1
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Liao Q, Li Y, Cui M, Liu M. m6A demethylase ALKBH5 reduces ferroptosis in diabetic retinopathy through the m6A-YTHDF1-ACSL4 axis. Diabet Med 2025:e70033. [PMID: 40210448 DOI: 10.1111/dme.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/12/2025]
Abstract
AIM Diabetic retinopathy (DR) represents the main ocular complication of diabetes. Targeting ferroptosis is a promising treatment of choice for various diabetic complications. N6-methyladenosine (m6A) demethylase alkylation repair homolog protein 5 (ALKBH5) functions as a pivotal regulator of ferroptosis, and we investigated its role and molecular mechanisms in ferroptosis in DR. METHODS A DR mouse model was developed by streptozotocin (STZ) intraperitoneal injection. High glucose (HG)-induced human retinal pigment epithelial cells (ARPE-19) were used as a DR model in vitro. ALKBH5, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and acyl-CoA synthetase long-chain family member 4 (ACSL4) expression levels were examined by RT-qPCR and Western blot. The biological functions of ALKBH5 in vitro and in vivo were investigated by gain-of-function and loss-of-function analyses. ALKBH5's downstream regulatory mechanisms were detected by bioinformatics analysis, RNA pull-down, MeRIP-qPCR and actinomycin D assay. RESULTS ALKBH5 was under-expressed while YTHDF1 and ACSL4 were up-regulated in the retinal tissues of STZ-induced DR mice and HG-stimulated ARPE-19 cells. Ectopically expressed ALKBH5 or YTHDF1 knockdown partially reversed the increased ferroptosis in vitro and in vivo, evidenced by decreased levels of Fe2+, malondialdehyde and reactive oxygen species yet increased glutathione level. ALKBH5 mediated m6A modification of ACSL4 mRNA and disrupted its stability in a YTHDF1-dependent manner. Importantly, in vivo data demonstrated that overexpression of ALKBH5 or YTHDF1 knockdown repressed ferroptosis and alleviated DR by down-regulating ACSL4. CONCLUSION These findings suggest that ALKBH5 may delay DR progression by reducing ferroptosis through the m6A-YTHDF1-ACSL4 axis, offering therapeutic paradigms for the treatment of DR.
Collapse
Affiliation(s)
- Qinghui Liao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong (Shenzhen) & Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Yan Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong (Shenzhen) & Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Meijing Cui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong (Shenzhen) & Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Min Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong (Shenzhen) & Longgang District People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Xiong X, Feng S, Ma X, Liu K, Gui Y, Chen B, Fan X, Wang F, Wang X, Yuan S. hnRNPC Functions with HuR to Regulate Alternative Splicing in an m6A-Dependent Manner and is Essential for Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412196. [PMID: 39921484 PMCID: PMC11967818 DOI: 10.1002/advs.202412196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Indexed: 02/10/2025]
Abstract
N6-methyladenosine (m6A) and its reader proteins are involved in pre-mRNA processing and play a variety of roles in numerous biological processes. However, much remains to be understood about the regulation of m6A and the function of its specific readers during meiotic processes. Here, this study shows that the potential m6A reader protein hnRNPC is essential for both male and female meiosis in mice. Germ cell-specific knockout of Hnrnpc causes meiotic arrest at pachynema in male mice. Specifically, hnRNPC-deficient males show abnormal meiosis initiation and defective meiotic progression, ultimately leading to meiotic arrest at the pachytene stage. Interestingly, hnRNPC-null females show similar meiotic defects to males. Mechanistically, this study discovers that in male germ cells, hnRNPC works with HuR to directly bind and modulate alternative splicing of meiotic-related genes (e.g., Sycp1, Brca1, and Smc5) in an m6A-dependent manner during spermatogenesis. Collectively, these findings reveal hnRNPC as a critical factor for meiosis and contribute to a mechanistic understanding of the hnRNPC-HuR interaction in alternative splicing of mRNAs during germ cell development.
Collapse
Affiliation(s)
- Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Xixiang Ma
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bei Chen
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhen518057China
| |
Collapse
|
4
|
Zhu XJ, Jiang XY, Liu WJ, Fan YD, Liu G, Yao S, Sun KX, Chen JY, Lei B, Yang YM. Single-cell sequencing analysis reveals the essential role of the m 6A reader YTHDF1 in retinal visual function by regulating TULP1 and DHX38 translation. Zool Res 2025; 46:429-445. [PMID: 40116022 PMCID: PMC12000125 DOI: 10.24272/j.issn.2095-8137.2024.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/15/2025] [Indexed: 03/23/2025] Open
Abstract
N6-methyladenosine (m 6A) modification of mRNA is a critical post-transcriptional regulatory mechanism that modulates mRNA metabolism and neuronal function. The m 6A reader YTHDF1 has been shown to enhance the translational efficiency of m 6A-modified mRNAs in the brain and is essential for learning and memory. However, its role in the mature retina remains unclear. Herein, we report a novel role of Ythdf1 in the maintenance of retinal function using a genetic knockout model. Loss of Ythdf1 resulted in impaired scotopic electroretinogram (ERG) responses and progressive retinal degeneration. Detailed analyses of rod photoreceptors confirmed substantial degenerative changes in the absence of ciliary defects. Single-cell RNA sequencing revealed comprehensive molecular alterations across all retinal cell types in Ythdf1-deficient retinas. Integrative analysis of methylated RNA immunoprecipitation (MeRIP) sequencing and RIP sequencing identified Tulp1 and Dhx38, two inheritable retinal degeneration disease-associated gene homologs, as direct targets of YTHDF1 in the retina. Specifically, YTHDF1 recognized and bound m 6A-modified Tulp1 and Dhx38 mRNA at the coding sequence (CDS), enhancing their translational efficiency without altering mRNA levels. Collectively, these findings highlight the essential role of YTHDF1 in preserving visual function and reveal a novel regulatory mechanism of m 6A reader proteins in retinal degeneration, identifying potential therapeutic targets for severe retinopathies.
Collapse
Affiliation(s)
- Xian-Jun Zhu
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003 China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan-Chongqing Joint Key Laboratory for Pathology and Laboratory Medicine, Jinfeng Laboratory, Chongqing 400039, China
- Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China. E-mail:
| | - Xiao-Yan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wen-Jing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu-Di Fan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan-Chongqing Joint Key Laboratory for Pathology and Laboratory Medicine, Jinfeng Laboratory, Chongqing 400039, China
| | - Shun Yao
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003 China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451162 China
| | - Kuan-Xiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jun-Yao Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Bo Lei
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003 China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451162 China. E-mail:
| | - Ye-Ming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China. E-mail:
| |
Collapse
|
5
|
Wang C, Di A, Wu Y, Liu M, Wei M, Liang Z, Liu F, Fan H, Dong B, Li C, Xu T, Xin W, Feng X. Sprouting sympathetic fibres release CXCL16 and norepinephrine to synergistically mediate sensory neuronal hyperexcitability in a rodent model of neuropathic pain. Br J Anaesth 2025; 134:804-816. [PMID: 39848871 DOI: 10.1016/j.bja.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure. METHODS Lumbar sympathectomy was performed in spared nerve injury (SNI) mice or rats, and the up-down method was used to measure the mechanical paw withdrawal threshold. Dorsal root ganglia (DRG) injection and perfusion were used to deliver virus or drugs. Methylated RNA immunoprecipitation sequencing, RNA-sequencing, and immunoelectron microscopy were used to identify neurotransmitters. RESULTS We found that sprouting tyrosine hydroxylase-positive sympathetic fibres in DRG mediated the maintenance of mechanical allodynia after SNI (day 28, P<0.001). We further found that SNI significantly increased the N6-methyladenosine level of CXCL16 messenger RNA (day 28, P<0.001), which was attributable to the reduced N6-methyladenosine demethylase fat mass and obesity-associated protein (P=0.002) and increased interaction with YTHDF1 (P=0.013) in the sympathetic ganglion. Enhanced expression of CXCL16 in the sympathetic ganglia can lead to increases release into the DRG and act synergistically with norepinephrine from sympathetic terminals to enhance DRG neuronal excitability. CONCLUSIONS Norepinephrine and CXCL16 co-released from sympathetic nerve terminals in the DRG synergistically contribute to maintenance of neuropathic pain in a rodent model.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Anjie Di
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China; Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, China
| | - Ming Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengkai Liang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Liu
- Yichang Humanwell Pharmaceutical Co., Ltd, Yichang, Hubei, China
| | - Haiting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Dong
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China; Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China.
| | - Ting Xu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Wenjun Xin
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China; Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Hua Z, Gong B, Li Z. Silencing YTHDF2 Induces Apoptosis of Neuroblastoma Cells In a Cell Line-Dependent Manner via Regulating the Expression of DLK1. Mol Neurobiol 2025:10.1007/s12035-025-04759-y. [PMID: 39979690 DOI: 10.1007/s12035-025-04759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. The complications caused by traditional chemoradiotherapy seriously affect the quality of life of patients with NB. In this study, NGP, KCNR, and SH-SY5Y (SY5Y) cell lines were used. Retinoic acid (RA, 5 µM) was used to treat NB cells for 48 h. siRNAs were used to silence the expression of DLK1 or YTHDF2. Cell confluence was analyzed using IncuCyte ZOOM to evaluate cell proliferation of NB cells. RT-qPCR and western blotting were performed to detect the expression of target molecules. Annexin V/PI staining and Caspase-Glo 3/7 assay were performed to detect cell apoptosis. RNA m6A quantification, MeRIP-qPCR, and RIP-qPCR were performed. Results showed that RA treatment decreased the expression of DLK1 and YTHDF2 in NB cells, and low expression of DLK1 was correlated with good prognosis of patients. Knockdown of the expression of DLK1 or YTHDF2 inhibited cell proliferation and induced apoptosis of SY5Y cells, but not NGP and KCNR cells. Furthermore, we found that there are m6A modification sites in DLK1 mRNA, and the expression of m6A modified DLK1 mRNA increased after RA treatment, and YTHDF2 regulates the expression level of DLK1, and the expression of YTHDF2-bound DLK1 mRNA decreased after RA treatment. These suggest that YTHDF2 may regulate the proliferation and apoptosis of NB cells in a cell line-dependent manner by binding to the m6A modification site of DLK1 mRNA to affect its expression, and YTHDF2 and DLK1 are potential therapeutic targets for patients with NB.
Collapse
Affiliation(s)
- Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Tian K, Cai D, Yang S, Zhao W, Mei X, Chen SY. YTH N 6-methyladenosine RNA Binding Protein 1 Inhibits Smooth Muscle Cell Phenotypic Modulation and Neointimal Hyperplasia. Cells 2025; 14:160. [PMID: 39936952 PMCID: PMC11817666 DOI: 10.3390/cells14030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Smooth muscle cell (SMC) phenotypic transition contributes to several major vascular diseases such as intimal hyperplasia and restenosis, atherosclerosis, and aneurysm. However, the molecular mechanisms underlying this process are not fully understood. The objectives of this study are to determine the role of mRNA N6-methyladenosine (m6A) modification in SMC phenotypic modulation and injury-induced neointima formation. By using an m6A quantification kit, we found that m6A levels are altered during the early stage of SMC phenotypic modulation. RNA sequencing revealed that m6A modifications in the mRNAs of 708 genes are elevated while modifications in the mRNAs of 300 genes are decreased. These modifications occur in genes widely distributed in most chromosomes and involved in many cellular processes and signaling/gene regulations. Meanwhile, the regulators for m6A modifications are altered by PDGF-BB, a known factor inducing SMC phenotypic modulation. Although m6A writers and erasers are not altered during SMC phenotypic modulation, m6A reader YTHDF1 is dramatically reduced as early as 12 h following PDGF-BB treatment, a time much earlier than the downregulation of SMC contractile proteins. Importantly, the overexpression of YTHDF1 reverses the expression of SMC contractile proteins, suggesting a restoration of contractile SMC phenotype. By using a rat carotid artery balloon-injury model, we found that injury significantly decreases YTHDF1 levels in the medial SMCs while inducing neointima formation. Of significance, restoring YTHDF1 expression through lentiviral transduction blocks injury-induced neointima formation. Moreover, YTHDF1 delivery restores the expression of SMC contractile proteins that is diminished in arterial media layers due to the injury. These data demonstrate that YTHDF1 plays a protective role in maintaining the contractile SMC phenotype and vascular homeostasis during injury-induced pathological vascular remodeling.
Collapse
MESH Headings
- Neointima/metabolism
- Neointima/pathology
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Hyperplasia/metabolism
- Phenotype
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Male
- Rats
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Humans
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Kai Tian
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (K.T.); (D.C.)
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (K.T.); (D.C.)
| | - Shuang Yang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA;
| | - Wen Zhao
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (K.T.); (D.C.)
| | - Xiaohan Mei
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (K.T.); (D.C.)
| | - Shi-You Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; (K.T.); (D.C.)
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA;
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
| |
Collapse
|
8
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Xu Z, Shi J, Liu R, Li Z, Xu S, Gong H, Fu M, Xu H, Yu S, Liu J, Wu H, Li X, Liu S, Wei W. CircSATB2 modulates fear extinction memory via Robo3-driven synaptic plasticity. Brain Res Bull 2025; 220:111167. [PMID: 39675489 DOI: 10.1016/j.brainresbull.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Circular RNAs (circRNAs) are novel class of stable regulatory RNAs abundantly expressed in the brain. However, their role in fear extinction (EXT) memory remains largely unexplored. To investigate the mechanisms of Circular Special AT-rich Sequence Binding Protein 2 (circSatb2) in EXT memory, we constructed a lentivirus overexpressing circSatb2 and injected it into the infralimbic prefrontal cortex (ILPFC) of the mouse brain. Following extinction training and subsequent testing, we observed an essential role of circSatb2 in this dynamic process. RNA sequencing (RNA-seq) and bioinformatics analyses revealed that circSatb2 enhances the transcription of Roundabout Guidance Receptor 3 (Robo3), a key gene implicated in axon guidance and synaptic plasticity, which was validated by RT-qPCR. Neuronal morphology was assessed using confocal microscopy to determine changes in dendritic spine density. Our results demonstrated that circSatb2 significantly enhances Robo3 transcription, leading to increased dendritic spine formation and improved synaptic plasticity. In conclusion, circSatb2 promotes the formation of EXT memory by upregulating Robo3 transcription and enhancing synaptic plasticity. These findings position circSatb2 as a potential therapeutic target for disorders associated with memory impairment.
Collapse
Affiliation(s)
- Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jichun Shi
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Runming Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhehao Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Gong
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane 4702, Australia
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangqi Yu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhui Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huiqing Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China; Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Sivasudhan E, Zhou J, Ma J, Wang Y, Liu S, Khan FI, Lu Z, Meng J, Blake N, Rong R. Hepatitis B Virus X Protein Contributes to Hepatocellular Carcinoma via Upregulation of KIAA1429 Methyltransferase and mRNA m6A Hypermethylation of HSPG2/Perlecan. Mol Carcinog 2025; 64:108-125. [PMID: 39412412 DOI: 10.1002/mc.23830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Chronic hepatitis B virus (HBV) remains to be the most common risk factor of hepatocellular carcinoma (HCC). While previous work has primarily focussed on understanding the direct and indirect mechanisms of Hepatitis B virus X protein (HBx)-mediated hepatocarcinogenesis, from genetic and epigenetic perspectives, its influence on RNA modification mediated onset of liver malignancies is less well understood. This study explored the role of HBV-encoded HBx in altering the m6A methylome profile and its implications on the pathogenesis of HCC. We established HBx-expressing stable HCC cell lines, Huh7-HBx and HepG2-HBx, and explored the transcriptomic and epitranscriptomic profiles by RNA-seq and MeRIP-seq, respectively. Preliminary results suggest that HBx promotes liver cell proliferation, migration, survival and overall m6A methylation in HCC cells and is involved in modulating the extracellular matrix. We show that HBx mediates liver cell transformation by upregulating KIAA1429 methyltransferase. HBx also drives the expression and hypermethylation of the extracellular matrix protein HSPG2/Perlecan and promotes tumourigenesis. Furthermore, we observed a potential interaction between KIAA1429 and HSPG2 in HCC liver cancer cells and demands further investigation.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Viral Regulatory and Accessory Proteins
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Gene Expression Regulation, Neoplastic
- Heparan Sulfate Proteoglycans/metabolism
- Heparan Sulfate Proteoglycans/genetics
- Hepatitis B virus/genetics
- Cell Proliferation
- Up-Regulation
- DNA Methylation
- RNA, Messenger/genetics
- Animals
- Cell Line, Tumor
- Mice
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Hep G2 Cells
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/virology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/complications
- Cell Movement/genetics
- RNA-Binding Proteins
Collapse
Affiliation(s)
- Enakshi Sivasudhan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jingxian Zhou
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Computer Science, University of Liverpool, Liverpool, UK
| | - Jiongming Ma
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Yuanyuan Wang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Siying Liu
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zhiliang Lu
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jia Meng
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neil Blake
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rong Rong
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Liu W, He Y, Chen K, Ye J, Yu L, Zhou C, Zhai W. YTHDF2 influences hepatic fibrosis by regulating ferroptosis in hepatic stellate cells by mediating the expression of ACSL4 in an m 6A-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2024; 57:521-528. [PMID: 39716886 DOI: 10.3724/abbs.2024162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Hepatic fibrosis (HF) is an abnormal reparative response of the liver to chronic injury and is histologically reversible. In recent years, increasing interest has been given to changes in m 6A in liver disease. In this study, we explore the role of the m 6A-modified reading protein YTHDF2 in HF and its regulatory mechanism. The HF mouse model is generated through CCl 4 injection, and the cell model is via TGF-β stimulation. The liver tissues are subjected to hematoxylin-eosin, Masson, and α-SMA immunohistochemical staining. Reactive oxygen species (ROS) and iron levels are examined via relevant kits. Quantitative real-time PCR, immunofluorescence staining, and western blot analysis were conducted to measure the YTHDF2 and ACSL4 levels. RNA immunoprecipitation, methylated RNA immunoprecipitation, RNA pull-down, and polysome fractionation were performed to understand the regulatory mechanism by which YTHDF2 affects ACSL4. The results show that YTHDF2 is highly expressed after HF induction, and the inhibition of YTHDF2 reduces fibrosis as well as ROS and iron levels. In vitro, overexpression of YTHDF2 increases hepatic stellate cell activation, as well as ROS and iron levels, and this effect is blocked by the silencing of ACSL4. YTHDF2 acts as a regulator of ACSL4 expression and is involved in m 6A modification. In addition, in vivo experiments indicate that overexpression of ACSL4 reverses the attenuating effect of YTHDF2 interference on HFs. Therefore, YTHDF2 mediates the expression of the ferroptosis marker protein ACSL4 in an m 6A-dependent manner, thereby affecting HF.
Collapse
|
12
|
Mitsuhashi H, Lin R, Chawla A, Mechawar N, Nagy C, Turecki G. Altered m6A RNA methylation profiles in depression implicate the dysregulation of discrete cellular functions in males and females. iScience 2024; 27:111316. [PMID: 39650737 PMCID: PMC11625292 DOI: 10.1016/j.isci.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Adverse environmental stress represents a significant risk factor for major depressive disorder (MDD), often resulting in disrupted synaptic connectivity which is known to be partly regulated by epigenetic mechanisms. N6-methyladenosine (m6A), an epitranscriptomic modification, has emerged as a crucial regulator of activity-dependent gene regulation. In this study, we characterized m6A profiles in the ventromedial prefrontal cortex (vmPFC) of individuals with MDD. Using m6A sequencing, we identified a total of 30,279 high-confidence m6A peaks, exhibiting significant enrichment in genes related to neuronal and synaptic function. The m6A peaks between males and females with MDD that passed the significance threshold showed opposite m6A patterns, while the threshold-free m6A patterns were concordant. Distinct m6A profiles were found in MDD for each sex, with dysregulation associated with microtubule movement in males and neuronal projection in females. Our results suggest the potential roles of m6A as part of the dysregulated molecular network in MDD.
Collapse
Affiliation(s)
- Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Rixing Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544 USA, USA
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
13
|
Uddin MB, Wang Z, Yang C. Epitranscriptomic RNA m 6A Modification in Cancer Therapy Resistance: Challenges and Unrealized Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2403936. [PMID: 39661414 PMCID: PMC11775542 DOI: 10.1002/advs.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Indexed: 12/12/2024]
Abstract
Significant advances in the development of new cancer therapies have given rise to multiple novel therapeutic options in chemotherapy, radiotherapy, immunotherapy, and targeted therapies. Although the development of resistance is often reported along with temporary disease remission, there is often tumor recurrence of an even more aggressive nature. Resistance to currently available anticancer drugs results in poor overall and disease-free survival rates for cancer patients. There are multiple mechanisms through which tumor cells develop resistance to therapeutic agents. To date, efforts to overcome resistance have only achieved limited success. Epitranscriptomics, especially related to m6A RNA modification dysregulation in cancer, is an emerging mechanism for cancer therapy resistance. Here, recent studies regarding the contributions of m6A modification and its regulatory proteins to the development of resistance to different cancer therapies are comprehensively reviewed. The promise and potential limitations of targeting these entities to overcome resistance to various anticancer therapies are also discussed.
Collapse
Affiliation(s)
- Mohammad Burhan Uddin
- Department of Pharmaceutical SciencesNorth South UniversityBashundharaDhaka1229Bangladesh
| | - Zhishan Wang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
| | - Chengfeng Yang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
- Department of PathologyRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| |
Collapse
|
14
|
Ding S, Gao J, Huang C, Zhou Y, Yang Y, Cai Z. Identification of diagnostic biomarkers and molecular subtype analysis associated with m6A in Tuberculosis immunopathology using machine learning. Sci Rep 2024; 14:29982. [PMID: 39622968 PMCID: PMC11612281 DOI: 10.1038/s41598-024-81790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Tuberculosis (TB), ranking just below COVID-19 in global mortality, is a highly complex infectious disease involving intricate immunological molecules, diverse signaling pathways, and multifaceted immune processes. N6-methyladenosine (m6A), a critical epigenetic modification, regulates various immune-metabolic and pathological pathways, though its precise role in TB pathogenesis remains largely unexplored. This study aims to identify m6A-associated genes implicated in TB, elucidate their mechanistic contributions, and evaluate their potential as diagnostic biomarkers and tools for molecular subtyping. Using TB-related datasets from the GEO database, this study identified differentially expressed genes associated with m6A modification. We applied four machine learning algorithms-Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Generalized Linear Model-to construct diagnostic models focusing on m6A regulatory genes. The Random Forest algorithm was selected as the optimal model based on performance metrics (area under the curve [AUC] = 1.0, p < 0.01), and a clinical predictive model was developed based on these critical genes. Patients were stratified into distinct subtypes according to m6A gene expression profiles, followed by immune infiltration analysis across subtypes. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses elucidated the biological functions and pathways associated with the identified genes. Quantitative real-time PCR (RT-qPCR) was used to validate the expression of key m6A regulatory genes. Analysis of the GSE83456 dataset revealed four differentially expressed m6A-related genes-YTHDF1, HNRNPC, LRPPRC, and ELAVL1-identified as critical m6A regulators in TB through the Random Forest model. The diagnostic significance of these genes was further supported by a nomogram, achieving a high predictive accuracy (95% confidence interval [CI]: 0.87-0.94). Consensus clustering classified patients into two m6A subtypes with distinct immune profiles, as principal component analysis (PCA) showed significantly higher m6A scores in Group A than in Group B (p < 0.05). Immune infiltration analysis highlighted significant correlations between key m6A genes and specific immune cell infiltration patterns across subtypes. This study highlights the potential of key m6A regulatory genes as diagnostic biomarkers and immunotherapy targets for TB, supporting their role in TB pathogenesis. Future research should aim to further validate these findings across diverse cohorts to enhance their clinical applicability.
Collapse
Affiliation(s)
- Shoupeng Ding
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Jinghua Gao
- Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong, 675000, China
| | - Chunxiao Huang
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Yuyang Zhou
- Department of Medical Laboratory, Siyang Hospital, Siyang County, 237000, Jiangsu Province, China
| | - Yimei Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Zihan Cai
- Department of Medical Laboratory, Siyang Hospital, Siyang County, 237000, Jiangsu Province, China.
| |
Collapse
|
15
|
Xu XF, Chen J, Long LH, Zhang AM, Yang JW, Li YJ, Chen L, Zhong XL, Xu Y, Cao WY. Chronic social isolation leads to abnormal behavior in male mice through the hippocampal METTL14 mediated epitranscriptomic RNA m6A modifications. J Affect Disord 2024; 366:262-272. [PMID: 39209273 DOI: 10.1016/j.jad.2024.08.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Social isolation not only increases the risk of mortality in later life but also causes depressive symptoms, cognitive and physical disabilities. Although RNA m6A modifications are suggested to play key roles in brain development, neuronal signaling and neurological disorders, both the roles of m6A and the enzymes that regulate RNA m6A modification in social isolation induced abnormal behavior is unknown. The present study aims to explore the possible epitranscriptomic role of RNA m6A modifications and its enzymes in social isolation induced impaired behavior. METHODS 3-4 weeks mice experiencing 8 weeks social isolation stress (SI) were used in the present study. We quantified m6A levels in brain regions related to mood and cognitive behavior. And the expression of hippocampal m6A enzymes was also determined. The role of hippocampal m6A and its enzymes in SI induced abnormal behavior was further verified by the virus tool. RESULTS SI led to not only depressive and anxiety-like behaviors but also cognitive impairment, with corresponding decreases in hippocampal m6A and METTL14. Hippocampal over-expression METTL14 with lentivirus not only rescued these behaviors but also enhanced the hippocampal m6A level. Hippocampal over-expression METTL14 resulted in increased synaptic related genes. CONCLUSIONS We provide the first evidence that post-weaning social isolation reduces hippocampal m6A level and causes altered expression of m6A enzyme in mice. Importantly, hippocampal METTL14 over-expression alleviated the SI-induced depression/anxiety-like and impaired cognitive behaviors and enhanced m6A level and synaptic related genes expression.
Collapse
Affiliation(s)
- Xiao Fan Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Jie Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu Hong Long
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ao Mei Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Wen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Jia Li
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Wen Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Li Y, Chen L, Li S, Song H, Chen Y, Wang S. The m6A reader IGF2BP1 contributes to the activation of hepatic stellate cells through facilitating TUBB4B mRNA stabilization. J Gastroenterol Hepatol 2024; 39:2916-2925. [PMID: 39403946 DOI: 10.1111/jgh.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The m6A reader insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is involved in multiple pathophysiological processes through enhanced expression of the proteins encoded by their target mRNAs. However, the functional role of IGF2BP1-mediated m6A in liver fibrosis remains elusive. Here, we report that IGF2BP1 is highly expressed in activated hepatic stellate cells (HSCs), the major driver of fibrogenesis, and TUBB4B is identified as a potential target of IGF2BP1 by re-analysis of the RNA-seq, RIP-seq, and m6A-seq data. The relevant findings were subsequently demonstrated by a series of molecular and cellular evidences. The knockdown of IGF2BP1 or TUBB4B and pharmacological inhibition of TUBB4B by mebendazole treatments significantly suppress the proliferation, migration, and activation of HSCs. Mechanistically, IGF2BP1 upregulates TUBB4B expression through stabilizing TUBB4B in an m6A-dependent manner, and TUBB4B induces liver fibrosis by activating the FAK signaling pathway. Collectively, our results indicate that targeting IGF2BP1/TUBB4B/FAK axis in HSCs could be a promising therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Yanshan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ling Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuyi Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoxin Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Zhao W, Li R, Zhong X, Huang P. Deletion of YTHDF1 (not YTHDF3) reduced brain and gut damage after traumatic brain injury. Neurol Res 2024; 46:1037-1045. [PMID: 39081030 DOI: 10.1080/01616412.2024.2381160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/11/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To determine whether YTHDF1 and YTHDF3 play the same role in brain and gut damage after traumatic brain injury (TBI). METHODS We generated YTHDF1-/- and YTHDF3-/- mice using CRISPR/Cas9 technology, established a mouse brain injury model through severe controlled cortical impact (CCI), and finally observed the different types of damage between YTHDF1-/- and YTHDF3-/- mice by analysing the levels of oedema proteins in cortical tissue and inflammatory proteins and histopathological lesions in brain and gut tissues in mice at 3 days after CCI. RESULT Compared with WT mice, YTHDF1-/- mice had decreased levels of oedema in cortical tissue and inflammation and histopathological lesions in brain and gut tissues at 3 days post-CCI, but YTHDF3-/- mice did not. CONCLUSION Our results suggest that deletion of YTHDF1, but not YTHDF3, could reduce damage to the brain and gut following TBI.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruzhi Li
- Department of Endoscopic Center, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peizan Huang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Xu J, Wang F, Gao Y, Qi C, Chen T, Yan J. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Dev Neurosci 2024:1-17. [PMID: 39401493 DOI: 10.1159/000542005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND In contemporary medical practice, general anesthesia plays an essential role in pediatric surgical procedures. While modern anesthetic protocols have demonstrated safety and efficacy across various pathological conditions, concerns persist regarding the potential neurotoxic effects associated with early exposure to general anesthesia. SUMMARY Current research primarily examines the neurocognitive developmental impacts, with limited focus on neurobehavioral developmental disorders. This review presents a comprehensive analysis of clinical trial results related to five critical neurobehavioral developmental disorders: fine motor disability, attention-deficit hyperactivity disorder, impulse control disorders, autism spectrum disorder, and developmental coordination disorder. Furthermore, this review synthesizes insights from basic research on the potential toxicological mechanisms of general anesthetic agents that could influence clinical neurobehavioral changes. These findings provide valuable guidance for the prudent and safe utilization of anesthetic agents in pediatric patients. KEY MESSAGES This review explores the potential connections between general anesthesia and five neurobehavioral disorders, highlighting the importance of cautious anesthetic use in children in light of current research findings.
Collapse
Affiliation(s)
- Jinnan Xu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Gao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanyu Qi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiannan Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1723-1732. [PMID: 39344412 PMCID: PMC11693867 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Hoi-Hung Cheung
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong 999077China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
20
|
Deng X, Yu YV, Jin YN. Non-canonical translation in cancer: significance and therapeutic potential of non-canonical ORFs, m 6A-modification, and circular RNAs. Cell Death Discov 2024; 10:412. [PMID: 39333489 PMCID: PMC11437038 DOI: 10.1038/s41420-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Translation is a decoding process that synthesizes proteins from RNA, typically mRNA. The conventional translation process consists of four stages: initiation, elongation, termination, and ribosome recycling. Precise control over the translation mechanism is crucial, as dysregulation in this process is often linked to human diseases such as cancer. Recent discoveries have unveiled translation mechanisms that extend beyond typical well-characterized components like the m7G cap, poly(A)-tail, or translation factors like eIFs. These mechanisms instead utilize atypical elements, such as non-canonical ORF, m6A-modification, and circular RNA, as key components for protein synthesis. Collectively, these mechanisms are classified as non-canonical translations. It is increasingly clear that non-canonical translation mechanisms significantly impact the various regulatory pathways of cancer, including proliferation, tumorigenicity, and the behavior of cancer stem cells. This review explores the involvement of a variety of non-canonical translation mechanisms in cancer biology and provides insights into potential therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Youngnam N Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Feng L, Li M, Ma J, Wang W, Wang S, Mao Z, Zhang Y. ALKBH5 regulates arginase 1 expression in MDSCs and their immunosuppressive activity in tumor-bearing host. Noncoding RNA Res 2024; 9:913-920. [PMID: 38638146 PMCID: PMC11024866 DOI: 10.1016/j.ncrna.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are closely related to the occurrence and development of many cancers, but the specific mechanism is not fully understood. It has been found that N6-methyladenosine (m6A) plays a key role in RNA metabolism, but its function in MDSCs has yet to be revealed. In this study, we found that MDSCs in mice with colorectal cancer (CRC) have significantly elevated levels of m6A, while ALKBH5 expression is decreased. Overexpression of ALKBH5 can reduce the immunosuppressive function of MDSCs in vivo and in vitro, and attenuates the protumorigenic ability of MDSCs. Mechanism study found that the overexpression of ALKBH5 in MDSCs reduced the m6A modification level of Arg-1 mRNA, and then weakened the stability of Arg-1 mRNA and protein expression. These data suggest that the decreased expression of ALKBH5 in CRC tumor mice may promote the expression of Arg-1, enhance the immunosuppressor function of MDSCs, and promote tumor growth. These findings highlight that ALKBH5 may regulate the function of MDSCs in tumor-bearing mice and may be a new target for immunotherapy. This research provides a new perspective for our understanding of the role of MDSCs in cancer development, and also brings new hope for cancer treatment.
Collapse
Affiliation(s)
- Lili Feng
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
| | - Min Li
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
| | - Jie Ma
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
| | - Wenxin Wang
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
| | - Yue Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| |
Collapse
|
22
|
Golubeva VA, Das AS, Rabolli CP, Dorn LE, van Berlo JH, Accornero F. YTHDF1 is pivotal for maintenance of cardiac homeostasis. J Mol Cell Cardiol 2024; 193:25-35. [PMID: 38768805 PMCID: PMC11983483 DOI: 10.1016/j.yjmcc.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.
Collapse
Affiliation(s)
- Volha A Golubeva
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Anindhya Sundar Das
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | - Charles P Rabolli
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lisa E Dorn
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Jop H van Berlo
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
23
|
Chokkalla AK, Arruri V, Mehta SL, Vemuganti R. Loss of Epitranscriptomic Modification N 6-Methyladenosine (m 6A) Reader YTHDF1 Exacerbates Ischemic Brain Injury in a Sexually Dimorphic Manner. Transl Stroke Res 2024:10.1007/s12975-024-01267-4. [PMID: 38869772 DOI: 10.1007/s12975-024-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
N6-Methyladenosine (m6A) is a neuronal-enriched, reversible post-transcriptional modification that regulates RNA metabolism. The m6A-modified RNAs recruit various m6A-binding proteins that act as readers. Differential m6A methylation patterns are implicated in ischemic brain damage, yet the precise role of m6A readers in propagating post-stroke m6A signaling remains unclear. We presently evaluated the functional significance of the brain-enriched m6A reader YTHDF1, in post-stroke pathophysiology. Focal cerebral ischemia significantly increased YTHDF1 mRNA and protein expression in adult mice of both sexes. YTHDF1-/- male, but not female, mice subjected to transient middle cerebral artery occlusion (MCAO) showed worsened motor function recovery and increased infarction compared to sex-matched YTHDF1+/+ mice. YTHDF1-/- male, but not female, mice subjected to transient MCAO also showed significantly perturbed expression of genes related to inflammation, and increased infiltration of peripheral immune cells into the peri-infarct cortex, compared with sex-matched YTHDF1+/+ mice. Thus, this study demonstrates a sexual dimorphism of YTHDF1 in regulating post-ischemic inflammation and pathophysiology. Hence, post-stroke epitranscriptomic regulation might be sex-dependent.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
24
|
Liu C, Gao Q, Dong J, Cai H. Usf2 Deficiency Promotes Autophagy to Alleviate Cerebral Ischemia-Reperfusion Injury Through Suppressing YTHDF1-m6A-Mediated Cdc25A Translation. Mol Neurobiol 2024; 61:2556-2568. [PMID: 37914905 DOI: 10.1007/s12035-023-03735-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Autophagy has been involved in protection of ischemia/reperfusion (I/R)-induced injury in many tissues including the brain. The upstream stimulatory factor 2 (Usf2) was proposed as a regulator in aging and degenerative brain diseases; however, the its role in autophagy during cerebral I/R injury remains unclear. Here, the middle cerebral artery occlusion (MCAO) operation was applied to establish an I/R mouse model. We showed that Usf2 was significantly upregulated in I/R-injured brain, accompanied by decreased levels of autophagy. Then, oxygen-glucose deprivation/recovery (OGD/R) treatment was used to establish a cellular I/R model in HT22 neurons, and lentiviral interference vector against Usf2 (LV-sh-Usf2) was used to infect the neurons. Our results showed that Usf2 was significantly upregulated in OGD/R-treated HT22 neurons that displayed an increased level in cell apoptosis and decreased levels in cell viability and autophagy, and interference of Usf2 largely rescued the effects of OGD/R on cell viability, apoptosis, and autophagy, suggesting an important role of Usf2 in neuron autophagy. In the mechanism exploration, we found that, as a transcription factor, Usf2 bound to the promoter of YTHDF1, a famous reader of N6-Methyladenosine (m6A), also induced by OGD/R, and promoted its transcription. Overexpression of YTHDF1 was able to reverse the improvement of Usf2 interference on viability and autophagy of HT22 neurons. Moreover, YTHDF1 suppressed autophagy to induce HT22 cell apoptosis through increasing m6A-mediated stability of Cdc25A, a newly identified autophagy inhibitor. Finally, we demonstrated that interference of Usf2 markedly improved autophagy and alleviated I/R-induced injury in MCAO mice.
Collapse
Affiliation(s)
- Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Qing Gao
- Department of Anesthesia Operation, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
25
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Ma S, Chen F, Lin C, Sun W, Wang D, Zhou S, Chang S, Lu Z, Zhang D. MiR-186-5p prevents hepatocellular carcinoma progression by targeting methyltransferase-like 3 that regulates m6A-mediated stabilization of follistatin-like 5. Heliyon 2024; 10:e26767. [PMID: 38463829 PMCID: PMC10920164 DOI: 10.1016/j.heliyon.2024.e26767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a multistep process involving sophisticated genetic, epigenetic, and transcriptional changes. However, studies on microRNA (miRNA)'s regulatory effects of N6-methyladenosine (m6A) modifications on HCC progression are limited. Methods Cell Counting Kit-8 (CCK-8), clone formation, and Transwell assays were used to investigate changes in cancer cell proliferation, invasion, and migration. RNA m6A levels were verified using methylated RNA immunoprecipitation. Luciferase reporter assay was used to study the potential binding between miRNAs and mRNA. A mouse tumor transplant model was established to study the changes in tumor progression. Results Follistatin-like 5 (FSTL5) was significantly downregulated in HCC and inhibited its further progression. Additionally, methyltransferase-like 3 (METTL3) reduced FSTL5 mRNA stability in an m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that METTL3 downregulation inhibited HCC progression by upregulating FSTL5 in vitro and in vivo. Luciferase reporter assay verified that miR-186-5p directly targets METTL3. Additionally, miR-186-5p inhibits the proliferation, migration, and invasion of HCC cells by downregulating METTL3 expression. Conclusions The miR-186-5p/METTL3/YTHDF2/FSTL5 axis may offer new directions for targeted HCC therapy.
Collapse
Affiliation(s)
- Shuoshuo Ma
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
- Liver Transplantation Center and Hepatobiliary and Pancreatic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangfang Chen
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Chuanle Lin
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Dongdong Wang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Shuo Zhou
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - ShiRu Chang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Dengyong Zhang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
- The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology, Houston, USA
| |
Collapse
|
27
|
Liu B, Meng D, Luo M, Xu L, Yao M. Fat mass and obesity-related protein contributes to the development and maintenance of bone cancer pain in rats by abrogating m6A methylation of RNA. Mol Pain 2024; 20:17448069241295987. [PMID: 39415414 PMCID: PMC11490980 DOI: 10.1177/17448069241295987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Effective prevention and treatment options for bone cancer-related pain (BCP) are lacking. In recent years, numerous studies have investigated the association between m6A epigenetic modifications and pain, revealing their significant role in pain initiation and maintenance. This study aimed to provide theoretical support for the treatment of BCP and to identify target drugs for future development. Specifically, we investigated the involvement of fat mass and obesity-related protein (FTO) in rat models of BCP by administering varying doses (1/5/10 mg/kg) of the FTO inhibitor meclofenamic acid (MA) and assessing changes in mechanical sensitivity through domain analysis, gait analysis, and open-field experiments. After successfully establishing the BCP model, we verified it by performing mechanical sensitivity assessments. We observed significantly increased expression levels of the demethylase FTO within the spinal dorsal horn accompanied by decreased m6A methylation levels in the model. Compared with untreated BCP rats, remarkably improved behavioral responses indicative of reduced pain were observed in the model rats after administration of 10 mg/kg MA, concomitant with decreased expression levels of FTO and increased m6A methylation levels. Compared with untreated BCP rats, the expression levels of p-ERK and pro-inflammatory cytokines were also significantly decreased after MA administration. Taken together, FTO can downregulate m6A methylation level and activate ERK/inflammatory cytokines signaling pathway to maintain BCP in rats.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Danyang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Man Luo
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
28
|
Rong H, Wang D, Wang Y, Dong C, Wang G. YTHDF1 in Tumor Cell Metabolism: An Updated Review. Molecules 2023; 29:140. [PMID: 38202722 PMCID: PMC10779796 DOI: 10.3390/molecules29010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancement of research on m6A-related mechanisms in recent years, the YTHDF protein family within m6A readers has garnered significant attention. Among them, YTHDF1 serves as a pivotal member, playing a crucial role in protein translation, tumor proliferation, metabolic reprogramming of various tumor cells, and immune evasion. In addition, YTHDF1 also exerts regulatory effects on tumors through multiple signaling pathways, and numerous studies have confirmed its ability to assist in the reprogramming of the tumor cell-related metabolic processes. The focus of research on YTHDF1 has shifted in recent years from its m6A-recognition and -modification function to the molecular mechanisms by which it regulates tumor progression, particularly by exploring the regulatory factors that interact with YTHDF1 upstream and downstream. In this review, we elucidate the latest signaling pathway mechanisms of YTHDF1 in various tumor cells, with a special emphasis on its distinctive characteristics in tumor cell metabolic reprogramming. Furthermore, we summarize the latest pathological and physiological processes involving YTHDF1 in tumor cells, and analyze potential therapeutic approaches that utilize YTHDF1. We believe that YTHDF1 represents a highly promising target for future tumor treatments and a novel tumor biomarker.
Collapse
Affiliation(s)
| | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; (H.R.); (D.W.); (Y.W.); (C.D.)
| |
Collapse
|
29
|
Shao N, Ye T, Xuan W, Zhang M, Chen Q, Liu J, Zhou P, Song H, Cai B. The effects of N 6-methyladenosine RNA methylation on the nervous system. Mol Cell Biochem 2023; 478:2657-2669. [PMID: 36899139 DOI: 10.1007/s11010-023-04691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Epitranscriptomics, also known as "RNA epigenetics", is a type of chemical modification that regulates RNA. RNA methylation is a significant discovery after DNA and histone methylation. The dynamic reversible process of m6A involves methyltransferases (writers), m6A binding proteins (readers), as well as demethylases (erasers). We summarized the current research status of m6A RNA methylation in the neural stem cells' growth, synaptic and axonal function, brain development, learning and memory, neurodegenerative diseases, and glioblastoma. This review aims to provide a theoretical basis for studying the mechanism of m6A methylation and finding its potential therapeutic targets in nervous system diseases.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weiting Xuan
- Department of Neurosurgery (Rehabilitation), Anhui Hospital of Integrated Chinese and Western Medicine, Hefei, 230031, China
| | - Meng Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qian Chen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Liu
- Department of Chinese Internal Medicine, Taihe County People's Hospital, Fuyang, 236699, China
| | - Peng Zhou
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hang Song
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
30
|
Meng X, Li W, Wu Q, Gao Y, Zhang L. Microcystin-LR induces lactate production disruption via altering the m 6A modification in Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115288. [PMID: 37481861 DOI: 10.1016/j.ecoenv.2023.115288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
We have previously reported the toxicity of microcystin-LR (MC-LR) to the male reproductive system, which results in functional changes in mouse testes. In this study, mice were orally exposed to MC-LR at 1, 7.5, 15, or 30 μg/L daily for 180 days. We found an increase in germ cell apoptosis in the seminiferous tubules and low-quality sperm in the epididymis. A decrease in lactate dehydrogenase A (Ldha) expression in testes through high-throughput sequencing was observed. We validated that MC-LR disrupted lactate production in Sertoli cells by suppressing the expression of Ldha. Further studies identified that methyltransferase 3 (Mettl3) catalysed N6-methyladenosine (m6A) methylation of Ldha mRNA. Mettl3 was downregulated in Sertoli cells following exposure to MC-LR, decreasing m6A levels of Ldha. The stability of Ldha mRNA decreased when m6A levels of Ldha were inhibited. In conclusion, these results showed that MC-LR inhibits the expression of Ldha in an m6A-dependent manner, which might result in the apoptosis of spermatogenic cells and a decline in sperm quality. Our work provides a new perspective to understanding MC-LR-induced male infertility.
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Wenju Li
- Department of Tropical Medicine and Infectious Diseases, Hainan Hospital, The Chinese PLA General Hospital, Sanya, Hainan, China
| | - Qingxuan Wu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yue Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ling Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Histology and Embryology, Basic Medical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
31
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
32
|
Wan X, Ge Y, Xu S, Feng Y, Zhu Y, Yin L, Pu Y, Liang G. m 6A modification and its role in neural development and neurological diseases. Epigenomics 2023; 15:819-833. [PMID: 37718929 DOI: 10.2217/epi-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
N6-methyladenosine (m6A) methylation, the most prevalent post-transcriptional modification in eukaryotes, represents a highly dynamic and reversible process that is regulated by m6A methyltransferases, m6A demethylases and RNA-binding proteins during RNA metabolism, which affects RNA function. Notably, m6A modification is significantly enriched in the brain and exerts regulatory roles in neurogenesis and neurodevelopment through various mechanisms, further influencing the occurrence and progression of neurological disorders. This study systematically summarizes and discusses the latest findings on common m6A regulators, examining their expression, function and mechanisms in neurodevelopment and neurological diseases. Additionally, we explore the potential of m6A modification in diagnosing and treating neurological disorders, aiming to provide new insights into the molecular mechanisms and potential therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yanlu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
33
|
Yang L, Tian S, Zheng X, Zhang M, Zhou X, Shang Y, Han Y. N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment. J Gastroenterol 2023; 58:718-733. [PMID: 37380929 DOI: 10.1007/s00535-023-02008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Epigenetic modification occurring in RNA has become the hotspot of the field. N6-methyladenosine (m6A) methylation is the most abundant RNA internal modification mainly occurring at the consensus motif DR (m6A) CH (D = A/G/U, R = A/G, H = A/C/U) in the 3'-UTR particularly the region near stop codons. The life cycle of m6A methylation includes "writers," "erasers," and "readers", which are responsible for the addition, removal, and recognition of m6A, respectively. m6A modification has been reported changing RNA secondary structure or modulating the stability, localization, transport, and translation of mRNAs to play crucial roles in various physiological and pathological conditions. Liver, as the largest metabolic and digestive organ, modulates vital physiological functions, and its dysfunction gives rise to the occurrence of various diseases. Despite the advanced intervening measures, mortality due to liver diseases is continuously high. Recent studies have explored the roles of m6A RNA methylation in the pathogenesis of liver diseases, providing new insights for studying the molecular mechanism of liver diseases. In the review, we extensively summarize the life cycle of m6A methylation, as well as its function and relevant mechanisms in liver fibrosis (LF), nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatitis virus infection, and hepatocellular carcinoma (HCC), and eventually we explore the potential of m6A as a treatment option for these liver diseases.
Collapse
Affiliation(s)
- Lan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xiaohong Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
34
|
Abstract
Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
35
|
Zhang W, Wu T, Zhang Y, Kang W, Du C, You Q, Chen X, Jiang Z. Targeting m 6A binding protein YTHDFs for cancer therapy. Bioorg Med Chem 2023; 90:117373. [PMID: 37329678 DOI: 10.1016/j.bmc.2023.117373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
N6-methyladenosine (m6A) is the most common mRNA modification in mammalians. The function and dynamic regulation of m6A depends on the "writer", "readers" and "erasers". YT521-B homology domain family (YTHDF) is a class of m6A binding proteins, including YTHDF1, YTHDF2 and YTHDF3. In recent years, the modification of m6A and the molecular mechanism of YTHDFs have been further understood. Growing evidence has shown that YTHDFs participate in multifarious bioprocesses, particularly tumorigenesis. In this review, we summarized the structural characteristics of YTHDFs, the regulation of mRNA by YTHDFs, the role of YTHDF proteins in human cancers and inhibition of YTHDFs.
Collapse
Affiliation(s)
- Weikun Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuejiao Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenyu Du
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
36
|
Jin Z, Gao W, Guo F, Liao S, Hu M, Yu T, Yu S, Shi Q. Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J Neurochem 2023. [PMID: 37300304 DOI: 10.1111/jnc.15871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Astragaloside IV (As-IV) was a promising bioactive constituent in the treatment of IS. However, the functional mechanism remains unclear. Here, IS cell and mouse models were established by oxygen glucose deprivation/re-oxygenation (OGD/R) and middle cerebral artery occlusion (MCAO). Quantitative reverse transcription PCR (RT-qPCR), Western blotting, or Immunofluorescence staining measured related gene and protein expression of cells or mice brain tissues, and the results revealed altered expression of acyl-CoA synthetase long-chain family member 4 (Acsl4), fat mass and obesity-associated (Fto), and activation transcription factor 3 (Atf3) after treatment with As-IV. Then, increased N6 -methyladenosine (m6 A) levels caused OGD/R or MCAO were reduced by As-IV according to the data from methylated RNA immunoprecipitation (MeRIP)-qPCR and dot blot assays. Moreover, through a series of functional experiments such as observing mitochondrial changes under transmission electron microscopy (TEM), evaluating cell viability by cell counting kit-8 (CCK-8), analyzing infract area of brain tissues by 2,3,5-triphenyltetrazolium chloride (TTC) staining, measuring levels of malondialdehyde (MDA), lactate dehydrogenase (LDH), Fe2+ , solute carrier family 7 member 11 (Slc7a11) and glutathione peroxidase 4 (Gpx4) and concentration of glutathione (GSH), we found that Fto knockdown, Acsl4 overexpression or Atf3 knockdown promoted the viability of OGD/R cells, inhibited cell ferroptosis, reduced infract size, while As-IV treatment or Fto overexpression reversed these changes. In mechanism, the interplays of YTH N6 -methyladenosine RNA-binding protein 3 (Ythdf3)/Acsl4 and Atf3/Fto were analyzed by RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay. Fto regulated the m6 A levels of Acsl4. Ythdf3 bound to Acsl4, and modulated its levels through m6 A modification. Atf3 bound to Fto and positively regulated its levels. Overall, As-IV promoted the transcription of Fto by upregulating Atf3, resulting in decreased m6 A levels of Acsl4, thus, improving neuronal injury in IS by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Zhenglong Jin
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Wenying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen, China
| | - Fu Guo
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Shaojun Liao
- Department of Spine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mingzhe Hu
- Department of Neurology, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Shangzhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| |
Collapse
|
37
|
Bai X, Huang Y, Huang W, Zhang Y, Zhang K, Li Y, Ouyang H. Wnt3a/YTHDF1 Regulated Oxaliplatin-Induced Neuropathic Pain Via TNF-α/IL-18 Expression in the Spinal Cord. Cell Mol Neurobiol 2023; 43:1583-1594. [PMID: 35939138 PMCID: PMC11412420 DOI: 10.1007/s10571-022-01267-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Oxaliplatin is widely used in cancer treatment, however, many patients will suffer from neuropathic pain (NP) induced by it at the same time. Therefore exploring the mechanism and founding novel target for this problem are needed. In this study, YTHDF1 showed upregulation in oxaliplatin treated mice. As m6A is known as conserved and it widely functions in numerous physiological and pathological processes. Therefore, we focused on exploring the molecular mechanism of whether and how YTHDF1 functions in NP induced by oxaliplatin. IHC and western blotting were conducted to measure proteins. Intrathecal injection for corresponding siRNAs in C57/BL6 mice or spinal microinjection for virus in YTHDF1flox/flox mice were applied to specially knockdown the expression of molecular. Von Frey, acetone test and ethyl chloride (EC) test were applied to evaluate NP behavior. YTHDF1, Wnt3a, TNF-α and IL-18 were increased in oxaliplatin treated mice, restricted the molecular mentioned above respectively can significantly attenuate oxaliplatin-induced NP, including the mechanical allodynia and cold allodynia. Silencing YTHDF1 and inhibiting Wnt3a and Wnt signaling pathways can reduce the enhancement of TNF-α and IL-18, and the decreasing of the upregulation of YTHDF1 can be found when inhibiting Wnt3a and Wnts signaling pathways in oxaliplatin treated mice. Our study indicated a novel pathway that can contribute to oxaliplatin-induced NP, the Wnt3a/YTHDF1 to cytokine pathway, which upregulating YTHDF1 functioned as the downstream of Wnt3a signal and promoted the translation of TNF-α and IL-18 in oxaliplatin treated mice.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China
| | - Yongtian Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China
| | - Yujuan Li
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China.
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China.
| |
Collapse
|
38
|
Sikorski V, Selberg S, Lalowski M, Karelson M, Kankuri E. The structure and function of YTHDF epitranscriptomic m 6A readers. Trends Pharmacol Sci 2023; 44:335-353. [PMID: 37069041 DOI: 10.1016/j.tips.2023.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Specific RNA sequences modified by a methylated adenosine, N6-methyladenosine (m6A), contribute to the post-transcriptional regulation of gene expression. The quantity of m6A in RNA is orchestrated by enzymes that write and erase it, while its effects are mediated by proteins that bind to read this modification. Dysfunction of this post-transcriptional regulatory process has been linked to human disease. Although the initial focus has been on pharmacological targeting of the writer and eraser enzymes, interest in the reader proteins has been challenged by a lack of clear understanding of their functional roles and molecular mechanisms of action. Readers of m6A-modified RNA (m6A-RNA) - the YTH (YT521-B homology) domain-containing protein family paralogs 1-3 (YTHDF1-3, referred to here as DF1-DF3) - are emerging as therapeutic targets as their links to pathological processes such as cancer and inflammation and their roles in regulating m6A-RNA fate become clear. We provide an updated understanding of the modes of action of DF1-DF3 and review their structures to unlock insights into drug design approaches for DF paralog-selective inhibition.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland
| | - Simona Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland.
| |
Collapse
|
39
|
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22:870-905. [PMID: 36648057 PMCID: PMC10054233 DOI: 10.1080/15384101.2023.2165632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
40
|
Wang QS, Xiao RJ, Peng J, Yu ZT, Fu JQ, Xia Y. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal KLF4 Alleviated Ischemic Stroke Through Inhibiting N6-Methyladenosine Modification Level of Drp1 by Targeting lncRNA-ZFAS1. Mol Neurobiol 2023; 60:3945-3962. [DOI: 10.1007/s12035-023-03301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
|
41
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
42
|
Wang C, Danli Ma, Yu H, Zhuo Z, Ye Z. N6-methyladenosine (m6A) as a regulator of carcinogenesis and drug resistance by targeting epithelial-mesenchymal transition and cancer stem cells. Heliyon 2023; 9:e14001. [PMID: 36915498 PMCID: PMC10006539 DOI: 10.1016/j.heliyon.2023.e14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Emergence of drug resistance to chemotherapeutic agents is the principal obstacle towards curative cancer treatment in human cancer patients. It is in an urgent to explore the underlying molecular mechanisms to overcome the drug resistance. N6-Methyladenosine (m6A) RNA modification is the most abundant reversible RNA modification and has emerged in recent years to regulate gene expression in eukaryotes. Recent evidence has identified m6A is associated with cancer pathogenesis and drug resistance, contributing to the self-renewal and differentiation of cancer stem cell, tumor epithelial-mesenchymal transition (EMT) and tumor metastasis. Here we reviewed up-to-date knowledge of the relationship between m6A modulation and drug resistance. Furthermore, we illustrated the underlying mechanisms of m6A modulation in drug resistance. Lastly, we discussed the regulation of m6A modulation in EMT and cancer stem cells. Hence, it will help to provide significant therapeutic strategies to overcome drug resistance for cancer patients by changing m6A-related proteins via targeting cancer stem cells and EMT-phenotypic cells.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China.,Medical School of NingBo University, Ningbo, Zhejiang, 31500, China
| | - Danli Ma
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Huimin Yu
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Zhihong Zhuo
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Zhiying Ye
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| |
Collapse
|
43
|
Guowei L, Xiufang L, Qianqian X, Yanping J. The FDX1 methylation regulatory mechanism in the malignant phenotype of glioma. Genomics 2023; 115:110601. [PMID: 36889365 DOI: 10.1016/j.ygeno.2023.110601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
To explore FDX1 methylation as a regulatory mechanism in the malignant phenotype of glioma, we screened for pathways involved through bioinformatic analysis, then proceeded with RIP and cell models to verify the regulation of RNAs and mitophagy. We chose Clone and Transwell assays to evaluate the malignant phenotype of glioma cells. MMP was detected by flow cytometry and mitochondrial morphology was observed by TEM. We also constructed animal models to study the sensitivity of glioma cells to cuproptosis. We successfully identified the signalling pathway: our cell model showed that C-MYC could upregulate FDX1 through YTHDF1 and inhibit mitophagy in glioma cells. Functional experiments revealed C-MYC could also enhance glioma cell proliferation and invasion via YTHDF1 and FDX1. In vivo experiments showed glioma cells were highly sensitive to cuproptosis. We concluded that C-MYC could upregulate FDX1 by m6A methylation, thus promoting the malignant phenotype in glioma cells.
Collapse
Affiliation(s)
- Li Guowei
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Xiufang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China
| | - Xu Qianqian
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China
| | - Jin Yanping
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China.
| |
Collapse
|
44
|
Li SJ, Zhang LX, Zou GJ, Ma MH, Zhou SF, Lu XY, Li F, Li CQ. Infralimbic YTHDF1 is necessary for the beneficial effects of acute mild exercise on auditory fear extinction retention. Cereb Cortex 2023; 33:1814-1825. [PMID: 35511705 DOI: 10.1093/cercor/bhac174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Exposure therapy is the most effective approach of behavioral therapy for anxiety and post-traumatic stress disorder (PTSD). But fear is easy to reappear even after successful extinction. So, identifying novel strategies for augmenting exposure therapy is rather important. It was reported that exercise had beneficial effects on cognitive and memory deficits. However, whether exercise could affect fear memory, especially for fear extinction remained elusive. Here, our results showed that exposure to acute mild exercise 1 or 2 h before extinction training can augment recent fear extinction retention and 2 h for the remote fear extinction retention. These beneficial effects could be attributed to increased YTHDF1 expression in medial prefrontal cortex (mPFC). Furthermore, by using an AAV-shRNA-based approach to silence YTHDF1 expression via stereotactic injection in prelimbic cortex (PL) or infralimbic cortex (IL), respectively, we demonstrated that silence YTHDF1 in IL, but not in PL, blunted augmentation of exposure therapy induced by acute mild exercise and accompanied with decreased NR2B and GluR1 expression. Moreover, YTHDF1 modulated dendritic spines remodeling of pyramidal neuron in IL. Collectively, our findings suggested that acute mild exercise acted as an effective strategy in augmenting exposure therapy with possible implications for understanding new treatment underlying PTSD.
Collapse
Affiliation(s)
- Song-Ji Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Min-Hui Ma
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| |
Collapse
|
45
|
Zhou W, Lin J, Liu J, Zhang R, Fan A, Xie Q, Hong L, Fan D. Thyroid cancer risk prediction model using m6A RNA methylation regulators: integrated bioinformatics analysis and histological validation. Aging (Albany NY) 2023; 15:846-865. [PMID: 36791151 PMCID: PMC9970309 DOI: 10.18632/aging.204525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Epigenetic reprogramming has been reported to play a critical role in the progression of thyroid cancer. RNA methylation accounts for more than 60% of all RNA modifications, and N6-methyladenosine (m6A) is the most common modification of RNAs in higher organisms. The purpose of this study was to explore the related modification mode of m6A regulators construction and its evaluation on the clinical prognosis and therapeutic effect of thyroid cancer. METHODS The levels of 23 m6A regulators in The Cancer Genome Atlas (TCGA) were analyzed. Differentially expressed genes (DEGs) and survival analysis were performed based on TCGA-THCA clinicopathological and follow-up information, and the mRNA levels of representative genes were verified using clinical thyroid cancer data. In order to detect the effects of m6A regulators and their DEGs, consensus cluster analysis was carried out, and the expression of different m6A scores in Tumor Mutation Burden (TMB) and immune double antibodies (PD-1 antibody and CTLA4 antibody) were evaluated to predict the correlation between m6A score and thyroid cancer tumor immunotherapy response. RESULTS Different expression patterns of m6A regulatory factors were detected in thyroid cancer tumors and normal tissues, and several prognoses related m6A genes were obtained. Two different m6A modification patterns were determined by consensus cluster analysis. Two different subgroups were established by screening overlapping DEGs between two m6A clusters, with cluster A having the best prognosis. According to the m6A score extracted from DEGs, thyroid cancer patients can be divided into high and low score subgroups. Patients with lower m6A score have longer survival time and better clinical features. The relationship between m6A score and Tumor Mutation Burden (TMB) and its correlation with the expression of PD-1 antibody and CTLA4 antibody proved that m6A score could be used as a potential predictor of the efficacy of immunotherapy in thyroid cancer patients. CONCLUSIONS We screened DEGs from cluster m6A and constructed a highly predictive model with prognostic value by dividing TCGA-THCA into two different clusters and performing m6A score analysis. This study will help clarify the overall impact of m6A modification patterns on thyroid cancer progression and formulate more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Wei Zhou
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Junchao Lin
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jinqiang Liu
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Rui Zhang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Aqiang Fan
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qibin Xie
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Liu Hong
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Daiming Fan
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
46
|
Zhuang M, Geng X, Han P, Che P, Liang F, Liu C, Yang L, Yu J, Zhang Z, Dong W, Ji SJ. YTHDF2 in dentate gyrus is the m 6A reader mediating m 6A modification in hippocampus-dependent learning and memory. Mol Psychiatry 2023; 28:1679-1691. [PMID: 36670199 DOI: 10.1038/s41380-023-01953-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
N6-methyladenosine (m6A) has been demonstrated to regulate learning and memory in mice. To investigate the mechanism by which m6A modification exerts its function through its reader proteins in the hippocampus, as well as to unveil the specific subregions of the hippocampus that are crucial for memory formation, we generated dentate gyrus (DG)-, CA3-, and CA1-specific Ythdf1 and Ythdf2 conditional knockout (cKO) mice, respectively. Surprisingly, we found that only the DG-specific Ythdf2 cKO mice displayed impaired memory formation, which is inconsistent with the previous report showing that YTHDF1 was involved in this process. YTHDF2 controls the stability of its target transcripts which encode proteins that regulate the elongation of mossy fibers (MF), the axons of DG granule cells. DG-specific Ythdf2 ablation caused MF overgrowth and impairment of the MF-CA3 excitatory synapse development and transmission in the stratum lucidum. Thus, this study identifies the m6A reader YTHDF2 in dentate gyrus as the only regulator that mediates m6A modification in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Mengru Zhuang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,SUSTech-HKUST Joint PhD Program, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoqi Geng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.,Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Peng Han
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pengfei Che
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Fanghao Liang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lixin Yang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jun Yu
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhuxia Zhang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China. .,Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
47
|
Ren W, Yuan Y, Li Y, Mutti L, Peng J, Jiang X. The function and clinical implication of YTHDF1 in the human system development and cancer. Biomark Res 2023; 11:5. [PMID: 36650570 PMCID: PMC9847098 DOI: 10.1186/s40364-023-00452-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/26/2022] [Indexed: 01/19/2023] Open
Abstract
YTHDF1 is a well-characterized m6A reader protein that is essential for protein translation, stem cell self-renewal, and embryonic development. YTHDF1 regulates target gene expression by diverse molecular mechanisms, such as promoting protein translation or modulating the stability of mRNA. The cellular levels of YTHDF1 are precisely regulated by a complicated transcriptional, post-transcriptional, and post-translational network. Very solid evidence supports the pivotal role of YTHDF1 in embryonic development and human cancer progression. In this review, we discuss how YTHDF1 influences both the physiological and pathological biology of the central nervous, reproductive and immune systems. Therefore we focus on some relevant aspects of the regulatory role played by YTHDF1 as gene expression, complex cell networking: stem cell self-renewal, embryonic development, and human cancers progression. We propose that YTHDF1 is a promising future cancer biomarker for detection, progression, and prognosis. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Wenjun Ren
- grid.414918.1Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan China
| | - Yixiao Yuan
- grid.452206.70000 0004 1758 417XKey Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongwu Li
- grid.414918.1Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan China
| | - Luciano Mutti
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.158820.60000 0004 1757 2611Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2 67100 L’Aquila, Italy
| | - Jun Peng
- grid.414918.1Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan China
| | - Xiulin Jiang
- grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
48
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
49
|
Ouyang H, Zhang J, Chi D, Zhang K, Huang Y, Huang J, Huang W, Bai X. The YTHDF1-TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19:310. [PMID: 36550542 PMCID: PMC9784087 DOI: 10.1186/s12974-022-02672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Long-term use of opioids such as morphine has negative side effects, such as morphine analgesic tolerance and morphine-induced hyperalgesia (MIH). These side effects limit the clinical use and analgesic efficacy of morphine. Elucidation of the mechanisms and identification of feasible and effective methods or treatment targets to solve this clinical phenomenon are important. Here, we discovered that YTHDF1 and TNF receptor-associated factor 6 (TRAF6) are crucial for morphine analgesic tolerance and MIH. The m6A reader YTHDF1 positively regulated the translation of TRAF6 mRNA, and chronic morphine treatments enhanced the m6A modification of TRAF6 mRNA. TRAF6 protein expression was drastically reduced by YTHDF1 knockdown, although TRAF6 mRNA levels were unaffected. By reducing inflammatory markers such as IL-1β, IL-6, TNF-α and NF-κB, targeted reduction of YTHDF1 or suppression of TRAF6 activity in ventrolateral periaqueductal gray (vlPAG) slows the development of morphine analgesic tolerance and MIH. Our findings provide new insights into the mechanism of morphine analgesic tolerance and MIH indicating that YTHDF1 regulates inflammatory factors such as IL-1β, IL-6, TNF-α and NF-κB by enhancing TRAF6 protein expression.
Collapse
Affiliation(s)
- Handong Ouyang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jianxing Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Dongmei Chi
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Kun Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Yongtian Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jingxiu Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Wan Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Xiaohui Bai
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China ,grid.412536.70000 0004 1791 7851Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang Road West, Guangzhou, China
| |
Collapse
|
50
|
Fear stress promotes glioma progression through inhibition of ferroptosis by enhancing FSP1 stability. Clin Transl Oncol 2022; 25:1378-1388. [PMID: 36484954 DOI: 10.1007/s12094-022-03032-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Patients diagnosed with cancer often suffer from emotional stressors, such as anxiety, depression, and fear of death. However, whether fear stress could influence the glioma progression is still unclear. METHODS Xenograft glioma animal models were established in nude mice. Tumor-bearing mice were subjected to fear stress by living closely with cats and then their depressive behaviors were measured using an open field test. Hematoxylin and eosin staining, the TUNEL staining and immunochemical staining were used to detect the histopathological changes of tumor tissues. Gene expression profiling was used to screen the aberrant gene expression. Methylated RNA immunoprecipitation was used to identify the RNA m6A level. Gene expression was measured by western blot and real-time PCR, respectively. RESULTS We found that fear stress promoted glioma tumor progression in mice. Fear stress-induced upregulation of METTL3 and FSP1, increased m6A level of glioma tumor tissues, and inhibited ferroptosis in glioma progression, which were reversed by knockdown of METTL3 and FSP1 in vivo. In addition, we found that when iFSP1 (a ferroptosis inducer by targeting inhibition of FSP1) was introduced to glioma cells, the cells viability of glioma significantly was decreased and ferroptosis was enhanced in glioma cells. CONCLUSIONS Fear stress-induced upregulation of METTL3 stabilized FSP1 mRNA by m6A modification, leading to tumor progression through inhibition of ferroptosis. Our study provides a new understanding of psychological effects on glioma development, and new insights for glioma therapy.
Collapse
|