1
|
Cheng C, Sun M, Li J, Xue Y, Cai X, Liu J, Wang X, Xu S, Xie Y, Zhang J. Nucleic Acid Aptamers for Human Norovirus GII.4 and GII.17 Virus-Like Particles (VLPs) Exhibit Specific Binding and Inhibit VLPs from Entering Cells. Int J Nanomedicine 2025; 20:1789-1805. [PMID: 39958321 PMCID: PMC11829585 DOI: 10.2147/ijn.s495399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/25/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Human noroviruses (HuNoVs) are the main cause of non-bacterial acute gastroenteritis. Due to antigenic diversity, the discovery of ligands that can sensitively and specifically detect HuNoVs remains challenging. Limited by laboratory culture, no vaccines or drugs have been developed against HuNoVs. Here, we screened nucleic acid aptamers against the widespread HuNoV GII.4 and emerging HuNoV GII.17. Methods After ten rounds of sieving for HuNoV GII.4 and GII.17 virus-like particles (VLPs), eight ssDNA aptamers were generated and characterized for each genotype. Results Four of the eight aptamers generated for GII.4 VLP had dissociation constants (Kd) less than 100 nM, and all aptamers for GII.17 VLP had Kd less than 10 nM. All aptamers bound to their targets in VLP concentration-dependent manner. Two aptamers (AP4-2 and AP17-4) were selected for enzyme-linked aptamer sorbent assay (ELASA) and further analysis. Binding affinity was enhanced as the concentration of both aptamer and VLPs increased. The specificity of the aptamers was verified by ELASA and dot blotting. AP4-2 and AP17-4 were able to differentiate HuNoV from other diarrhea-causing pathogens or unrelated proteins (P < 0.0001). VLP/porcine gastric mucin (PGM) binding blockade assays revealed that AP4-2 and AP17-4 blocked the binding of HuNoV VLPs to PGM. VLP internalization inhibition assays showed that at a concentration of 0.5 µM, both AP4-2 and AP17-4 effectively inhibited attachment and internalization of HuNoV VLPs into 293T cell (P < 0.05). Cell viability assays confirmed that aptamers did not induce cellular toxicity. Conclusion AP4-2 and AP17-4 showed strong affinity and specificity for their target VLPs and represent promising candidates for HuNoV capture and detection. This is the first study to demonstrate that aptamers can effectively inhibit HuNoV VLPs from binding to or entering cells, thus providing a new concept for the treatment of HuNoVs.
Collapse
Affiliation(s)
- Chao Cheng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Minjia Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Zhejiang CONBA Pharmaceutical Co., Ltd, Hangzhou, 310052, People’s Republic of China
| | - Jingjing Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yitong Xue
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xia Cai
- Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jing Liu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xiaolian Wang
- Department of Pathogeny Microbiology and Preventive Medicine, School of Medicine, Hexi University, Zhangye, 734000, People’s Republic of China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Youhua Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Junqi Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
2
|
Wen C, Lee K, Wang Y, Wang X, Wang Y. Bidirectional Enzyme Inhibition and Activation for In Situ Formation of Injectable Hydrogel Using a Bispecific Aptamer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26751-26759. [PMID: 39642164 DOI: 10.1021/acs.langmuir.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
In situ injectable hydrogels have been explored for biomedical applications, including regenerative medicine and drug delivery. However, controlling the kinetics of their gelation to facilitate easy injection remains a challenge. The purpose of this study was to demonstrate the potential of using bispecific aptamers and complementary sequences as a bidirectional modulation system for controlling enzyme-mediated hydrogel formation kinetics. The results show that a bispecific thrombin-binding aptamer effectively inhibits thrombin activity and significantly slowed fibrin hydrogel formation. Upon interaction with its complementary sequence, this inhibition could be reversed. As a result, the aptamer-bound thrombin was activated, leading to an acceleration of the fibrin formation kinetics. Thus, bispecific aptamers and complementary sequences can effectively function as dynamic control systems for enzyme-catalyzed in situ injectable hydrogel formation.
Collapse
Affiliation(s)
- Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yixun Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Shen D, Guo H, Yu P, Li A, Shan S, Chen X, Wu W, Tong X, Li H, Mei S. An ultra-sensitive CRISPR-Cas12a and aptamer-based biosensor utilizing Entropy-driven catalytic DNA networks for precise detection of DNA Methyltransferase 1. Talanta 2024; 276:126267. [PMID: 38762976 DOI: 10.1016/j.talanta.2024.126267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
DNA Methyltransferase 1 (DNMT1) serves as a crucial biomarker associated with various diseases and is essential for evaluating DNA methylation levels, diagnosing diseases, and evaluating prognosis. As a result, a convenient, quantitative, and sensitive assay for detecting DNMT1 is in high demand. However, current techniques for DNMT1 detection struggle to balance accuracy, low cost, and high sensitivity, limiting their clinical usefulness. To address this challenge, we have developed a DNMT1 detection method (CAED), which combines aptamer-specific recognition with a highly programmable Entropy-driven catalysis DNA network and is further integrated with the CRISPR-Cas12a system. This innovative approach achieves a detection limit as low as 90.9 fmol/L. To demonstrate the clinical applicability and significance of our CAED method, we successfully measured DNMT1 levels in 10 plasma samples 10 cervical tissue samples. These results underscore the potential of our method as an accurate, affordable, and ultra-sensitive tool for evaluating DNMT1 levels. This innovative method offers a potent means for assessing DNMT1 levels and significantly advances disease diagnosis and health risk prediction. Plus, it establishes an innovative design framework for CRISPR-Cas12a-based biosensors, tailored explicitly for enzyme content quantification.
Collapse
Affiliation(s)
- Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Hong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Ping Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Ao Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Shu Shan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Xixi Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenjun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| | - Shuaikang Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
4
|
Chen M, Zhou P, Kong Y, Li J, Li Y, Zhang Y, Ran J, Zhou J, Chen Y, Xie S. Inducible Degradation of Oncogenic Nucleolin Using an Aptamer-Based PROTAC. J Med Chem 2023; 66:1339-1348. [PMID: 36608275 DOI: 10.1021/acs.jmedchem.2c01557] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While proteolysis-targeting chimeras (PROTACs) are showing promise for targeting previously undruggable molecules, their application has been limited by difficulties in identifying suitable ligands and undesired on-target toxicity. Aptamers can virtually recognize any protein through their unique and switchable conformations. Here, by exploiting aptamers as targeting warheads, we developed a novel strategy for inducible degradation of undruggable proteins. As a proof of concept, we chose oncogenic nucleolin (NCL) as the target and generated a series of NCL degraders, and demonstrated that dNCL#T1 induced NCL degradation in a ubiquitin-proteasome-dependent manner, thereby inhibiting NCL-mediated breast cancer cell proliferation. To reduce on-target toxicity, we further developed a light-controllable PROTAC, opto-dNCL#T1, by introducing a photolabile complementary oligonucleotide to hybridize with dNCL#T1. UVA irradiation liberated dNCL#T1 from caged opto-dNCL#T1, leading to dNCL#T1 activation and NCL degradation. These results indicate that aptamer-based PROTACs are a viable alternative approach to degrade proteins of interest in a highly tunable manner.
Collapse
Affiliation(s)
- Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yao Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China.,Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
5
|
Targeted systematic evolution of an RNA platform neutralizing DNMT1 function and controlling DNA methylation. Nat Commun 2023; 14:99. [PMID: 36609400 PMCID: PMC9823104 DOI: 10.1038/s41467-022-35222-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/23/2022] [Indexed: 01/09/2023] Open
Abstract
DNA methylation is a fundamental epigenetic modification regulating gene expression. Aberrant DNA methylation is the most common molecular lesion in cancer cells. However, medical intervention has been limited to the use of broadly acting, small molecule-based demethylating drugs with significant side-effects and toxicities. To allow for targeted DNA demethylation, we integrated two nucleic acid-based approaches: DNMT1 interacting RNA (DiR) and RNA aptamer strategy. By combining the RNA inherent capabilities of inhibiting DNMT1 with an aptamer platform, we generated a first-in-class DNMT1-targeted approach - aptaDiR. Molecular modelling of RNA-DNMT1 complexes coupled with biochemical and cellular assays enabled the identification and characterization of aptaDiR. This RNA bio-drug is able to block DNA methylation, impair cancer cell viability and inhibit tumour growth in vivo. Collectively, we present an innovative RNA-based approach to modulate DNMT1 activity in cancer or diseases characterized by aberrant DNA methylation and suggest the first alternative strategy to overcome the limitations of currently approved non-specific hypomethylating protocols, which will greatly improve clinical intervention on DNA methylation.
Collapse
|
6
|
Liu C, He D, Cen H, Chen H, Li L, Nie G, Zhong Z, He Q, Yang X, Guo S, Wang L, Fan Z. Nucleic acid functionalized extracellular vesicles as promising therapeutic systems for nanomedicine. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:14-30. [PMID: 39697871 PMCID: PMC11648500 DOI: 10.20517/evcna.2021.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs), as natural carriers, are regarded as a new star in nanomedicine due to their excellent biocompatibility, fascinating physicochemical properties, and unique biological regulatory functions. However, there are still some challenges to using natural EVs, including poor targeting ability and the clearance from circulation, which may limit their further development and clinical use. Nucleic acid has the functions of programmability, targeting, gene therapy, and immune regulation. Owing to the engineering design and modification by integrating functional nucleic acid, EVs offer excellent performances as a therapeutic system in vivo. This review briefly introduces the function and mechanism of nucleic acid in the diagnosis and treatment of diseases. Then, the strategies of nucleic acid-functionalized EVs are summarized and the latest progress of nucleic acid-functionalized EVs in nanomedicine is highlighted. Finally, the challenges and prospects of nucleic acid-functionalized EVs as a promising diagnostic system are proposed.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Guangning Nie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Zixue Zhong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Qingfeng He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Xiaofei Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong, China
| | - Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
7
|
Levanova AA, Lampi M, Kalke K, Hukkanen V, Poranen MM, Eskelin K. Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation. Pharmaceuticals (Basel) 2022; 15:261. [PMID: 35215370 PMCID: PMC8876226 DOI: 10.3390/ph15020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Mirka Lampi
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| |
Collapse
|
8
|
Marassi V, Mattarozzi M, Toma L, Giordani S, Ronda L, Roda B, Zattoni A, Reschiglian P, Careri M. FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies. Anal Bioanal Chem 2022; 414:5519-5527. [PMID: 35182166 PMCID: PMC9242963 DOI: 10.1007/s00216-022-03971-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/13/2023]
Abstract
Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy. .,byFlow Srl, Bologna, Italy.
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Giordani
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parco Area delle Scienze, 23/A, 43124, Parma, Italy.,Institute of Biophysics, CNR, 56124, Pisa, Italy
| | - Barbara Roda
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
9
|
Yang M, Qiu Y, Yang Y, Wang W. An Integrated Analysis of the Identified PRPF19 as an Onco-immunological Biomarker Encompassing the Tumor Microenvironment, Disease Progression, and Prognoses in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:840010. [PMID: 35252202 PMCID: PMC8893313 DOI: 10.3389/fcell.2022.840010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Targeting the mRNA splicing process has been identified as a therapeutic strategy for human cancer. PRPF19 is an RNA binding protein that is involved in pre-mRNA processing and repairing DNA damage; the aberrant expression of PRPF19 is potentially associated with carcinogenesis. However, the biological role of PRPF19 in hepatocellular carcinoma (HCC) is still elusive.Methods: Data obtained from TCGA, Oncomine, and GEO were used to investigate the PRPF19 expression level and its role in tumor immune infiltration, prognosis, and the tumor progression of cohorts from HCC. Using various databases and tools (UALCAN, TIMER, TISMO, and PathCards), we presented the potential mechanisms of PFPF19 upregulation, PRPF19-related pathways, and its biological functions in liver cancer.Results: For HCC, PRPF19 expression was found upregulated both in single tumor cells and tissues. Furthermore, the increased expression of PRPF19 was significantly correlated to clinical characteristics: advanced stage, vascular invasion, high AFP, and poor prognosis of HCC. According to the tumor-immunological analysis, we found that PRPF19 is positively correlated with infiltrating myeloid-derived suppressor cells (MDSCs). Moreover, the microenvironment of HCC tissues with high expression of PRPF19 is highly immunosuppressive (lower T-lymphocytes, multiple immune checkpoints upregulated). Patients with high expression of PRPF19 and high MDSCs had a worse survival prognosis as well. TP53 mutation may have a positive effect on PRPF19 expression via decreased promoter methylation of PRPF19. By TF-mRNA network analysis, key transcription factors (TFs) in TC-NER and PCS pathways (PRPF19 involved) were identified.Conclusion: This work implied that PRPF19 is associated with tumor immune evasion and progression, and serves as a prognostic marker for worse clinical outcomes with HCC. Thus, this critical regulator could serve as a potential therapeutic target of HCC.
Collapse
|
10
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
11
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Tsukakoshi K, Yamagishi Y, Kanazashi M, Nakama K, Oshikawa D, Savory N, Matsugami A, Hayashi F, Lee J, Saito T, Sode K, Khunathai K, Kuno H, Ikebukuro K. G-quadruplex-forming aptamer enhances the peroxidase activity of myoglobin against luminol. Nucleic Acids Res 2021; 49:6069-6081. [PMID: 34095949 PMCID: PMC8216272 DOI: 10.1093/nar/gkab388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin's peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuko Yamagishi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mana Kanazashi
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kenta Nakama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daiki Oshikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akimasa Matsugami
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumiaki Hayashi
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jinhee Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | - Hitoshi Kuno
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
13
|
Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021; 11:373-395. [PMID: 33521866 PMCID: PMC7987708 DOI: 10.1007/s13346-021-00918-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
The importance of polymeric nanocarriers in the field of drug delivery is ever-increasing, and the accurate characterization of their properties is paramount to understand and predict their behavior. Asymmetric flow field-flow fractionation (AF4) is a fractionation technique that has gained considerable attention for its gentle separation conditions, broad working range, and versatility. AF4 can be hyphenated to a plurality of concentration and size detectors, thus permitting the analysis of the multifunctionality of nanomaterials. Despite this potential, the practical information that can be retrieved by AF4 and its possible applications are still rather unfamiliar to the pharmaceutical scientist. This review was conceived as a primer that clearly states the "do's and don'ts" about AF4 applied to the characterization of polymeric nanocarriers. Aside from size characterization, AF4 can be beneficial during formulation optimization, for drug loading and drug release determination and for the study of interactions among biomaterials. It will focus mainly on the advances made in the last 5 years, as well as indicating the problematics on the consensus, which have not been reached yet. Methodological recommendations for several case studies will be also included.
Collapse
Affiliation(s)
- Federico Quattrini
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
| | - Germán Berrecoso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Yousefian-Jazi A, Sung MK, Lee T, Hong YH, Choi JK, Choi J. Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network. Sci Rep 2020; 10:12872. [PMID: 32732921 PMCID: PMC7393092 DOI: 10.1038/s41598-020-69790-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Recent large-scale genome-wide association studies have identified common genetic variations that may contribute to the risk of amyotrophic lateral sclerosis (ALS). However, pinpointing the risk variants in noncoding regions and underlying biological mechanisms remains a major challenge. Here, we constructed a convolutional neural network model with a large-scale GWAS meta-analysis dataset to unravel functional noncoding variants associated with ALS based on their epigenetic features. After filtering and prioritizing of candidates, we fine-mapped two new risk variants, rs2370964 and rs3093720, on chromosome 3 and 17, respectively. Further analysis revealed that these polymorphisms are associated with the expression level of CX3CR1 and TNFAIP1, and affect the transcription factor binding sites for CTCF, NFATc1 and NR3C1. Our results may provide new insights for ALS pathogenesis, and the proposed research methodology can be applied for other complex diseases as well.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Min Kyung Sung
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Taeyeop Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Neuroscience Research Institute, Seoul National University Medical Research Council, Seoul, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| | - Jinwook Choi
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 110-744, Republic of Korea.
| |
Collapse
|