1
|
Bhomkar SU, Naik SM. Unveiling the potential of microbial bioluminescence for marine pollution monitoring: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8679-8697. [PMID: 40095306 DOI: 10.1007/s11356-025-36208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Marine pollution threatens global ecosystems, underscoring the urgent need for robust and efficient monitoring systems. Microbial bioluminescence has emerged as a promising tool for pollution detection, offering unique advantages due to its simplicity, sensitivity, and ecological relevance. This review explores the fundamental principles of bacterial and dinoflagellate bioluminescence, ecological significance, and their applications in marine pollution monitoring. Bioluminescence-based detection systems are broadly categorized into whole-cell biosensors (WCBs) and enzyme-based biosensors. WCBs are further classified into recombinant organisms based WCBs (Class I and Class II WCBs) and wild-type organisms based WCBs (Class III WCBs), demonstrating distinct pollutant detection and stress-response monitoring capabilities. We highlight their potential to improve pollution monitoring strategies by critically evaluating these technologies. Integrating bioluminescence-based systems into current frameworks could significantly enhance the assessment of marine ecosystem health, facilitate timely pollution management, and support the conservation and sustainable use of marine resources.
Collapse
Affiliation(s)
- Snesha Umesh Bhomkar
- School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao, 403206, Goa, India
- Discipline of Biotechnology, School of Biological Sciences and Biotechnology, Goa University, Taleigao, 403206, Goa, India
| | | |
Collapse
|
2
|
Yudenko A, Bazhenov SV, Aleksenko VA, Goncharov IM, Semenov O, Remeeva A, Nazarenko VV, Kuznetsova E, Fomin VV, Konopleva MN, Al Ebrahim R, Sluchanko NN, Ryzhykau Y, Semenov YS, Kuklin A, Manukhov IV, Gushchin I. luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase. Proteins 2024; 92:1449-1458. [PMID: 39171358 DOI: 10.1002/prot.26739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium-chain C4-C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM-barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264-293, which form a β-hairpin or a coil in Vibrio harveyi LuxA, form α-helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.
Collapse
Affiliation(s)
- Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey V Bazhenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vladimir A Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Kuznetsova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim V Fomin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Maria N Konopleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Rahaf Al Ebrahim
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yury S Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ilya V Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
3
|
Structure-Function Relationships in Temperature Effects on Bacterial Luciferases: Nothing Is Perfect. Int J Mol Sci 2022; 23:ijms23158119. [PMID: 35897698 PMCID: PMC9332260 DOI: 10.3390/ijms23158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of temperature effects on the structure and function of enzymes is necessary to understand the mechanisms underlying their adaptation to a constantly changing environment. In the current study, we investigated the influence of temperature variation on the activity, structural dynamics, thermal inactivation and denaturation of Photobacterium leiognathi and Vibrio harveyi luciferases belonging to different subfamilies, as well as the role of sucrose in maintaining the enzymes functioning and stability. We used the stopped-flow technique, differential scanning calorimetry and molecular dynamics to study the activity, inactivation rate, denaturation and structural features of the enzymes under various temperatures. It was found that P. leiognathi luciferase resembles the properties of cold-adapted enzymes with high activity in a narrow temperature range and slightly lower thermal stability than V. harveyi luciferase, which is less active, but more thermostable. Differences in activity at the studied temperatures can be associated with the peculiarities of the mobile loop conformational changes. The presence of sucrose does not provide an advantage in activity but increases the stability of the enzymes. Differential scanning calorimetry experiments showed that luciferases probably follow different denaturation schemes.
Collapse
|
4
|
Vernette C, Lecubin J, Sánchez P, Sunagawa S, Delmont TO, Acinas SG, Pelletier E, Hingamp P, Lescot M. The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Res 2022; 50:W516-W526. [PMID: 35687095 PMCID: PMC9252727 DOI: 10.1093/nar/gkac420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.
Collapse
Affiliation(s)
- Caroline Vernette
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
| | | | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Tom O Delmont
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057 Evry, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Eric Pelletier
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057 Evry, France
| | - Pascal Hingamp
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Magali Lescot
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara Oceans-GOSEE, Paris, France
| |
Collapse
|
5
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
7
|
Tsarkova AS. Luciferins Under Construction: A Review of Known Biosynthetic Pathways. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioluminescence, or the ability of a living organism to generate visible light, occurs as a result of biochemical reaction where enzyme, known as a luciferase, catalyzes the oxidation of a small-molecule substrate, known as luciferin. This advantageous trait has independently evolved dozens of times, with current estimates ranging from the most conservative 40, based on the biochemical diversity found across bioluminescence systems (Haddock et al., 2010) to 100, taking into account the physiological mechanisms involved in the behavioral control of light production across a wide range of taxa (Davis et al., 2016; Verdes and Gruber, 2017; Bessho-Uehara et al., 2020a; Lau and Oakley, 2021). Chemical structures of ten biochemically unrelated luciferins and several luciferase gene families have been described; however, a full biochemical pathway leading to light emission has been elucidated only for two: bacterial and fungal bioluminescence systems. Although the recent years have been marked by extraordinary discoveries and promising breakthroughs in understanding the molecular basis of multiple bioluminescence systems, the mechanisms of luciferin biosynthesis for many organisms remain almost entirely unknown. This article seeks to provide a succinct overview of currently known luciferins’ biosynthetic pathways.
Collapse
|
8
|
Lisitsa AE, Sukovatyi LA, Bartsev SI, Deeva AA, Kratasyuk VA, Nemtseva EV. Mechanisms of Viscous Media Effects on Elementary Steps of Bacterial Bioluminescent Reaction. Int J Mol Sci 2021; 22:8827. [PMID: 34445534 PMCID: PMC8396235 DOI: 10.3390/ijms22168827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Enzymes activity in a cell is determined by many factors, among which viscosity of the microenvironment plays a significant role. Various cosolvents can imitate intracellular conditions in vitro, allowing to reduce a combination of different regulatory effects. The aim of the study was to analyze the media viscosity effects on the rate constants of the separate stages of the bacterial bioluminescent reaction. Non-steady-state reaction kinetics in glycerol and sucrose solutions was measured by stopped-flow technique and analyzed with a mathematical model developed in accordance with the sequence of reaction stages. Molecular dynamics methods were applied to reveal the effects of cosolvents on luciferase structure. We observed both in glycerol and in sucrose media that the stages of luciferase binding with flavin and aldehyde, in contrast to oxygen, are diffusion-limited. Moreover, unlike glycerol, sucrose solutions enhanced the rate of an electronically excited intermediate formation. The MD simulations showed that, in comparison with sucrose, glycerol molecules could penetrate the active-site gorge, but sucrose solutions caused a conformational change of functionally important αGlu175 of luciferase. Therefore, both cosolvents induce diffusion limitation of substrates binding. However, in sucrose media, increasing enzyme catalytic constant neutralizes viscosity effects. The activating effect of sucrose can be attributed to its exclusion from the catalytic gorge of luciferase and promotion of the formation of the active site structure favorable for the catalysis.
Collapse
Affiliation(s)
- Albert E Lisitsa
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Lev A Sukovatyi
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Sergey I Bartsev
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Anna A Deeva
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| |
Collapse
|
9
|
de Souza Valente C, Wan AHL. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol 2021; 181:107527. [PMID: 33406397 DOI: 10.1016/j.jip.2020.107527] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Bacteria fromthe Vibriogenus are autochthonous to aquatic environments and ubiquitous in aquaculture production systems. Many Vibrio species are non-pathogenic and can be commonly found in healthy farmed aquatic animals. However, some Vibrio species and strains are pathogenic leading to a variety of 'vibriosis' diseases. These diseases can have a significant negative impact on animal production, including farmed crustaceans such as shrimps, lobsters, and crabs. As such, vibriosis can pose a threat to meeting growing food demand and global food security. Preventive management is essential to avoid the onset of vibriosis. This includes a robust health management plan, the use of prophylaxis and treatment measures, and enhancing animal health through nutrition. Furthermore, the use of probiotics, prebiotics, synbiotics, quorum sensing disruption, green water, biofloc, bacteriophages, and immune priming could also play a role in preventing and controlling a vibriosis outbreak. This review aims to inform and update the reader about the current state of knowledge about Vibrio and associated vibriosis in farmed crustaceans (i.e. shrimp, lobster, and crabs). Furthermore, the review will identify potential knowledge gaps in the literature, which serves as a basis for future research priorities.
Collapse
Affiliation(s)
- Cecília de Souza Valente
- Aquaculture and Nutrition Research Unit, Room 204, Annex Building, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway City H91 TK33, Ireland; Aquaculture and Nutrition Research Unit, Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Connemara, Co. Galway H91 V8Y1, Ireland.
| | - Alex H L Wan
- Aquaculture and Nutrition Research Unit, Room 204, Annex Building, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway City H91 TK33, Ireland; Aquaculture and Nutrition Research Unit, Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Connemara, Co. Galway H91 V8Y1, Ireland
| |
Collapse
|