1
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Parvez F, Sangpal D, Paithankar H, Amin Z, Chugh J. Differential conformational dynamics in two type-A RNA-binding domains drive the double-stranded RNA recognition and binding. eLife 2024; 13:RP94842. [PMID: 39116184 PMCID: PMC11309768 DOI: 10.7554/elife.94842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.
Collapse
Affiliation(s)
- Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Devika Sangpal
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune UniversityPuneIndia
| | - Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Zainab Amin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| |
Collapse
|
3
|
Tikhonova E, Revel-Muroz A, Georgiev P, Maksimenko O. Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in Drosophila. Open Biol 2024; 14:230270. [PMID: 38471568 DOI: 10.1098/rsob.230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The Drosophila male-specific lethal (MSL) complex binds to the male X chromosome to activate transcription. It comprises five proteins (MSL1, MSL2, MSL3, male absent on the first (MOF), and maleless (MLE)) and two long noncoding RNAs (lncRNAs; roX1 and roX2). The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. MSL2 is expressed only in males and interacts with the N-terminal zinc finger of the transcription factor chromatin-linked adapter for MSL proteins (CLAMP), which is important for the specific recruitment of the MSL complex to the male X chromosome. Here, we found that MLE's unstructured C-terminal region interacts with the sixth zinc-finger domain of CLAMP. In vitro, 4-5 zinc fingers are critical for the specific DNA-binding of CLAMP with GA repeats, which constitute the core motif at the high affinity binding sites for MSL proteins. Deleting the CLAMP binding region in MLE decreases the association of MSL proteins with the male X chromosome and increases male lethality. These results suggest that interactions of unstructured regions in MSL2 and MLE with CLAMP zinc finger domains are important for the specific recruitment of the MSL complex to the male X chromosome.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
4
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Jagtap PKA, Müller M, Kiss AE, Thomae AW, Lapouge K, Beck M, Becker PB, Hennig J. Structural basis of RNA-induced autoregulation of the DExH-type RNA helicase maleless. Mol Cell 2023; 83:4318-4333.e10. [PMID: 37989319 DOI: 10.1016/j.molcel.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Marisa Müller
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anna E Kiss
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; Core Facility Bioimaging at the Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
6
|
Li W, Li X, Gao Y, Xiong C, Tang Z. Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis. Orthop Surg 2023; 15:3015-3025. [PMID: 37803912 PMCID: PMC10694020 DOI: 10.1111/os.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.
Collapse
Affiliation(s)
- Wen Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Xing‐Hua Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Yang Gao
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Cheng‐Jie Xiong
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Zhong‐Zhi Tang
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
7
|
Hollmann NM, Jagtap PKA, Linse JB, Ullmann P, Payr M, Murciano B, Simon B, Hub JS, Hennig J. Upstream of N-Ras C-terminal cold shock domains mediate poly(A) specificity in a novel RNA recognition mode and bind poly(A) binding protein. Nucleic Acids Res 2023; 51:1895-1913. [PMID: 36688322 PMCID: PMC9976900 DOI: 10.1093/nar/gkac1277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.
Collapse
Affiliation(s)
- Nele Merret Hollmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Johanna-Barbara Linse
- Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany.,Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Philip Ullmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco Payr
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jochen S Hub
- Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany.,Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
8
|
Sweeney TR, Dhote V, Guca E, Hellen CUT, Hashem Y, Pestova T. Functional role and ribosomal position of the unique N-terminal region of DHX29, a factor required for initiation on structured mammalian mRNAs. Nucleic Acids Res 2021; 49:12955-12969. [PMID: 34883515 PMCID: PMC8682770 DOI: 10.1093/nar/gkab1192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Translation initiation on structured mammalian mRNAs requires DHX29, a DExH protein that comprises a unique 534-aa-long N-terminal region (NTR) and a common catalytic DExH core. DHX29 binds to 40S subunits and possesses 40S-stimulated NTPase activity essential for its function. In the cryo-EM structure of DHX29-bound 43S preinitiation complexes, the main DHX29 density resides around the tip of helix 16 of 18S rRNA, from which it extends through a linker to the subunit interface forming an intersubunit domain next to the eIF1A binding site. Although a DExH core model can be fitted to the main density, the correlation between the remaining density and the NTR is unknown. Here, we present a model of 40S-bound DHX29, supported by directed hydroxyl radical cleavage data, showing that the intersubunit domain comprises a dsRNA-binding domain (dsRBD, aa 377-448) whereas linker corresponds to the long α-helix (aa 460-512) that follows the dsRBD. We also demonstrate that the N-terminal α-helix and the following UBA-like domain form a four-helix bundle (aa 90-166) that constitutes a previously unassigned section of the main density and resides between DHX29's C-terminal α-helix and the linker. In vitro reconstitution experiments revealed the critical and specific roles of these NTR elements for DHX29's function.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Correspondence may also be addressed to Trevor R. Sweeney. Tel: +44 1483232441; Fax: +44 1483232448;
| | | | - Ewelina Guca
- INSERM U1212 Acides nucléiques : Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Yaser Hashem
- Correspondence may also be addressed to Yaser Hashem. Tel: +33 5 40 00 88 22;
| | | |
Collapse
|
9
|
Vaishali, Dimitrova-Paternoga L, Haubrich K, Sun M, Ephrussi A, Hennig J. Validation and classification of RNA binding proteins identified by mRNA interactome capture. RNA (NEW YORK, N.Y.) 2021; 27:1173-1185. [PMID: 34215685 PMCID: PMC8456996 DOI: 10.1261/rna.078700.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.
Collapse
Affiliation(s)
- Vaishali
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Lyudmila Dimitrova-Paternoga
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Mai Sun
- Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
10
|
Song Z, Gremminger T, Singh G, Cheng Y, Li J, Qiu L, Ji J, Lange MJ, Zuo X, Chen SJ, Zou X, Boris-Lawrie K, Heng X. The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity. Nucleic Acids Res 2021; 49:5925-5942. [PMID: 33978756 PMCID: PMC8191761 DOI: 10.1093/nar/gkab342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 reverse transcription initiates at the primer binding site (PBS) in the viral genomic RNA (gRNA). Although the structure of the PBS-segment undergoes substantial rearrangement upon tRNALys3 annealing, the proper folding of the PBS-segment during gRNA packaging is important as it ensures loading of beneficial host factors. DHX9/RNA helicase A (RHA) is recruited to gRNA to enhance the processivity of reverse transcriptase. Because the molecular details of the interactions have yet to be defined, we solved the solution structure of the PBS-segment preferentially bound by RHA. Evidence is provided that PBS-segment adopts a previously undefined adenosine-rich three-way junction structure encompassing the primer activation stem (PAS), tRNA-like element (TLE) and tRNA annealing arm. Disruption of the PBS-segment three-way junction structure diminished reverse transcription products and led to reduced viral infectivity. Because of the existence of the tRNA annealing arm, the TLE and PAS form a bent helical structure that undergoes shape-dependent recognition by RHA double-stranded RNA binding domain 1 (dsRBD1). Mutagenesis and phylogenetic analyses provide evidence for conservation of the PBS-segment three-way junction structure that is preferentially bound by RHA in support of efficient reverse transcription, the hallmark step of HIV-1 replication.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas Gremminger
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Cheng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Jun Li
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Liming Qiu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Matsuo T. A theoretical study on the effects of interdomain flexibility on drug encounter rate for coronavirus nucleocapsid-type proteins. Biophys Chem 2021; 272:106574. [PMID: 33730680 PMCID: PMC7939999 DOI: 10.1016/j.bpc.2021.106574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
To study the effects of the interdomain flexibility on the encounter rate of nucleocapsid-type protein with drug molecules, where two domains (NTD) are connected by a flexible linker and each NTD has a drug binding site, two-dimensional random walk simulation was carried out as a function of the interdomain flexibility and the drug concentration. NTDs represented as circles undergo random motions constrained by the interdomain flexibility while drug molecules are represented by lattice points. It was found that as the interdomain flexibility increases, the time interval between the drug bindings to the 1st and 2nd NTDs decreases, suggesting that the 2nd drug binding is accelerated. Furthermore, this effect was more significant at lower drug concentrations. These results suggest that the interdomain linker plays a key role in the drug binding process and thus emphasize the importance of characterization of their physicochemical properties to better evaluate the efficacy of potential drugs.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan; Laboratoire Interdisciplinaire de Physique (LiPhy), Grenoble-Alpes University, 140 rue de la physique, 38402 Saint Martin d'Hères, France; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France.
| |
Collapse
|
12
|
Suravajhala R, Gupta S, Kumar N, Suravajhala P. Deciphering LncRNA-protein interactions using docking complexes. J Biomol Struct Dyn 2020; 40:3769-3776. [PMID: 33280525 DOI: 10.1080/07391102.2020.1850354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deciphering RNA-protein interactions are important to study principal biological mechanisms including transcription and translation regulation, gene silencing, among others. Predicting RNA molecule interaction with the target protein could allow us to understand important cellular processes and design novel treatment therapies for various diseases. As non-coding RNAs do not have coding potential our knowledge about their functions is still limited. Therefore, RNA-binding proteins of non-coding RNAs regulating functions, viz. including cellular maturation, nuclear export and stability may play a very important role. Keeping in view of the need for refined methods to understand protein-RNA interactions, we have attempted a docking model to infer binding sites between lncRNA NONHSAT02007 and protein KIF13A for a rare disease phenotype that we are studying in our lab.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Renuka Suravajhala
- Department of Chemistry, School of Basic Science, Manipal University, Manipal, India
| | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Jaipur, India.,Department of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Narayan Kumar
- Department of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Jaipur, India.,Bioclues.org, India
| |
Collapse
|
13
|
Pan YQ, Xing L. The Current View on the Helicase Activity of RNA Helicase A and Its Role in Gene Expression. Curr Protein Pept Sci 2020; 22:29-40. [PMID: 33143622 DOI: 10.2174/1389203721666201103084122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes, including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into the molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to the genesis of circular RNA.
Collapse
Affiliation(s)
- Yuan-Qing Pan
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
14
|
Müller M, Schauer T, Krause S, Villa R, Thomae AW, Becker PB. Two-step mechanism for selective incorporation of lncRNA into a chromatin modifier. Nucleic Acids Res 2020; 48:7483-7501. [PMID: 32510132 PMCID: PMC7528653 DOI: 10.1093/nar/gkaa492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023] Open
Abstract
The MLE DExH helicase and the roX lncRNAs are essential components of the chromatin modifying Dosage Compensation Complex (DCC) in Drosophila. To explore the mechanism of ribonucleoprotein complex assembly, we developed vitRIP, an unbiased, transcriptome-wide in vitro assay that reveals RNA binding specificity. We found that MLE has intrinsic specificity for U-/A-rich sequences and tandem stem-loop structures and binds many RNAs beyond roX in vitro. The selectivity of the helicase for physiological substrates is further enhanced by the core DCC. Unwinding of roX2 by MLE induces a highly selective RNA binding surface in the unstructured C-terminus of the MSL2 subunit and triggers-specific association of MLE and roX2 with the core DCC. The exquisite selectivity of roX2 incorporation into the DCC thus originates from intimate cooperation between the helicase and the core DCC involving two distinct RNA selection principles and their mutual refinement.
Collapse
Affiliation(s)
- Marisa Müller
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Raffaella Villa
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Core Facility Bioimaging at the Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|