Translational Science, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
29
|
Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022; 198:33-47. [PMID: 35259471 DOI: 10.1016/j.biochi.2022.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
DNA is naturally dynamic and can self-assemble into alternative secondary structures including the intercalated motif (i-motif), a four-stranded structure formed in cytosine-rich DNA sequences. Until recently, i-motifs were thought to be unstable in physiological cellular environments. Studies demonstrating their existence in the human genome and role in gene regulation are now shining light on their biological relevance. Herein, we review the effects of epigenetic modifications on i-motif structure and stability, and biological factors that affect i-motif formation within cells. Furthermore, we highlight recent progress in targeting i-motifs with structure-specific ligands for biotechnology and therapeutic purposes.
Collapse
|
30
|
Recent advance in dual-functional luminescent probes for reactive species and common biological ions. Anal Bioanal Chem 2022; 414:5087-5103. [DOI: 10.1007/s00216-021-03792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 01/17/2023]
|
31
|
Novotný A, Novotný J, Kejnovská I, Vorlíčková M, Fiala R, Marek R. Revealing structural peculiarities of homopurine GA repetition stuck by i-motif clip. Nucleic Acids Res 2021; 49:11425-11437. [PMID: 34718718 PMCID: PMC8599794 DOI: 10.1093/nar/gkab915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022] Open
Abstract
Non-canonical forms of nucleic acids represent challenging objects for both structure-determination and investigation of their potential role in living systems. In this work, we uncover a structure adopted by GA repetition locked in a parallel homoduplex by an i-motif. A series of DNA oligonucleotides comprising GAGA segment and C3 clip is analyzed by NMR and CD spectroscopies to understand the sequence-structure-stability relationships. We demonstrate how the relative position of the homopurine GAGA segment and the C3 clip as well as single-base mutations (guanine deamination and cytosine methylation) affect base pairing arrangement of purines, i-motif topology and overall stability. We focus on oligonucleotides C3GAGA and methylated GAGAC3 exhibiting the highest stability and structural uniformity which allowed determination of high-resolution structures further analyzed by unbiased molecular dynamics simulation. We describe sequence-specific supramolecular interactions on the junction between homoduplex and i-motif blocks that contribute to the overall stability of the structures. The results show that the distinct structural motifs can not only coexist in the tight neighborhood within the same molecule but even mutually support their formation. Our findings are expected to have general validity and could serve as guides in future structure and stability investigations of nucleic acids.
Collapse
Affiliation(s)
- Aleš Novotný
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
| | - Jan Novotný
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-612 65 Brno, Czechia
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-612 65 Brno, Czechia
| | - Radovan Fiala
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
| | - Radek Marek
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
| |
Collapse
|
32
|
Xi D, Cui M, Zhou X, Zhuge X, Ge Y, Wang Y, Zhang S. Nanopore-Based Single-Molecule Investigation of DNA Sequences with Potential to Form i-Motif Structures. ACS Sens 2021; 6:2691-2699. [PMID: 34237940 DOI: 10.1021/acssensors.1c00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
i-Motifs are DNA secondary structures present in cytosine-rich sequences. These structures are formed in regulatory regions of the human genome and play key regulatory roles. The investigation of sequences capable of forming i-motif structures at the single-molecule level is highly important. In this study, we used α-hemolysin nanopores to systematically study a series of DNA sequences at the nanometer scale by providing structure-dependent signature current signals to gain in-sights into the i-motif DNA sequence and structural stability. Increasing the length of the cytosine tract in a range of 3-10 nucleobases resulted in a longer translocation time through the pore, indicating improved stability. Changing the loop sequence and length in the sequences did not affect the formation of the i-motif structure but changed its stability. Importantly, the application of all-atom molecular dynamics simulations revealed the structural morphology of all sequences. Based on these results, we postulated a folding rule for i-motif formation, suggesting that thousands of cytosine-rich sequences in the human genome might fold into i-motif structures. Many of these were found in locations where structure formation is likely to play regulatory roles. These findings provide insights into the application of nanopores as a powerful tool for discovering potential i-motif-forming sequences and lay a foundation for future studies exploring the biological roles of i-motifs.
Collapse
Affiliation(s)
- Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Sciences, Linyi University, Linyi 276005, P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xiao Zhuge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Sciences, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
33
|
Geng Y, Liu C, Cai Q, Luo Z, Miao H, Shi X, Xu N, Fung CP, Choy TT, Yan B, Li N, Qian P, Zhou B, Zhu G. Crystal structure of parallel G-quadruplex formed by the two-repeat ALS- and FTD-related GGGGCC sequence. Nucleic Acids Res 2021; 49:5881-5890. [PMID: 34048588 PMCID: PMC8191786 DOI: 10.1093/nar/gkab302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
The hexanucleotide repeat expansion, GGGGCC (G4C2), within the first intron of the C9orf72 gene is known to be the most common genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 repeat expansions, either DNA or RNA, are able to form G-quadruplexes which induce toxicity leading to ALS/FTD. Herein, we report a novel crystal structure of d(G4C2)2 that self-associates to form an eight-layer parallel tetrameric G-quadruplex. Two d(G4C2)2 associate together as a parallel dimeric G-quadruplex which folds into a tetramer via 5'-to-5' arrangements. Each dimer consists of four G-tetrads connected by two CC propeller loops. Especially, the 3'-end cytosines protrude out and form C·C+•C·C+/ C·C•C·C+ quadruple base pair or C•C·C+ triple base pair stacking on the dimeric block. Our work sheds light on the G-quadruplexes adopted by d(G4C2) and yields the invaluable structural details for the development of small molecules to tackle neurodegenerative diseases, ALS and FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - To To Choy
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bing Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Peiyuan Qian
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| |
Collapse
|
34
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
35
|
Minasyan AS, Chakravarthy S, Vardelly S, Joseph M, Nesterov EE, Nesterova IV. Rational design of guiding elements to control folding topology in i-motifs with multiple quadruplexes. NANOSCALE 2021; 13:8875-8883. [PMID: 33949568 PMCID: PMC8210535 DOI: 10.1039/d1nr00611h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleic acids are versatile scaffolds that accommodate a wide range of precisely defined operational characteristics. Rational design of sensing, molecular computing, nanotechnology, and other nucleic acid devices requires precise control over folding conformations in these macromolecules. Here, we report a new approach that empowers well-defined conformational transitions in DNA molecular devices. Specifically, we develop tools for precise folding of multiple DNA quadruplexes (i-motifs) within the same oligonucleotide strand. To accomplish this task, we modify a DNA strand with kinetic control elements (hairpins and double stranded stems) that fold on a much faster timescale and consequently guide quadruplexes toward the targeted folding topology. To demonstrate that such guiding elements indeed facilitate formation of the targeted folding topology, we thoroughly characterize the folding/unfolding transitions through a combination of thermodynamic techniques, size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). Furthermore, we extend SAXS capabilities to produce a direct insight on the shape and dimensions of the folded quadruplexes by computing their electron density maps from solution scattering data.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Mark Joseph
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
36
|
Cheng M, Chen J, Ju H, Zhou J, Mergny JL. Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing. J Am Chem Soc 2021; 143:7792-7807. [PMID: 33988990 DOI: 10.1021/jacs.1c02209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
i-DNA is a four-stranded, pH-sensitive structure formed by cytosine-rich DNA sequences. Previous reports have addressed the conditions for formation of this motif in DNA in vitro and validated its existence in human cells. Unfortunately, these in vitro studies have often been performed under different experimental conditions, making comparisons difficult. To overcome this, we developed a four-dimensional UV melting and annealing (4DUVMA) approach to analyze i-DNA formation under a variety of conditions (e.g., pH, temperature, salt, crowding). Analysis of 25 sequences provided a global understanding of i-DNA formation under disparate conditions, which should ultimately allow the design of accurate prediction tools. For example, we found reliable linear correlations between the midpoint of pH transition and temperature (-0.04 ± 0.003 pH unit per 1.0 °C temperature increment) and between the melting temperature and pH (-23.8 ± 1.1 °C per pH unit increment). In addition, by analyzing the hysteresis between denaturing and renaturing profiles in both pH and thermal transitions, we found that loop length, nature of the C-tracts, pH, temperature, and crowding agents all play roles in i-DNA folding kinetics. Interestingly, our data indicate which conformer is more favorable for the sequences with an odd number of cytosine base pairs. Then the thermal and pH stabilities of "native" i-DNAs from human promoter genes were measured under near physiological conditions (pH 7.0, 37 °C). The 4DUVMA method can become a universal resource to analyze the properties of any i-DNA-prone sequence.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau Cedex 91128, France
| |
Collapse
|
37
|
Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny J. Effects of Sequence and Base Composition on the CD and TDS Profiles of i‐DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nunzia Iaccarino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux Inserm U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bruno Pagano
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jussara Amato
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Anna Di Porzio
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Antonio Randazzo
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux Inserm U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
38
|
Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny J. Effects of Sequence and Base Composition on the CD and TDS Profiles of i-DNA. Angew Chem Int Ed Engl 2021; 60:10295-10303. [PMID: 33617090 PMCID: PMC8251954 DOI: 10.1002/anie.202016822] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
The i-motif DNA, also known as i-DNA, is a non-canonical DNA secondary structure formed by cytosine-rich sequences, consisting of two intercalated parallel-stranded duplexes held together by hemi-protonated cytosine-cytosine+ (C:C+ ) base pairs. The growing interest in the i-DNA structure as a target in anticancer therapy increases the need for tools for a rapid and meaningful interpretation of the spectroscopic data of i-DNA samples. Herein, we analyzed the circular dichroism (CD) and thermal difference UV-absorbance spectra (TDS) of 255 DNA sequences by means of multivariate data analysis, aiming at unveiling peculiar spectral regions that could be used as diagnostic features during the analysis of i-DNA-forming sequences.
Collapse
Affiliation(s)
- Nunzia Iaccarino
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
- ARNA LaboratoryUniversité de BordeauxInserm U 1212, CNRS UMR5320IECB33607PessacFrance
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Anna Di Porzio
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
| | - Antonio Randazzo
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
- ARNA LaboratoryUniversité de BordeauxInserm U 1212, CNRS UMR5320IECB33607PessacFrance
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMInstitut Polytechnique de Paris91128PalaiseauFrance
| |
Collapse
|
39
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny J. Thermal and pH Stabilities of i‐DNA: Confronting in vitro Experiments with Models and In‐Cell NMR Data. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Eva Ištvánková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Samir Amrane
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Aurore Guédin
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Laurent Lacroix
- IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Lukáš Trantírek
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Aleksandr B. Sahakyan
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
40
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
41
|
Gao B, Hou XM. Opposite Effects of Potassium Ions on the Thermal Stability of i-Motif DNA in Different Buffer Systems. ACS OMEGA 2021; 6:8976-8985. [PMID: 33842768 PMCID: PMC8028132 DOI: 10.1021/acsomega.0c06350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
i-motifs are noncanonical DNA structures formed via the stack of intercalating hemi-protonated C+: C base pairs in C-rich DNA strands and play essential roles in the regulation of gene expression. Here, we systematically investigated the impacts of K+ on i-motif DNA folding using different buffer systems. We found that i-motif structures display very different T m values at the same pH and ion strength in different buffer systems. More importantly, K+ disrupts the i-motif formed in the MES and Bis-Tris buffer; however, K+ stabilizes the i-motif in phosphate, citrate, and sodium cacodylate buffers. Next, we selected phosphate buffer and confirmed by single-molecule fluorescence resonance energy transfer that K+ indeed has the stabilizing effect on the folding of i-motif DNA from pH 5.8 to 8.0. Nonetheless, circular dichroism spectra further indicate that the structures formed by i-motif sequences at high K+ concentrations at neutral and alkaline pH are not i-motif but other types of higher-order structures and most likely C-hairpins. We finally proposed the mechanisms of how K+ plays the opposite roles in different buffer systems. The present study may provide new insights into our understanding of the formation and stability of i-motif DNA.
Collapse
Affiliation(s)
| | - Xi-Miao Hou
- . Phone: +86 29 8708 1664. Fax: +86 29 8708 1664
| |
Collapse
|
42
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew Chem Int Ed Engl 2021; 60:10286-10294. [PMID: 33605024 DOI: 10.1002/anie.202016801] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
43
|
Gargallo R, Aviñó A, Eritja R, Jarosova P, Mazzini S, Scaglioni L, Taborsky P. Study of alkaloid berberine and its interaction with the human telomeric i-motif DNA structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119185. [PMID: 33234477 DOI: 10.1016/j.saa.2020.119185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The alkaloid berberine presents many biological activities related to its potential to bind DNA structures, such as duplex or G-quadruplex. Recently, it has been proposed that berberine may interact with i-motif structures formed from the folding of cytosine-rich sequences. In the present work, the interaction of this alkaloid with the i-motif formed by the human telomere cytosine-rich sequence, as well as with several positive and negative controls, has been studied. Molecular fluorescence and circular dichroism spectroscopies, as well as nuclear magnetic resonance spectrometry and competitive dialysis, have been used with this purpose. The results shown here reveal that the interaction of berberine with this i-motif is weak, mostly electrostatics in nature and takes place with bases not involved in C·C+ base pairs. Moreover, this ligand is not selective for i-motif structures, as binds equally to both, folded structure, and unfolded strand, without producing any stabilization of the i-motif. As a conclusion, the development of analytical methods based on the interaction of fluorescent ligands, such as berberine, with i-motif structures should consider the thermodynamic aspects related with the interaction, as well as the selectivity of the proposed ligands with different DNA structures, including unfolded strands.
Collapse
Affiliation(s)
- R Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain.
| | - A Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - R Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - P Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - L Scaglioni
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - P Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
44
|
Nwokolo OA, Kidd B, Allen T, Minasyan AS, Vardelly S, Johnson KD, Nesterova IV. Rational Design of Memory‐Based Sensors: the Case of Molecular Calorimeters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Obianuju A. Nwokolo
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Brant Kidd
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Alexander S. Minasyan
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Suchitra Vardelly
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Kristopher D. Johnson
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Irina V. Nesterova
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
45
|
Turaev AV, Isaakova EA, Severov VV, Bogomazova AN, Zatsepin TS, Sardushkin MV, Aralov AV, Lagarkova MA, Pozmogova GE, Varizhuk AM. Genomic DNA i-motifs as fast sensors responsive to near-physiological pH microchanges. Biosens Bioelectron 2020; 175:112864. [PMID: 33309217 DOI: 10.1016/j.bios.2020.112864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
We report the design of robust sensors for measuring intracellular pH, based on the native DNA i-motifs (iMs) found in neurodegeneration- or carcinogenesis-related genes. Those iMs appear to be genomic regulatory elements and might modulate transcription in response to pH stimuli. Given their intrinsic sensitivity to minor pH changes within the physiological range, such noncanonical DNA structures can be used as sensor core elements without additional modules other than fluorescent labels or quenchers. We focused on several iMs that exhibited fast folding/unfolding kinetics. Using stopped-flow techniques and FRET-melting/annealing assays, we confirmed that the rates of temperature-driven iM-ssDNA transitions correlate with the rates of the pH-driven transitions. Thus, we propose FRET-based hysteresis analysis as an express method for selecting sensors with desired kinetic characteristics. For the leading fast-response sensor, we optimized the labelling scheme and performed intracellular calibration. Unlike the commonly used small-molecule pH indicators, that sensor was transferred efficiently to cell nuclei. Considering its favourable kinetic characteristics, the sensor can be used for monitoring proton dynamics in the nucleus. These results argue that the 'genome-inspired' design is a productive approach to the development of biocompatible molecular tools.
Collapse
Affiliation(s)
- Anton V Turaev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vjacheslav V Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Moscow Oblast, 143026, Russia
| | - Makar V Sardushkin
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Galina E Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia.
| |
Collapse
|
46
|
Nwokolo OA, Kidd B, Allen T, Minasyan AS, Vardelly S, Johnson KD, Nesterova IV. Rational Design of Memory-Based Sensors: the Case of Molecular Calorimeters. Angew Chem Int Ed Engl 2020; 60:1610-1614. [PMID: 32996657 DOI: 10.1002/anie.202011422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Thermodynamic characterization is crucial for understanding molecular interactions. However, methodologies for measuring heat changes in small open systems are extremely limited. We document a new approach for designing molecular sensors, that function as calorimeters: sensors based on memory. To design a memory-based sensor, we take advantage of the unique kinetic properties of nucleic acid scaffolds. Particularly, we elaborate on the differences in folding and unfolding rates in nucleic acid quadruplexes. DNA-based i-motifs unfold fast in response to small heats but do not fold back when the system is equilibrated with surroundings. We translated this behavior into a molecular memory function that enables the measurement of heat changes in open environments. The new sensors are biocompatible, operate homogeneously, and measure small heats released over long time periods. As a proof-of-concept, we demonstrate how the molecular calorimeters report heat changes generated in water/propanol mixing and in ligand/protein binding.
Collapse
Affiliation(s)
- Obianuju A Nwokolo
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Brant Kidd
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kristopher D Johnson
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| |
Collapse
|
47
|
Ashwood B, Lewis NHC, Sanstead PJ, Tokmakoff A. Temperature-Jump 2D IR Spectroscopy with Intensity-Modulated CW Optical Heating. J Phys Chem B 2020; 124:8665-8677. [PMID: 32902979 DOI: 10.1021/acs.jpcb.0c07177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulsed temperature-jump (T-jump) spectroscopy with infrared (IR) detection has been widely used to study biophysical processes occurring from nanoseconds to ∼1 ms with structural sensitivity. However, many systems exhibit structural dynamics on time scales longer than the millisecond barrier that is set by the time scale for thermal relaxation of the sample. We developed a linear and nonlinear infrared spectrometer coupled to an intensity-modulated continuous wave (CW) laser to probe T-jump-initiated chemical reactions from <1 ms to seconds. Time-dependent modulation of the CW laser leads to a <1 ms heating time as well as a constant final temperature (±3%) for the duration of the heating time. Temperature changes of up to 75 °C in D2O are demonstrated, allowing for nonequilibrium measurements inaccessible to standard pulsed optical T-jump setups. T-jump linear absorption, pump-probe, and two-dimensional IR (2D IR) spectroscopy are applied to the unfolding and refolding of ubiquitin and a model intercalated motif (i-motif) DNA sequence, and analysis of the observed signals is used to demonstrate the limits and utility of each method. Overall, the ability to probe temperature-induced chemical processes from <1 ms to many seconds with 2D IR spectroscopy provides multiple new avenues for time-dependent spectroscopy in chemistry and biophysics.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul J Sanstead
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Školáková P, Badri Z, Foldynová-Trantírková S, Ryneš J, Šponer J, Fojtová M, Fajkus J, Marek R, Vorlíčková M, Mergny JL, Trantírek L. Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner: Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochim Biophys Acta Gen Subj 2020; 1864:129651. [DOI: 10.1016/j.bbagen.2020.129651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
|
49
|
Rogers RA, Meyer MR, Stewart KM, Eyring GM, Fleming AM, Burrows CJ. Hysteresis in poly-2'-deoxycytidine i-motif folding is impacted by the method of analysis as well as loop and stem lengths. Biopolymers 2020; 112:e23389. [PMID: 33098582 DOI: 10.1002/bip.23389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
In DNA, i-motif (iM) folds occur under slightly acidic conditions when sequences rich in 2'-deoxycytidine (dC) nucleotides adopt consecutive dC self base pairs. The pH stability of an iM is defined by the midpoint in the pH transition (pHT ) between the folded and unfolded states. Two different experiments to determine pHT values via circular dichroism (CD) spectroscopy were performed on poly-dC iMs of length 15, 19, or 23 nucleotides. These experiments demonstrate two points: (1) pHT values were dependent on the titration experiment performed, and (2) pH-induced denaturing or annealing processes produced isothermal hysteresis in the pHT values. These results in tandem with model iMs with judicious mutations of dC to thymidine to favor particular folds found the hysteresis was maximal for the shorter poly-dC iMs and those with an even number of base pairs, while the hysteresis was minimal for longer poly-dC iMs and those with an odd number of base pairs. Experiments to follow the iM folding via thermal changes identified thermal hysteresis between the denaturing and annealing cycles. Similar trends were found to those observed in the CD experiments. The results demonstrate that the method of iM analysis can impact the pHT parameter measured, and hysteresis was observed in the pHT and Tm values.
Collapse
Affiliation(s)
- R Aaron Rogers
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Madeline R Meyer
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Kayla M Stewart
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Gabriela M Eyring
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
50
|
Herbert A. Simple Repeats as Building Blocks for Genetic Computers. Trends Genet 2020; 36:739-750. [PMID: 32690316 DOI: 10.1016/j.tig.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Processing of RNA involves heterogeneous nuclear ribonucleoproteins. The simple sequence repeats (SSRs) they bind can also adopt alternative DNA structures, like Z DNA, triplexes, G quadruplexes, and I motifs. Those SSRs capable of switching conformation under physiological conditions (called flipons) are genetic elements that can encode alternative RNA processing by their effects on RNA processivity, most likely as DNA:RNA hybrids. Flipons are elements of a binary, instructive genetic code directing how genomic sequences are compiled into transcripts. The combinatorial nature of this code provides a rich set of options for creating genetic computers able to reproduce themselves and use a heritable and evolvable code to optimize survival. The underlying computational logic potentiates a diverse set of genetic programs that modify cis-mediated heritability and disease risk.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA.
| |
Collapse
|