1
|
Sapède E, Sugawara N, Tyers RG, Nakajima Y, Afreen MF, Romero Escobar J, Haber JE. Nonhomologous tails direct heteroduplex rejection and mismatch correction during single-strand annealing in Saccharomyces cerevisiae. PLoS Genet 2024; 20:e1010527. [PMID: 38315739 PMCID: PMC10868807 DOI: 10.1371/journal.pgen.1010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2024] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Single-strand annealing (SSA) is initiated when a double strand break (DSB) occurs between two flanking repeated sequences, resulting in a deletion that leaves a single copy of the repeat. We studied budding yeast strains carrying two 200-bp URA3 sequences separated by 2.6 kb of spacer DNA (phage lambda) in which a site-specific DSB can be created by HO or Cas9 endonucleases. Repeat-mediated deletion requires removal of long 3'-ended single-stranded tails (flaps) by Rad1-Rad10 with the assistance of Msh2-Msh3, Saw1 and Slx4. A natural 3% divergence of unequally spaced heterologies between these repeats (designated F and A) causes a significant reduction in the frequency of SSA repair. This decrease is caused by heteroduplex rejection in which mismatches (MMs) in the annealed intermediate are recognized by the MutS (Msh2 and Msh6) components of the MM repair (MMR) pathway coupled to unwinding of the duplex by the Sgs1-Rmi1-Top3 helicase. MutL homologs, Mlh1-Pms1 (MutL), are not required for rejection but play their expected role in mismatch correction. Remarkably, heteroduplex rejection is very low in strains where the divergent repeats were immediately adjacent (Tailless strains) and the DSB was induced by Cas9. These results suggest that the presence of nonhomologous tails strongly stimulates heteroduplex rejection in SSA. DNA sequencing analysis of SSA products from the FA Tailed strain showed a gradient of correction favoring the sequence opposite each 3' end of the annealed strand. Mismatches located in the center of the repair intermediate were corrected by Msh2-Msh6 mediated mismatch correction, while correction of MMs at the extremity of the SSA intermediate often appears to use a different mechanism, possibly by 3' nonhomologous tail removal that includes part of the homologous sequence. In contrast, in FA Tailless strains there was a uniform repair of the MMs across the repeat. A distinctive pattern of correction was found in the absence of MSH2, in both Tailed and Tailless strains, different from the spectrum seen in a msh3Δ msh6Δ double mutant. Previous work has shown that SSA is Rad51-independent but dependent on the strand annealing activity of Rad52. However Rad52 becomes dispensable in a Tailless construct where the DSB is induced by Cas9 or in transformation of a plasmid where SSA occurs in the absence of nonhomologous tails.
Collapse
Affiliation(s)
- Elena Sapède
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Neal Sugawara
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Randall G. Tyers
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yuko Nakajima
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mosammat Faria Afreen
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jesselin Romero Escobar
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
2
|
Wang L, Yang S, Xue Y, Bo T, Xu J, Wang W. Mismatch Repair Protein Msh6 Tt Is Necessary for Nuclear Division and Gametogenesis in Tetrahymena thermophila. Int J Mol Sci 2023; 24:17619. [PMID: 38139447 PMCID: PMC10743813 DOI: 10.3390/ijms242417619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
DNA mismatch repair (MMR) improves replication accuracy by up to three orders of magnitude. The MutS protein in E. coli or its eukaryotic homolog, the MutSα (Msh2-Msh6) complex, recognizes base mismatches and initiates the mismatch repair mechanism. Msh6 is an essential protein for assembling the heterodimeric complex. However, the function of the Msh6 subunit remains elusive. Tetrahymena undergoes multiple DNA replication and nuclear division processes, including mitosis, amitosis, and meiosis. Here, we found that Msh6Tt localized in the macronucleus (MAC) and the micronucleus (MIC) during the vegetative growth stage and starvation. During the conjugation stage, Msh6Tt only localized in MICs and newly developing MACs. MSH6Tt knockout led to aberrant nuclear division during vegetative growth. The MSH6TtKO mutants were resistant to treatment with the DNA alkylating agent methyl methanesulfonate (MMS) compared to wild type cells. MSH6Tt knockout affected micronuclear meiosis and gametogenesis during the conjugation stage. Furthermore, Msh6Tt interacted with Msh2Tt and MMR-independent factors. Downregulation of MSH2Tt expression affected the stability of Msh6Tt. In addition, MSH6Tt knockout led to the upregulated expression of several MSH6Tt homologs at different developmental stages. Msh6Tt is involved in macronuclear amitosis, micronuclear mitosis, micronuclear meiosis, and gametogenesis in Tetrahymena.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
| | - Sitong Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
| | - Yuhuan Xue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
3
|
Trost H, Merkell A, Lopezcolorado FW, Stark J. Resolution of sequence divergence for repeat-mediated deletions shows a polarity that is mediated by MLH1. Nucleic Acids Res 2023; 51:650-667. [PMID: 36620890 PMCID: PMC9881173 DOI: 10.1093/nar/gkac1240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Repeat-mediated deletions (RMDs) are a type of chromosomal rearrangement between two homologous sequences that causes loss of the sequence between the repeats, along with one of the repeats. Sequence divergence between repeats suppresses RMDs; the mechanisms of such suppression and of resolution of the sequence divergence remains poorly understood. We identified RMD regulators using a set of reporter assays in mouse cells that test two key parameters: repeat sequence divergence and the distances between one repeat and the initiating chromosomal break. We found that the mismatch repair factor MLH1 suppresses RMDs with sequence divergence in the same pathway as MSH2 and MSH6, and which is dependent on residues in MLH1 and its binding partner PMS2 that are important for nuclease activity. Additionally, we found that the resolution of sequence divergence in the RMD product has a specific polarity, where divergent bases that are proximal to the chromosomal break end are preferentially removed. Moreover, we found that the domain of MLH1 that forms part of the MLH1-PMS2 endonuclease is important for polarity of resolution of sequence divergence. We also identified distinctions between MLH1 versus TOP3α in regulation of RMDs. We suggest that MLH1 suppresses RMDs with sequence divergence, while also promoting directional resolution of sequence divergence in the RMD product.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- To whom correspondence should be addressed. Tel: +1 626 218-6346; Fax: +1 626 218 8892;
| |
Collapse
|
4
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Michelotti LA, Sun S, Heitman J, James TY. Clonal evolution in serially passaged Cryptococcus neoformans × deneoformans hybrids reveals a heterogenous landscape of genomic change. Genetics 2022; 220:iyab142. [PMID: 34849836 PMCID: PMC8733418 DOI: 10.1093/genetics/iyab142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans × deneoformans hybrids (also known as serotype AD hybrids) are basidiomycete yeasts that are common in a clinical setting. Like many hybrids, the AD hybrids are largely locked at the F1 stage and are mostly unable to undergo normal meiotic reproduction. However, these F1 hybrids, which display a high (∼10%) sequence divergence are known to genetically diversify through mitotic recombination and aneuploidy, and this diversification may be adaptive. In this study, we evolved a single AD hybrid genotype in six diverse environments by serial passaging and then used genome resequencing of evolved clones to determine evolutionary mechanisms of adaptation. The evolved clones generally increased fitness after passaging, accompanied by an average of 3.3 point mutations, 2.9 loss of heterozygosity (LOH) events, and 0.7 trisomic chromosomes per clone. LOH occurred through nondisjunction of chromosomes, crossing over consistent with break-induced replication, and gene conversion, in that order of prevalence. The breakpoints of these recombination events were significantly associated with regions of the genome with lower sequence divergence between the parents and clustered in sub-telomeric regions, notably in regions that had undergone introgression between the two parental species. Parallel evolution was observed, particularly through repeated homozygosity via nondisjunction, yet there was little evidence of environment-specific parallel change for either LOH, aneuploidy, or mutations. These data show that AD hybrids have both a remarkable genomic plasticity and yet are challenged in the ability to recombine through sequence divergence and chromosomal rearrangements, a scenario likely limiting the precision of adaptive evolution to novel environments.
Collapse
Affiliation(s)
- Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Targeted Inter-Homologs Recombination in Arabidopsis Euchromatin and Heterochromatin. Int J Mol Sci 2021; 22:ijms222212096. [PMID: 34829981 PMCID: PMC8622013 DOI: 10.3390/ijms222212096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR) typically occurs during meiosis between homologs, at a few unplanned locations along the chromosomes. In this study, we tested whether targeted recombination between homologous chromosomes can be achieved via Clustered Regulatory Interspaced Short Palindromic Repeat associated protein Cas9 (CRISPR-Cas9)-induced DNA double-strand break (DSB) repair in Arabidopsis thaliana. Our experimental system includes targets for DSB induction in euchromatic and heterochromatic genomic regions of hybrid F1 plants, in one or both parental chromosomes, using phenotypic and molecular markers to measure Non-Homologous End Joining and HR repair. We present a series of evidence showing that targeted DSBs can be repaired via HR using a homologous chromosome as the template in various chromatin contexts including in pericentric regions. Targeted crossover was rare, but gene conversion events were the most frequent outcome of HR and were found in both “hot and cold” regions. The length of the conversion tracts was variable, ranging from 5 to 7505 bp. In addition, a typical feature of these tracks was that they often were interrupted. Our findings pave the way for the use of targeted gene-conversion for precise breeding.
Collapse
|
7
|
Uncovering bleomycin-induced genomic alterations and underlying mechanisms in yeast. Appl Environ Microbiol 2021; 88:e0170321. [PMID: 34731050 DOI: 10.1128/aem.01703-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae. Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent ZeocinTM (a BLM member) treatment. One-base deletion and T to G substitution at the 5'-GT-3' motif was the most striking signature of ZeocinTM-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. ZeocinTM treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the ZeocinTM-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. Importance Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of ZeocinTM (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of ZeocinTM-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to ZeocinTM, providing novel insights into how bleomycin resistance is developed in cells.
Collapse
|
8
|
Ahuja JS, Harvey CS, Wheeler DL, Lichten M. Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination. Mol Cell 2021; 81:4258-4270.e4. [PMID: 34453891 PMCID: PMC8541907 DOI: 10.1016/j.molcel.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine S Harvey
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David L Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22020786. [PMID: 33466757 PMCID: PMC7830279 DOI: 10.3390/ijms22020786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal rearrangements comprise unbalanced structural variations resulting in gain or loss of DNA copy numbers, as well as balanced events including translocation and inversion that are copy number neutral, both of which contribute to phenotypic evolution in organisms. The exquisite genetic assay and gene editing tools available for the model organism Saccharomyces cerevisiae facilitate deep exploration of the mechanisms underlying chromosomal rearrangements. We discuss here the pathways and influential factors of chromosomal rearrangements in S. cerevisiae. Several methods have been developed to generate on-demand chromosomal rearrangements and map the breakpoints of rearrangement events. Finally, we highlight the contributions of chromosomal rearrangements to drive phenotypic evolution in various S. cerevisiae strains. Given the evolutionary conservation of DNA replication and recombination in organisms, the knowledge gathered in the small genome of yeast can be extended to the genomes of higher eukaryotes.
Collapse
|
10
|
Stivison EA, Young KJ, Symington LS. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res 2021; 48:12697-12710. [PMID: 33264397 PMCID: PMC7736798 DOI: 10.1093/nar/gkaa1081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.
Collapse
Affiliation(s)
- Elizabeth A Stivison
- Program in Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kati J Young
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Peng Y, Wang Y, Wang X. Exploring the Thermodynamics of 7-Amino Actinomycin D-Induced Single-Stranded DNA Hairpin by Spectroscopic Techniques and Computational Simulations. J Phys Chem B 2020; 124:10007-10013. [PMID: 33136398 DOI: 10.1021/acs.jpcb.0c05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NMR studies have indicated that the anti-tumor therapeutic agent actinomycin D (ACTD) can induce seemingly single-stranded DNA (ssDNA) oligomer 5'-CCGTT3GTGG-3' to form a hairpin structure with tandem GT mismatches at the stem region next to a loop of three stacked thymine bases. In an effort to uncover the preference of binding sequence and to elucidate the thermodynamics properties of the binding, a combination of spectroscopic techniques and computational simulation studies was performed with d(CCGTTnGTGG) and d(CCGAAnGAGG) (denoted as GTTn and GAAn, respectively; n = 3, 5, and 7) sequences. In the presence of 7-amino actinomycin D (7AACTD), all the six oligomers formed stable hairpin structures. The GTT5-7AACTD/GAA5-7AACTD hairpin structure was more stable than the corresponding GTTn-7AACTD and GAAn-7AACTD (n = 3, 7). No significant ΔG difference was observed between GTTn-7AACTD and GAAn-7AACTD complexes with the same loop length. In agreement with the 7AACTD-induced hairpin stability results, the binding affinity of GTTn and GAAn with 7AACTD increased from n = 3 to n = 5 and then decreased when n is 7. Moreover, GTTn and GAAn with the same loop length showed comparable binding affinities to 7AACTD. Furthermore, molecular dynamics simulations found that van der Waals interactions between GTTn/GAAn and 7AACTD were the primary attractive forces for 7AACTD binding, and the electrostatic interactions between the carbonyl groups of 7AACTD and bases in the hairpin were the major unfavorable forces. These findings furthered our understanding that 7AACTD is sensitive to the loop size and sequence as well as tandem GT/GA mismatches of their deoxyribonucleic acid (DNA) targets. A deep understanding of the thermodynamics and the molecular recognition mechanism of 7AACTD with ssDNAs would further the development of ACTD-like antitumor agents.
Collapse
Affiliation(s)
- Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Choi JH, Lim YS, Kim MK, Bae SH. Analyses of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae. J Microbiol 2020; 58:957-966. [PMID: 33125670 DOI: 10.1007/s12275-020-0461-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023]
Abstract
Eukaryotic genomes contain numerous homologous repeat sequences including redundant genes with divergent homology that can be potential recombination targets. Recombination between divergent sequences is rare but poses a substantial threat to genome stability. The hexose transporter (HXT) gene family shares high sequence similarities at both protein and DNA levels, and some members are placed close together in tandem arrays. In this study, we show that spontaneous interstitial deletions occur at significantly high rates in HXT gene clusters, resulting in chimeric HXT sequences that contain a single junction point. We also observed that DNA double-strand breaks created between HXT genes produce primarily interstitial deletions, whereas internal cleavage of the HXT gene resulted in gene conversions as well as deletion products. Interestingly, interstitial deletions were less constrained by sequence divergence than gene conversion. Moreover, recombination-defective mutations differentially affected the survival frequency. Mutations that impair single-strand annealing (SSA) pathway greatly reduced the survival frequency by 10-1,000-fold, whereas disruption of Rad51-dependent homologous recombination exhibited only modest reduction. Our results indicate that recombination in the tandemly repeated HXT genes occurs primarily via SSA pathway.
Collapse
Affiliation(s)
- Ju-Hee Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea
| | - Ye-Seul Lim
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea
| | - Min-Ku Kim
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea
| | - Sung-Ho Bae
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
13
|
Recombinational Repair of Nuclease-Generated Mitotic Double-Strand Breaks with Different End Structures in Yeast. G3-GENES GENOMES GENETICS 2020; 10:3821-3829. [PMID: 32826304 PMCID: PMC7534431 DOI: 10.1534/g3.120.401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitotic recombination is the predominant mechanism for repairing double-strand breaks in Saccharomyces cerevisiae. Current recombination models are largely based on studies utilizing the enzyme I-SceI or HO to create a site-specific break, each of which generates broken ends with 3′ overhangs. In this study sequence-diverged ectopic substrates were used to assess whether the frequent Pol δ-mediated removal of a mismatch 8 nucleotides from a 3′ end affects recombination outcomes and whether the presence of a 3′ vs. 5′ overhang at the break site alters outcomes. Recombination outcomes monitored were the distributions of recombination products into crossovers vs. noncrossovers, and the position/length of transferred sequence (heteroduplex DNA) in noncrossover products. A terminal mismatch that was 22 nucleotides from the 3′ end was rarely removed and the greater distance from the end did not affect recombination outcomes. To determine whether the recombinational repair of breaks with 3′ vs. 5′ overhangs differs, we compared the well-studied 3′ overhang created by I-SceI to a 5′ overhang created by a ZFN (Zinc Finger Nuclease). Initiation with the ZFN yielded more recombinants, consistent with more efficient cleavage and potentially faster repair rate relative to I-SceI. While there were proportionally more COs among ZFN- than I-SceI-initiated events, NCOs in the two systems were indistinguishable in terms of the extent of strand transfer. These data demonstrate that the method of DSB induction and the resulting differences in end polarity have little effect on mitotic recombination outcomes despite potential differences in repair rate.
Collapse
|
14
|
High-Throughput Analysis of Heteroduplex DNA in Mitotic Recombination Products. Methods Mol Biol 2020. [PMID: 32840801 DOI: 10.1007/978-1-0716-0644-5_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitotic double-strand breaks (DSBs) are repaired by recombination with a homologous donor duplex. This process involves the exchange of single DNA strands between the broken molecule and the repair template, giving rise to regions of heteroduplex DNA (hetDNA). The creation of a defined DSB coupled with the use of a sequence-diverged repair template allows the fine-structure mapping of hetDNA through the sequencing of recombination products. A high-throughput method is described that capitalizes on the single-molecule real-time (SMRT) sequencing technology developed by PacBio. This method allows simultaneous analysis of the hetDNA contained within hundreds of recombination products.
Collapse
|
15
|
Gonzalez V, Spampinato CP. The mismatch repair protein MSH6 regulates somatic recombination in Arabidopsis thaliana. DNA Repair (Amst) 2020; 87:102789. [PMID: 31945543 DOI: 10.1016/j.dnarep.2020.102789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
The mismatch repair (MMR) pathway promotes genome stability by controlling the fidelity of replication and recombination. The first step of the pathway involves recognition of the mismatch by heterodimers composed of MutS homologs (MSH). Although MSH6 has been well characterized in yeasts and humans, the role of the plant protein has not been extensively studied. We first analyzed gene expression in Arabidopsis thaliana. The use of transgenic plants expressing the β-glucuronidase (GUS) reporter gene under the control of approximately 1-kb region upstream of the start codon of the AtMSH6 gene demonstrated that MSH6 is preferentially expressed in undifferentiated cells with an intense cell division rate. We then examined protein function in meiotic and somatic recombination. Suppression of AtMSH6 did not affect the rate of meiotic recombination, but increased the frequency of recombination between two homeologous repeats of a marker gene by 3-fold relative to wild-type plants. Expression of the AtMSH6 gene under the control of its own promoter in msh6 homozygous mutant plants rescued the altered somatic recombination phenotype. We conclude that MSH6 shows a functional conservation across different biological kingdoms and a functional specificity in plants.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
16
|
Chakraborty U, Mackenroth B, Shalloway D, Alani E. Chromatin Modifiers Alter Recombination Between Divergent DNA Sequences. Genetics 2019; 212:1147-1162. [PMID: 31221666 PMCID: PMC6707472 DOI: 10.1534/genetics.119.302395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Recombination between divergent DNA sequences is actively prevented by heteroduplex rejection mechanisms. In baker's yeast, such antirecombination mechanisms can be initiated by the recognition of DNA mismatches in heteroduplex DNA by MSH proteins, followed by recruitment of the Sgs1-Top3-Rmi1 helicase-topoisomerase complex to unwind the recombination intermediate. We previously showed that the repair/rejection decision during single-strand annealing recombination is temporally regulated by MSH (MutShomolog) protein levels and by factors that excise nonhomologous single-stranded tails. These observations, coupled with recent studies indicating that mismatch repair (MMR) factors interact with components of the histone chaperone machinery, encouraged us to explore roles for epigenetic factors and chromatin conformation in regulating the decision to reject vs. repair recombination between divergent DNA substrates. This work involved the use of an inverted repeat recombination assay thought to measure sister chromatid repair during DNA replication. Our observations are consistent with the histone chaperones CAF-1 and Rtt106, and the histone deacetylase Sir2, acting to suppress heteroduplex rejection and the Rpd3, Hst3, and Hst4 deacetylases acting to promote heteroduplex rejection. These observations, and double-mutant analysis, have led to a model in which nucleosomes located at DNA lesions stabilize recombination intermediates and compete with MMR factors that mediate heteroduplex rejection.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
17
|
Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 2019; 65:1333-1340. [PMID: 31123771 DOI: 10.1007/s00294-019-00995-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
DNA double-strand breaks are genotoxic lesions whose repair can be templated off an intact DNA duplex through the conserved homologous recombination (HR) pathway. Because it mainly consists of a succession of non-covalent associations of molecules, HR is intrinsically reversible. Reversibility serves as an integral property of HR, exploited and tuned at various stages throughout the pathway with anti- and pro-recombinogenic consequences. Here, we focus on the reversibility of displacement loops (D-loops), a central DNA joint molecule intermediate whose dynamics and regulation have recently been physically probed in somatic S. cerevisiae cells. From homology search to repair completion, we discuss putative roles of D-loop reversibility in repair fidelity and outcome.
Collapse
|