1
|
Cavusoglu Nalbantoglu I, Sevgi S, Kerimoglu G, Kadıoglu Duman M, Kalyoncu NI. Ursodeoxycholic acid ameliorates erectile dysfunction and corporal fibrosis in diabetic rats by inhibiting the TGF-β1/Smad2 pathway. Int J Impot Res 2024; 36:886-895. [PMID: 38454160 DOI: 10.1038/s41443-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Corporal tissue fibrosis is critical in diabetes-associated erectile dysfunction. Transforming growth factor-β1/Small mothers against decapentaplegic-2 (TGF-β1/Smad2) contributes to the induction of fibrosis in corporal tissue. Smad7 is accepted as a general negative regulator of Smad signaling, although its role in corporal fibrosis is unknown. Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid used for biliary and liver related disorders and has antifibrotic effects in the liver. This study investigated the effects of UDCA on diabetic erectile dysfunction. Forty-eight male Spraque Dawley rats were divided into six groups: nondiabetic (n = 6), nondiabetic+20 mg/kg UDCA (n = 6), nondiabetic+80 mg/kg UDCA (n = 6), diabetic (n = 10), diabetic+20 mg/kg UDCA (n = 10), diabetic+80 mg/kg UDCA (n = 10). Diabetes was induced by intraperitoneal injection of 60 mg/kg Streptozocin. UDCA (20 and 80 mg/kg/day) or saline was subsequently administered via oral gavage for 56 days. Erectile function was evaluated as measurement of maximum intracavernosal pressure (m-ICP)/mean arterial pressure (MAP) and total ICP/MAP. Corporal tissues were evaluated by Western blotting and Masson's trichrome staining. Electrical stimulation-induced m-ICP/MAP responses were higher in UDCA-treated diabetic rats compared to untreated diabetic rats, respectively (20 mg/kg; 4 V: 0.77 ± 0.11 vs 0.45 ± 0.09, p = 0.0001 and 80 mg/kg; 4 V: 0.78 ± 0.11 vs 0.45 ± 0.09, p = 0.0001) UDCA prevented the increase in phospho-Smad2 and fibronectin protein expressions in diabetic corporal tissue both at 20 mg/kg (p = 0.0002, p = 0.002 respectively) and 80 mg/kg doses (p < 0.0001 for both). Smad7 protein expressions were significantly increased in the UDCA-treated diabetic groups compared to the untreated diabetic group (20 mg/kg: p = 0.0079; 80 mg/kg: p = 0.004). Furthermore, UDCA significantly prevented diabetes-induced increase in collagen (20 mg/kg: p = 0.0172; 80 mg/kg: p = 0.0003) and smooth muscle loss (20 mg/kg: p = 0.044; 80 mg/kg: p = 0.039). In conclusion, UDCA has a potential protective effect on erectile function in diabetic rats by altering fibrotic pathways via inhibition of TGF-β1/Smad2 and activation of Smad7.
Collapse
Affiliation(s)
- Irem Cavusoglu Nalbantoglu
- Department of Pharmacology, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Türkiye.
| | - Serhat Sevgi
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Mine Kadıoglu Duman
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Nuri Ihsan Kalyoncu
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
2
|
Bhattacharya R, Ward T, Kalejaiye TD, Mishra A, Leeman S, Arzaghi H, Seidman JG, Seidman CE, Musah S. Engineered human iPS cell models reveal altered podocytogenesis and glomerular capillary wall in CHD-associated SMAD2 mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606108. [PMID: 39211233 PMCID: PMC11360959 DOI: 10.1101/2024.08.02.606108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early developmental programming involves extensive cell lineage diversification through shared molecular signaling networks. Clinical observations of congenital heart disease (CHD) patients carrying SMAD2 genetic variants revealed correlations with multi-organ impairments at the developmental and functional levels. For example, many CHD patients present with glomerulosclerosis, periglomerular fibrosis, and albuminuria. Still, it remains largely unknown whether SMAD2 variants associated with CHD can directly alter kidney cell fate, tissue patterning, and organ-level function. To address this question, we engineered human iPS cells (iPSCs) and organ-on-a-chip systems to uncover the role of pathogenic SMAD2 variants in kidney podocytogenesis. Our results show that abrogation of SMAD2 causes altered patterning of the mesoderm and intermediate mesoderm (IM) cell lineages, which give rise to nearly all kidney cell types. Upon further differentiation of IM cells, the mutant podocytes failed to develop arborizations and interdigitations. A reconstituted glomerulus-on-a-chip platform exhibited significant proteinuria as clinically observed in glomerulopathies. This study implicates CHD-associated SMAD2 mutations in kidney tissue malformation and provides opportunities for therapeutic discovery in the future.
Collapse
|
3
|
Song X, Liu F, Chen M, Zhu M, Zheng H, Wang W, Chen D, Li M, Chen S. MiR-21 regulates skeletal muscle atrophy and fibrosis by targeting TGF-beta/SMAD7-SMAD2/3 signaling pathway. Heliyon 2024; 10:e33062. [PMID: 39027432 PMCID: PMC11254527 DOI: 10.1016/j.heliyon.2024.e33062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Long-term denervation-induced atrophy and fibrosis of skeletal muscle due to denervation leads to poor recovery of muscle function. Studies have shown that the transforming growth factor-β1 (TGF-β1)-Smad signaling pathway plays a central role in muscle atrophy and fibrosis. Recent studies demonstrate the role of microRNAs (miRs) in various pathological conditions, including muscle regeneration. miR-21 has been shown to play a dynamic role in inflammatory responses and in accelerating injury responses to fibrosis. We used both RNA sequencing and quantitative RT-PCR strategies to examine the alternations of miRNAs during denervation-induced gastrocnemius muscle atrophy and fibrosis. Our data showed that MiR-21 was upregulated in denervated gastrocnemius muscle tissue, and TGF-β1treatment increased miR-21 expression. Inhibition of miR-21 reduced gastrocnemius muscle fibrosis and significantly downregulated the expression of p-SMAD2/3 and the fibrosis-associated markers TGF-β1, connective tissue growth factor, alpha smooth muscle actin. Masson's trichrome staining revealed that atrophy and fibrosis in gastrocnemius muscle tissue were reduced in the miR-21 inhibition group compared to the control group. We confirmed that SMAD7 is a direct target of miR-21 using a dual luciferase assay. Furthermore, Immunofluorescence and Western blot analyses revealed that miR-21 inhibition reduced SMAD2/3 phosphorylation and nuclear translocation. While SMAD7-siRNA abolished the effect. Consequently, the discovery that miR-21 regulates the atrophy and fibrosis of the gastrocnemius muscle offers a possible therapeutic approach for their management.
Collapse
Affiliation(s)
- Xianmin Song
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Fei Liu
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Mengjie Chen
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Minhui Zhu
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Hongliang Zheng
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Wei Wang
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Donghui Chen
- Department of Otorhinolaryngology, The First Affiliate Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Meng Li
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| | - Shicai Chen
- From the Department of Otorhinolaryngology & Head and Neck Surgery, Changhai Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, 200433, China
| |
Collapse
|
4
|
Xie C, Zhong L, Feng H, Wang R, Shi Y, Lv Y, Hu Y, Li J, Xiao D, Liu S, Chen Q, Tao Y. Exosomal miR-17-5p derived from epithelial cells is involved in aberrant epithelium-fibroblast crosstalk and induces the development of oral submucosal fibrosis. Int J Oral Sci 2024; 16:48. [PMID: 38897993 PMCID: PMC11187069 DOI: 10.1038/s41368-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 06/21/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic and inflammatory mucosal disease caused by betel quid chewing, which belongs to oral potentially malignant disorders. Abnormal fibroblast differentiation leading to disordered collagen metabolism is the core process underlying OSF development. The epithelium, which is the first line of defense against the external environment, can convert external signals into pathological signals and participate in the remodeling of the fibrotic microenvironment. However, the specific mechanisms by which the epithelium drives fibroblast differentiation remain unclear. In this study, we found that Arecoline-exposed epithelium communicated with the fibrotic microenvironment by secreting exosomes. MiR-17-5p was encapsulated in epithelial cell-derived exosomes and absorbed by fibroblasts, where it promoted cell secretion, contraction, migration and fibrogenic marker (α-SMA and collagen type I) expression. The underlying molecular mechanism involved miR-17-5p targeting Smad7 and suppressing the degradation of TGF-β receptor 1 (TGFBR1) through the E3 ubiquitination ligase WWP1, thus facilitating downstream TGF-β pathway signaling. Treatment of fibroblasts with an inhibitor of miR-17-5p reversed the contraction and migration phenotypes induced by epithelial-derived exosomes. Exosomal miR-17-5p was confirmed to function as a key regulator of the phenotypic transformation of fibroblasts. In conclusion, we demonstrated that Arecoline triggers aberrant epithelium-fibroblast crosstalk and identified that epithelial cell-derived miR-17-5p mediates fibroblast differentiation through the classical TGF-β fibrotic pathway, which provided a new perspective and strategy for the diagnosis and treatment of OSF.
Collapse
Affiliation(s)
- Changqing Xie
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Liang Zhong
- Hospital of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Feng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Rifu Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Desheng Xiao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qianming Chen
- Hospital of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Lin DW, Yang TM, Ho C, Shih YH, Lin CL, Hsu YC. Targeting Macrophages: Therapeutic Approaches in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4350. [PMID: 38673935 PMCID: PMC11050450 DOI: 10.3390/ijms25084350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City 60069, Taiwan;
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Chun-Liang Lin
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| |
Collapse
|
6
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Bai F, Han L, Yang J, Liu Y, Li X, Wang Y, Jiang R, Zeng Z, Gao Y, Zhang H. Integrated analysis reveals crosstalk between pyroptosis and immune regulation in renal fibrosis. Front Immunol 2024; 15:1247382. [PMID: 38343546 PMCID: PMC10853448 DOI: 10.3389/fimmu.2024.1247382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
PURPOSE The pathogenesis of renal fibrosis (RF) involves intricate interactions between profibrotic processes and immune responses. This study aimed to explore the potential involvement of the pyroptosis signaling pathway in immune microenvironment regulation within the context of RF. Through comprehensive bioinformatics analysis and experimental validation, we investigated the influence of pyroptosis on the immune landscape in RF. METHODS We obtained RNA-seq datasets from Gene Expression Omnibus (GEO) databases and identified Pyroptosis-Associated Regulators (PARs) through literature reviews. Systematic evaluation of alterations in 27 PARs was performed in RF and normal kidney samples, followed by relevant functional analyses. Unsupervised cluster analysis revealed distinct pyroptosis modification patterns. Using single-sample gene set enrichment analysis (ssGSEA), we examined the correlation between pyroptosis and immune infiltration. Hub regulators were identified via weighted gene coexpression network analysis (WGCNA) and further validated in a single-cell RNA-seq dataset. We also established a unilateral ureteral obstruction-induced RF mouse model to verify the expression of key regulators at the mRNA and protein levels. RESULTS Our comprehensive analysis revealed altered expression of 19 PARs in RF samples compared to normal samples. Five hub regulators, namely PYCARD, CASP1, AIM2, NOD2, and CASP9, exhibited potential as biomarkers for RF. Based on these regulators, a classifier capable of distinguishing normal samples from RF samples was developed. Furthermore, we identified correlations between immune features and PARs expression, with PYCARD positively associated with regulatory T cells abundance in fibrotic tissues. Unsupervised clustering of RF samples yielded two distinct subtypes (Subtype A and Subtype B), with Subtype B characterized by active immune responses against RF. Subsequent WGCNA analysis identified PYCARD, CASP1, and NOD2 as hub PARs in the pyroptosis modification patterns. Single-cell level validation confirmed PYCARD expression in myofibroblasts, implicating its significance in the stress response of myofibroblasts to injury. In vivo experimental validation further demonstrated elevated PYCARD expression in RF, accompanied by infiltration of Foxp3+ regulatory T cells. CONCLUSIONS Our findings suggest that pyroptosis plays a pivotal role in orchestrating the immune microenvironment of RF. This study provides valuable insights into the pathogenesis of RF and highlights potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Fengxia Bai
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Longchao Han
- Department of Gastrointestinal Oncology, Affiliated Xingtai People's Hospital of Hebei Medical University, Xingtai, China
| | - Jifeng Yang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuxiu Liu
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiangmeng Li
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Yaqin Wang
- Department of Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruijian Jiang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yan Gao
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Haisong Zhang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
8
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
10
|
Liu L, Guo J, Pang XL, Shang WJ, Wang ZG, Wang JX, Yang XL, Feng GW. Exploration of the mechanism of NORAD activation of TGF-β1/Smad3 through miR-136-5p and promotion of tacrolimus-induced renal fibrosis. Ren Fail 2023; 45:2147083. [PMID: 36748746 PMCID: PMC9930837 DOI: 10.1080/0886022x.2022.2147083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tacrolimus is a potent immunosuppressant, but has various side effects, with nephrotoxicity being the most common. Renal fibrosis is an important process of tacrolimus nephrotoxicity. Therefore, it is important to identify the factors that contribute to renal fibrosis after tacrolimus nephrotoxicity, and control its development. METHODS The present study aims to determine whether tacrolimus may speed up the course of renal fibrosis by upregulating noncoding RNA activated by DNA damage (NORAD) to compete with miR-136-5p, and activating the TGF-β1/Smad3 pathway. Furthermore, in vivo rat models and in vitro cell models were established. Then, the expression levels of NORAD and miR-136-5p were determined by RT-qPCR, while the expression of the TGF-β1/Smad3 pathway was determined by western blot and RT-qPCR. In order to investigate the interaction between NORAD and miR-136-5p, as well as miR-136-5p and SYK, two luciferase reporters were employed. The renal fibrosis of mice was observed using Masson and PAS staining. The expression of inflammatory factors IL-1, IL-6, MCP-1 and TNF-α was detected by ELISA. RESULTS In the in vitro experiments, NORAD was upregulated, while miR-136-5p was downregulated after tacrolimus induction. The expression of the TGF-β1/Smad3 pathway correspondingly changed after the induction by tacrolimus. In the in vivo experiments, the expression of NORAD and miR-136-5p, and the trend for renal fibrosis were consistent with the results in the in vitro experiments. Furthermore, the inflammatory factors correspondingly changed with the severity of renal fibrosis. Moreover, the expression trend of the TGF-β1/Smad3 pathway in tacrolimus-induced rats was consistent with that in the in vitro experiments. CONCLUSION Through in vitro and in vivo experiments, the present study was able to successfully prove that tacrolimus upregulates NORAD to compete with miR-136-5p, resulting in a decrease in miR-136-5p expression, which in turn activates the TGF-β1/smad3 pathway, and finally induces the aggravation of renal fibrosis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-lu Pang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-jun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-gang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-xiang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Gui-wen Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Guiwen Feng Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
11
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
12
|
Basta MD, Petruk S, Mazo A, Walker JL. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front Cell Dev Biol 2023; 11:1193344. [PMID: 37476157 PMCID: PMC10354294 DOI: 10.3389/fcell.2023.1193344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Li H, Wang G, Hu M, Dai R, Li C, Cao Y. Specific inhibitor of Smad3 (SIS3) alleviated submandibular gland fibrosis and dysfunction after dominant duct ligation in mice. J Dent Sci 2023; 18:865-871. [PMID: 37021213 PMCID: PMC10068496 DOI: 10.1016/j.jds.2023.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Background/purpose Chronic obstructive sialadenitis (COS) is a condition that severely reduced patients' quality of life. This study aimed to analyze the effects of SIS3, a specific inhibitor of small mothers against decapentaplegic 3 (SMAD3), on the submandibular gland (SMG) dysfunction, fibrosis, and inflammation. Materials and methods The dominant duct in the SMG was ligated in mice, followed by intraperitoneal injection of SIS3 (2 mg/kg/day) or Dimethyl sulfoxide (DMSO) saline for 7 days. In the sham group, this duct was surgically identified but not ligated. Saliva flow, histological structure, fibrosis, Transforming growth factor-β1 (TGF-β)/SMAD3 signaling, and inflammatory cytokines, were analyzed. Results SIS3 rescued ligation-induced SMG dysfunction and improved the saliva flow rate compared to DMSO. SIS3 alleviated acinar atrophy and ductal dilation and maintained the morphology of the basal membrane. SIS3 reduces interlobular and intralobular fibrosis and collagen deposition. We observed reduced SMAD3 phosphorylation and TGF-β expression. The SIS3 group showed downregulation of np_5318 and miR-21 and upregulation of miR-29 b compared to the DMSO group. Moreover, SIS3 controlled the inflammatory cytokine release, including interleukin-6 and interleukin-1β. Conclusion SIS3 protected duct-ligated SMGs against fibrosis and dysfunction by inhibiting the TGF-β/SMAD3 signaling and inflammatory cytokine expression. SIS3 may serve as a promising treatment for chronic obstructive sialadenitis.
Collapse
|
14
|
Soomro A, Khajehei M, Li R, O’Neil K, Zhang D, Gao B, MacDonald M, Kakoki M, Krepinsky JC. A therapeutic target for CKD: activin A facilitates TGFβ1 profibrotic signaling. Cell Mol Biol Lett 2023; 28:10. [PMID: 36717814 PMCID: PMC9885651 DOI: 10.1186/s11658-023-00424-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND TGFβ1 is a major profibrotic mediator in chronic kidney disease (CKD). Its direct inhibition, however, is limited by adverse effects. Inhibition of activins, also members of the TGFβ superfamily, blocks TGFβ1 profibrotic effects, but the mechanism underlying this and the specific activin(s) involved are unknown. METHODS Cells were treated with TGFβ1 or activins A/B. Activins were inhibited generally with follistatin, or specifically with neutralizing antibodies or type I receptor downregulation. Cytokine levels, signaling and profibrotic responses were assessed with ELISA, immunofluorescence, immunoblotting and promoter luciferase reporters. Wild-type or TGFβ1-overexpressing mice with unilateral ureteral obstruction (UUO) were treated with an activin A neutralizing antibody. RESULTS In primary mesangial cells, TGFβ1 induces secretion primarily of activin A, which enables longer-term profibrotic effects by enhancing Smad3 phosphorylation and transcriptional activity. This results from lack of cell refractoriness to activin A, unlike that for TGFβ1, and promotion of TGFβ type II receptor expression. Activin A also supports transcription through regulating non-canonical MRTF-A activation. TGFβ1 additionally induces secretion of activin A, but not B, from tubular cells, and activin A neutralization prevents the TGFβ1 profibrotic response in renal fibroblasts. Fibrosis induced by UUO is inhibited by activin A neutralization in wild-type mice. Worsened fibrosis in TGFβ1-overexpressing mice is associated with increased renal activin A expression and is inhibited to wild-type levels with activin A neutralization. CONCLUSIONS Activin A facilitates TGFβ1 profibrotic effects through regulation of both canonical (Smad3) and non-canonical (MRTF-A) signaling, suggesting it may be a novel therapeutic target for preventing fibrosis in CKD.
Collapse
Affiliation(s)
- Asfia Soomro
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Mohammad Khajehei
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Kian O’Neil
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Melissa MacDonald
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Masao Kakoki
- grid.410711.20000 0001 1034 1720Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Joan C. Krepinsky
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada ,grid.416721.70000 0001 0742 7355St. Joseph’s Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
15
|
Zhang B, Liu S, Sun Y, Xu D. Endosulfan induced kidney cell injury by modulating ACE2 through up-regulating miR-429 in HK-2 cells. Toxicology 2023; 484:153392. [PMID: 36513242 DOI: 10.1016/j.tox.2022.153392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Endosulfan, a typical organochlorine pesticide, is widely used in agricultural countries and was detected in blood samples from the general population. Studies have shown a positive correlation between chronic kidney disease of unknown aetiology (CKDu) and endosulfan. CKDu has become endemic in agricultural countries, with clinical manifestations of tubulointerstitial fibrosis.The goal of this study was to investigate the effects of endosulfan in kidney cell injury in human renal tubular epithelial cells (HK-2), focusing on apoptosis, inflammatory response, and epithelial-mesenchymal transition (EMT). We found that endosulfan induced apoptosis in HK-2 cells by up-regulating the expression of BAX, APAF-1, Caspase-3 and mitochondrial Cytochrome c was released into the cytosol. Endosulfan caused an inflammatory response, showing the increase in the secretion and mRNA expression levels of IL-6/IL-8. Endosulfan triggered EMT, characterized by downregulation of E-cadherin and upregulation of Vimentin. Western blot results showed that p-Smad3 and Smad3 protein expression were elevated while the expression of Smad7 were decreased in endosulfan-exposed groups. Dual luciferase reporter assay confirmed the potential binding capacity of miR-429 to 3'-UTR of ACE2. Endosulfan causes upregulation of miR-429 and downregulation of ACE2 in HK-2 cells. Overexpression of miR-429 or silencing of ACE2 in HK-2 cells caused apoptosis, inflammation and EMT through TGF signaling pathway. These findings suggest that endosulfan can lead to kidney cell injury by modulating ACE2 through up-regulating miR-429, providing new evidence for the pathogenesis of CKDu.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| | - Shiwen Liu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| |
Collapse
|
16
|
Chen J, Tang Y, Zhong Y, Wei B, Huang XR, Tang PMK, Xu A, Lan HY. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol Ther 2022; 30:3017-3033. [PMID: 35791881 PMCID: PMC9481993 DOI: 10.1016/j.ymthe.2022.06.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor β1 (TGF-β1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-β/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-β/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.
Collapse
Affiliation(s)
- Junzhe Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Patrick Ming-Kuen Tang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| | - Anping Xu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
17
|
Wei J, Xu Z, Yan X. The role of the macrophage-to-myofibroblast transition in renal fibrosis. Front Immunol 2022; 13:934377. [PMID: 35990655 PMCID: PMC9389037 DOI: 10.3389/fimmu.2022.934377] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022] Open
Abstract
Renal fibrosis causes structural and functional impairment of the kidney, which is a dominant component of chronic kidney disease. Recently, a novel mechanism, macrophage-to-myofibroblast transition (MMT), has been identified as a crucial component in renal fibrosis as a response to chronic inflammation. It is a process by which bone marrow-derived macrophages differentiate into myofibroblasts during renal injury and promote renal fibrosis. Here, we summarized recent evidence and mechanisms of MMT in renal fibrosis. Understanding this phenomenon and its underlying signal pathway would be beneficial to find therapeutic targets for renal fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Jia Wei
- *Correspondence: Jia Wei, ; Xiang Yan,
| | | | - Xiang Yan
- *Correspondence: Jia Wei, ; Xiang Yan,
| |
Collapse
|
18
|
Cao B, Zeng M, Si Y, Zhang B, Wang Y, Xu R, Huang Y, Feng W, Zheng X. Extract of Corallodiscus flabellata attenuates renal fibrosis in SAMP8 mice via the Wnt/β-catenin/RAS signaling pathway. BMC Complement Med Ther 2022; 22:52. [PMID: 35227255 PMCID: PMC8887028 DOI: 10.1186/s12906-022-03535-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fibrosis is one of the most common pathological features of the aging process of the kidney, and fibrosis in aging kidneys also aggravates the process of chronic kidney disease (CKD). Corallodiscus flabellata B. L. Burtt (C. flabellata, CF) is a commonly used botanical drug in Chinese folklore. However, few studies have reported its pharmacological effects. This study aimed to explore the effect of CF ethanol extract on renal fibrosis in SAMP8 mice and identify potentially active compounds. METHODS Senescence-accelerated mouse-prone 8 (SAMP8) were used as animal models, and different doses of CF were given by gavage for one month. To observe the degree of renal aging in mice using β-galactosidase staining. Masson staining and the expression levels of Col-I, α-SMA, and FN were used to evaluate the renal fibrosis in mice. The protein expression levels of Nrf2 pathway and Wnt/β-catenin/RAS pathway in the kidney were measured. And β-galactosidase (β-gal) induced NRK-52E cells as an in vitro model to screen the active components of CF. RESULTS The CF ethanol extract significantly inhibited the activity of renal β-galactosidase and the expression levels of Col-I, α-SMA, and FN in SAMP8 mice, and improved Masson staining in SAMP8 mice. CF remarkably reduced urinary protein, creatinine, urea nitrogen and serum levels of TNF-α and IL-1β in SAMP8 mice, and significantly increased the levels of SOD and GSH-Px. Moreover, CF activated the Nrf2 pathway and blocked the Wnt/β-catenin/RAS pathway in the kidneys of mice. Besides, 3,4-dihydroxyphenylethanol (SDC-0-14, 16) and (3,4-dihydroxyphenylethanol-8-O-[4-O-trans-caffeoyl-β-D-apiofuranosyl-(1→3)-β-D-glucopyranosyl (1→6)]-β-D-glucopyranoside (SDC-1-8) were isolated from CF, which reduced the senescence of NRK-52E cells, and maybe the active ingredients of CF playing the anti-aging role. CONCLUSIONS Our experiments illuminated that CF ethanol extract may ameliorate renal fibrosis in SAMP8 mice via the Wnt/β-catenin/RAS pathway. And SDC-0-14,16 and SDC-1-8 may be the material basis for CF to exert anti-renal senescence-related effects.
Collapse
Affiliation(s)
- Bing Cao
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Mengnan Zeng
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Yanpo Si
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Beibei Zhang
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Yangyang Wang
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Ruiqi Xu
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Yanjie Huang
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Weisheng Feng
- Henan University of Chinese Medicine, 450046, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, 450046, Zhengzhou, China.
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, China.
- School of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, 450046, Zhengzhou, China.
| |
Collapse
|
19
|
Humeres C, Shinde AV, Hanna A, Alex L, Hernández SC, Li R, Chen B, Conway SJ, Frangogiannis NG. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest 2022; 132:146926. [PMID: 34905511 PMCID: PMC8803336 DOI: 10.1172/jci146926] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Repair of the infarcted heart requires TGF-β/Smad3 signaling in cardiac myofibroblasts. However, TGF-β-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7, may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions. In a mouse model of nonreperfused infarction, Smad3 activation triggered Smad7 synthesis in α-SMA+ infarct myofibroblasts, but not in α-SMA-PDGFRα+ fibroblasts. Myofibroblast-specific Smad7 loss increased heart failure-related mortality, worsened dysfunction, and accentuated fibrosis in the infarct border zone and in the papillary muscles. Smad7 attenuated myofibroblast activation and reduced synthesis of structural and matricellular extracellular matrix proteins. Smad7 effects on TGF-β cascades involved deactivation of Smad2/3 and non-Smad pathways, without any effects on TGF-β receptor activity. Unbiased transcriptomic and proteomic analysis identified receptor tyrosine kinase signaling as a major target of Smad7. Smad7 interacted with ErbB2 in a TGF-β-independent manner and restrained ErbB1/ErbB2 activation, suppressing fibroblast expression of fibrogenic proteases, integrins, and CD44. Smad7 induction in myofibroblasts serves as an endogenous TGF-β-induced negative feedback mechanism that inhibits postinfarction fibrosis by restraining Smad-dependent and Smad-independent TGF-β responses, and by suppressing TGF-β-independent fibrogenic actions of ErbB2.
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arti V. Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Linda Alex
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Silvia C. Hernández
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nikolaos G. Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Zhou L, Xue X, Hou Q, Dai C. Targeting Ferroptosis Attenuates Interstitial Inflammation and Kidney Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:57-71. [PMID: 35224007 DOI: 10.1159/000517723] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ferroptosis, an iron-dependent form of regulated necrosis mediated by lipid peroxidation, predominantly polyunsaturated fatty acids, is involved in postischemic and toxic kidney injury. However, the role and mechanisms for tubular epithelial cell (TEC) ferroptosis in kidney fibrosis remain largely unknown. OBJECTIVES The aim of the study was to decipher the role and mechanisms for TEC ferroptosis in kidney fibrosis. METHODS Mouse models with unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI) were generated. RESULTS We found that TEC ferroptosis exhibited as reduced glutathione peroxidase 4 (GPX4) expression and increased 4-hydroxynonenal abundance was appeared in kidneys from chronic kidney disease (CKD) patients and mouse models with UUO or IRI. Inhibition of ferroptosis could largely mitigate kidney injury, interstitial fibrosis, and inflammatory cell accumulation in mice after UUO or IRI. Additionally, treatment of TECs with (1S,3R)-RSL-3, an inhibitor of GPX4, could enhance cell ferroptosis and recruit macrophages. Furthermore, inhibiting TEC ferroptosis reduced monocyte chemotactic protein 1 (MCP-1) secretion and macrophage chemotaxis. CONCLUSIONS This study uncovers that TEC ferroptosis may promote interstitial fibrosis and inflammation, and targeting ferroptosis may shine a light on protecting against kidney fibrosis in patients with CKDs.
Collapse
Affiliation(s)
- Lu Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xian Xue
- Department of Clinical Genetics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Hou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Clinical Genetics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Ma G, Chen F, Liu Y, Zheng L, Jiang X, Tian H, Wang X, Song X, Yu Y, Wang D. Nur77 ameliorates age-related renal tubulointerstitial fibrosis by suppressing the TGF-β/Smads signaling pathway. FASEB J 2022; 36:e22124. [PMID: 34972249 DOI: 10.1096/fj.202101332r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023]
Abstract
Nerve growth factor-induced gene B (Nur77) has been shown to ameliorate several biological processes in chronic diseases, including inflammatory response, cellular proliferation, and metabolism. Chronic kidney disease (CKD) is characterized by tubulointerstitial fibrosis for which no targeted therapies are available as yet. In this study, we performed in vivo and in vitro experiments to demonstrate that Nur77 targets fibrosis signals and attenuates renal tubulointerstitial fibrosis during the aging process. We observed that the TGF-β/Smads signal pathway was significantly suppressed by Nur77, suggesting that Nur77 controlled the activation of key steps in TGF-β/Smads signaling. We further showed that Nur77 interacted with Smad7, the main repressor of nuclear translocation of Smad2/3, and stabilized Smad7 protein homeostasis. Nur77 deficiency resulted in Smad7 degradation, aggravating Smad2/3 phosphorylation, and promoting transcription of its downstream target genes, ACTA2 and collagen I. Our findings demonstrate that Nur77 is a potential therapeutic target for age-related kidney diseases including CKD. Maintenance of Nur77 may be an effective strategy for blocking renal tubulointerstitial fibrosis and improving renal function in the elderly.
Collapse
Affiliation(s)
- Guojing Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Feng Chen
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixuan Liu
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixia Zheng
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xuehan Jiang
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Huanlian Tian
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Xiaoxun Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yang Yu
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Nootkatone confers antifibrotic effect by regulating the TGF-β/Smad signaling pathway in mouse model of unilateral ureteral obstruction. Eur J Pharmacol 2021; 910:174479. [PMID: 34480883 DOI: 10.1016/j.ejphar.2021.174479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) with underlying interstitial fibrosis is often associated with end-stage renal disease (ESRD). In the present study, we investigated the renoprotective and antifibrotic potential of nootkatone (NTK), a bioactive sesquiterpene, in an experimental model of renal fibrosis. Unilateral ureteral obstruction (UUO) model was performed to induce renal fibrosis in Balb/C mice. The animals were randomly assigned into 5 groups: sham, NTK control, UUO control, UUO and NTK 5 mg/kg, and UUO and NTK 10 mg/kg. Animals received NTK at a dose of 5 mg/kg and 10 mg/kg orally for the next 14 consecutive days. UUO induced histological alterations, accumulation of extracellular matrix (ECM) components including collagens, fibronectin, and alpha-smooth muscle actin (α-SMA), activation of the transforming growth factor-β (TGF-β)/Smad signaling and oxidative damage in the obstructed kidneys. Our study revealed that NTK (10 mg/kg) inhibits UUO mediated kidney fibrosis in vivo. Administration of NTK (10 mg/kg) prevented the activation of the TGF-β/Smad signaling, expression of ECM components, markedly attenuated the renal tubular injury and fibrosis area (% area: 6.66 ± 1.45% vs UUO: 26.33 ± 2.90%). Administration of NTK at 10 mg/kg significantly restored the endogenous antioxidants and prevented the reactive oxygen species generation (25.31 ± 1.65% vs UUO: 45.01 ± 4.85%) and reduced the level of tumor necrosis factor (TNF)-α (95.22 ± 12.39 vs UUO: 215.57 ± 60.45 pg/mg protein) in the kidneys. Altogether, our findings suggest that NTK might be a budding therapeutic candidate for renal fibrosis.
Collapse
|
23
|
Bi L, Huang Y, Li J, Yang X, Hou G, Zhai P, Zhang Q, Alhaji AA, Yang Y, Liu B. Pirfenidone Attenuates Renal Tubulointerstitial Fibrosis through Inhibiting miR-21. Nephron Clin Pract 2021; 146:110-120. [PMID: 34724669 DOI: 10.1159/000519495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous studies had shown pirfenidone (PFD) not only improved tubulointerstitial fibrosis (TIF) but also inhibited the expression of microRNA-21 (miR-21) in the renal tissue of unilateral urethral obstruction (UUO) rats. This study aims to investigate whether PFD can attenuate TIF through inhibiting miR-21 in UUO rats. METHODS Sprague Dawley rats were divided randomly into sham-operated group, UUO group, and PFD and olmesartan (Olm) treatment groups. Samples were collected on day 14. Expression of miR-21, TGF-β1, Smad3, and Smad7 mRNA in the renal tissue was detected using real-time quantitative PCR. Immunohistochemistry was performed to assess the protein expressions of collagen III, E-cadherin, and α-SMA. Automated capillary Western blotting was used to detect the quantitative expression of TGF-β1, Smad3, p-Smad3, Smad7, collagen III, E-cadherin, and α-SMA in renal tissues. The expression of miR-21 and Smad7 mRNA and the protein levels of collagen III and α-SMA were examined in the miR-21-overexpressing cell line, NRK-52E. RESULTS Compared with the UUO group, both PFD and Olm inhibited renal tubular dilation, diffused epithelial cell degeneration and necrosis, and reduced renal interstitial edema, inflammatory cell infiltration, and collagen fiber deposition, while no significant difference between PFD group and Olm group. Informatics-based approaches identified Smad7 as a likely candidate for regulation by miR-21. Compared with the sham group, miR-21 expression was upregulated in the UUO group resulting in the downregulation of Smad7 expression due to degradation. The overexpression of miR-21 in the in vitro model downregulated Smad7 and promoted EMT and ECM accumulation. Protein levels of TGF-β1, Smad3, p-Smad3, collagen III, and α-SMA were upregulated, while E-cadherin protein was downregulated in the UUO group than in the sham group. PFD rather than Olm decreased the expression of miR-21 and increased the expression level of Smad7 mRNA and then inhibited the TGF-β1/Smad3 signaling pathway. Olm only downregulated the TGF-β1/Smad3 signaling pathway. CONCLUSIONS PFD improves TIF by downregulating the expression of miR-21, then elevating Smad7, and finally inhibiting the activation of the TGF-β1/Smad3 signaling pathway in UUO rats.
Collapse
Affiliation(s)
- Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanjie Huang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Li
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Panpan Zhai
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiushuang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | | | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bo Liu
- Veterans Affairs Palo Alto Health Care System, CA and School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Smad7 Deficiency in Myeloid Cells Does Not Affect Liver Injury, Inflammation or Fibrosis after Chronic CCl 4 Exposure in Mice. Int J Mol Sci 2021; 22:ijms222111575. [PMID: 34769006 PMCID: PMC8584252 DOI: 10.3390/ijms222111575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 01/12/2023] Open
Abstract
Myeloid cells play an essential role in the maintenance of liver homeostasis, as well as the initiation and termination of innate and adaptive immune responses. In chronic hepatic inflammation, the production of transforming growth factor beta (TGF-β) is pivotal for scarring and fibrosis induction and progression. TGF-β signalling is tightly regulated via the Smad protein family. Smad7 acts as an inhibitor of the TGF-β-signalling pathway, rendering cells that express high levels of it resistant to TGF-β-dependent signal transduction. In hepatocytes, the absence of Smad7 promotes liver fibrosis. Here, we examine whether Smad7 expression in myeloid cells affects the extent of liver inflammation, injury and fibrosis induction during chronic liver inflammation. Using the well-established model of chronic carbon tetrachloride (CCl4)-mediated liver injury, we investigated the role of Smad7 in myeloid cells in LysM-Cre Smadfl/fl mice that harbour a myeloid-specific knock-down of Smad7. We found that the chronic application of CCl4 induces severe liver injury, with elevated serum alanine transaminase (ALT)/aspartate transaminase (AST) levels, centrilobular and periportal necrosis and immune-cell infiltration. However, the myeloid-specific knock-down of Smad7 did not influence these and other parameters in the CCl4-treated animals. In summary, our results suggest that, during long-term application of CCl4, Smad7 expression in myeloid cells and its potential effects on the TGF-β-signalling pathway are dispensable for regulating the extent of chronic liver injury and inflammation.
Collapse
|
25
|
You YK, Wu WF, Huang XR, Li HD, Ren YP, Zeng JC, Chen H, Lan HY. Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy. Int J Biol Sci 2021; 17:3911-3922. [PMID: 34671208 PMCID: PMC8495386 DOI: 10.7150/ijbs.62929] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-β/Smad3-dependent mechanism. Methods: Role and mechanisms of TGF-β/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E). Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1β, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-β/Smad3 signaling. Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China.,Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Di Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jin-Cheng Zeng
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|
27
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
28
|
Wu W, Huang XR, You Y, Xue L, Wang XJ, Meng X, Lin X, Shen J, Yu X, Lan HY, Chen H. Latent TGF-β1 protects against diabetic kidney disease via Arkadia/Smad7 signaling. Int J Biol Sci 2021; 17:3583-3594. [PMID: 34512167 PMCID: PMC8416717 DOI: 10.7150/ijbs.61647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023] Open
Abstract
TGF-β1 has long been considered as a key mediator in diabetic kidney disease (DKD) but anti-TGF-β1 treatment fails clinically, suggesting a diverse role for TGF-β1 in DKD. In the present study, we examined a novel hypothesis that latent TGF-β1 may be protective in DKD mice overexpressing human latent TGF-β1. Streptozotocin-induced Type 1 diabetes was induced in latent TGF-β1 transgenic (Tg) and wild-type (WT) mice. Surprisingly, compared to WT diabetic mice, mice overexpressing latent TGF-β1 were protected from the development of DKD as demonstrated by lowing microalbuminuria and inhibiting renal fibrosis and inflammation, although blood glucose levels were not altered. Mechanistically, the renal protective effects of latent TGF-β1 on DKD were associated with inactivation of both TGF-β/Smad and nuclear factor-κB (NF-κB) signaling pathways. These protective effects were associated with the prevention of renal Smad7 from the Arkadia-induced ubiquitin proteasomal degradation in the diabetic kidney, suggesting protection of renal Smad7 from Arkadia-mediated degradation may be a key mechanism through which latent TGF-β1 inhibits DKD. This was further confirmed in vitro in mesangial cells that knockdown of Arkadia failed but overexpression of Arkadia reversed the protective effects of latent TGF-β1 on high glucose-treated mesangial cells. Latent TGF-β1 may protect kidneys from TGF-β1/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation in diabetes through inhibiting Arkadia-mediated Smad7 ubiquitin degradation.
Collapse
Affiliation(s)
- Weifeng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao R. Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yongke You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Liang Xue
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver, Aurora, CO, United States
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Anhui, China
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Wang L, Wang HL, Liu TT, Lan HY. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int J Mol Sci 2021; 22:7881. [PMID: 34360646 PMCID: PMC8345981 DOI: 10.3390/ijms22157881] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Tong-Tong Liu
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
30
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
32
|
Zhang Y, Li K, Li Y, Zhao W, Wang L, Chen Z, Ma X, Yao T, Wang J, Dong W, Li X, Tian X, Fu R. Profibrotic mechanisms of DPP8 and DPP9 highly expressed in the proximal renal tubule epithelial cells. Pharmacol Res 2021; 169:105630. [PMID: 33932609 DOI: 10.1016/j.phrs.2021.105630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerstitium was found to be associated with the decline of kidney function in chronic kidney disease (CKD) patients, which was observed in the Nephroseq human database. To examine the role of DPP8 and DPP9 in the tubulointerstitial injury, we determined the efficacy of DPP8 and DPP9 on epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) as well as the underlying mechanisms. METHODS We conducted the immunofluorescence of DPP8 and DPP9 in kidney biopsy specimens of CKD patients, established unilateral ureteral obstruction (UUO) animal model, treated with TC-E5007 (a specific inhibitor of both DPP8 and DPP9) or Saxagliptin (positive control) or saline, and HK-2 cells model. RESULTS We observed the significantly increased expression of DPP8 and DPP9 in the renal proximal tubule epithelial cells of CKD patients compared to the healthy control subjects. DPP8/DPP9 inhibitor TC-E5007 could significantly attenuate the EMT and extracellular matrix (ECM) synthesis in UUO mice, all these effects were mediated via interfering with the TGF-β1/Smad signaling. TC-E5007 treatment also presented reduced renal inflammation and improved renal function in the UUO mice compared to the placebo-treated UUO group. Furthermore, the siRNA for DPP8 and DPP9, and TC-E5007 treatment decreased EMT- and ECM-related proteins in TGF-β1-treated HK-2 cells respectively, which could be reversed significantly by transduction with lentivirus-DPP8 and lentivirus-DPP9. CONCLUSION These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.
Collapse
Affiliation(s)
- Yuzhan Zhang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Yan Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Weihao Zhao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Zhao Chen
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Tian Yao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Jinhua Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Wei Dong
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiancheng Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710003, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China.
| |
Collapse
|
33
|
Sharma V, Goessling LS, Brar AK, Joshi CS, Mysorekar IU, Eghtesady P. Coxsackievirus B3 Infection Early in Pregnancy Induces Congenital Heart Defects Through Suppression of Fetal Cardiomyocyte Proliferation. J Am Heart Assoc 2021; 10:e017995. [PMID: 33440998 PMCID: PMC7955305 DOI: 10.1161/jaha.120.017995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Background Coxsackievirus B (CVB) is the most common cause of viral myocarditis. It targets cardiomyocytes through coxsackie and adenovirus receptor, which is highly expressed in the fetal heart. We hypothesized CVB3 can precipitate congenital heart defects when fetal infection occurs during critical window of gestation. Methods and Results We infected C57Bl/6 pregnant mice with CVB3 during time points in early gestation (embryonic day [E] 5, E7, E9, and E11). We used different viral titers to examine possible dose-response relationship and assessed viral loads in various fetal organs. Provided viral exposure occurred between E7 and E9, we observed characteristic features of ventricular septal defect (33.6%), abnormal myocardial architecture resembling noncompaction (23.5%), and double-outlet right ventricle (4.4%) among 209 viable fetuses examined. We observed a direct relationship between viral titers and severity of congenital heart defects, with apparent predominance among female fetuses. Infected dams remained healthy; we did not observe any maternal heart or placental injury suggestive of direct viral effects on developing heart as likely cause of congenital heart defects. We examined signaling pathways in CVB3-exposed hearts using RNA sequencing, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and immunohistochemistry. Signaling proteins of the Hippo, tight junction, transforming growth factor-β1, and extracellular matrix proteins were the most highly enriched in CVB3-infected fetuses with ventricular septal defects. Moreover, cardiomyocyte proliferation was 50% lower in fetuses with ventricular septal defects compared with uninfected controls. Conclusions We conclude prenatal CVB3 infection induces congenital heart defects. Alterations in myocardial proliferate capacity and consequent changes in cardiac architecture and trabeculation appear to account for most of observed phenotypes.
Collapse
Affiliation(s)
- Vipul Sharma
- Division of Pediatric Cardiothoracic SurgeryDepartment of SurgeryWashington University School of MedicineSt. LouisMO
| | - Lisa S. Goessling
- Division of Pediatric Cardiothoracic SurgeryDepartment of SurgeryWashington University School of MedicineSt. LouisMO
| | - Anoop K. Brar
- Division of Pediatric Cardiothoracic SurgeryDepartment of SurgeryWashington University School of MedicineSt. LouisMO
| | - Chetanchandra S. Joshi
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMO
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
| | - Indira U. Mysorekar
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMO
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic SurgeryDepartment of SurgeryWashington University School of MedicineSt. LouisMO
| |
Collapse
|
34
|
Zhou SS, Ai ZZ, Li WN, Li L, Zhu XY, Ba YM. Shenkang VII Recipe Attenuates Unilateral Ureteral Obstruction-induced Renal Fibrosis via TGF-β/Smad, NF-κB and SHH Signaling Pathway. Curr Med Sci 2020; 40:917-930. [PMID: 32980902 DOI: 10.1007/s11596-020-2255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the protective effects of the traditional Chinese Medicine formula Shenkang VII recipe (SK-7) on renal fibrosis and the mechanisms. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in rats. The rats were then divided into 5 groups: control group (Sham operation), UUO model group, UUO model plus low to high doses of SK-7 (0.5, 1.0, or 2.0 g/kg/day, for 14 days) groups. The animals were sacrificed on the 7th or 14th day. Kidney tissues were collected for histopathological examinations (hematoxylin and eosin and Masson's trichrome staining). Immunohistochemistry was used to detect the expression of collagen type III (Col III), fibronectin (FN), α-smooth muscle actin (α-SMA), TIMP metallopeptidase inhibitor 2 (TIMP2), matrix metallopeptidase 2 (MMP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemotactic protein-1 (MCP-1). The TGF-β1/Smad, NF-kB and Sonic hedgehog signaling proteins were detected by Western blotting. Our results showed that SK-7 prevented UUO-induced renal injury and accumulation of collagen fibrils. Renal fibrosis biomarkers Col III, FN, α-SMA and TIMP2 were increased in the rats after UUO and decreased by SK-7, while MMP2 was upregulated after treatment. SK-7 also suppressed the levels of TNF-α, IL-1β and MCP-1 in UUO rats. In addition, SK-7 inhibited activation of the TGF-β/Smad, NF-κB and sonic hedgehog signaling (SHH) pathways. Taken together, these findings suggest that SK-7 may regulate the synthesis and degradation of extracellular matrix, reduce inflammation and suppress the proliferation of fibroblasts, by blocking the TGF-β1/Smad, NF-κB and SHH signaling pathways to exert its anti-renal fibrosis effect in UUO rats.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Zhu Ai
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei-Nan Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Liang Li
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Yun Zhu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuan-Ming Ba
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China. .,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
35
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
36
|
Meng J, Qin Y, Chen J, Wei L, Huang XR, Yu X, Lan HY. Treatment of Hypertensive Heart Disease by Targeting Smad3 Signaling in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:791-802. [PMID: 32953930 PMCID: PMC7475647 DOI: 10.1016/j.omtm.2020.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor β (TGF-β)/Smad3 signaling plays a central role in chronic heart disease. Here, we report that targeting Smad3 with a Smad3 inhibitor SIS3 in an established mouse model of hypertension significantly improved cardiac dysfunctions by preserving the left ventricle (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS), while reducing the LV mass. In addition, SIS3 treatment also halted the progression of myocardial fibrosis by blocking α-smooth muscle actin-positive (α-SMA+) myofibroblasts and collagen matrix accumulation, and inhibited cardiac inflammation by suppressing interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP1), intercellular cell adhesion molecule-1 (ICAM1) expression, and infiltration of CD3+ T cells and F4/80+ macrophages. Interestingly, treatment with SIS3 did not alter levels of high blood pressure, revealing a blood pressure-independent cardioprotective effect of SIS3. Mechanistically, treatment with SIS3 not only directly inactivated TGF-β/Smad3 signaling but also protected cardiac Smad7 from Smurf2-mediated proteasomal ubiquitin degradation. Because Smad7 functions as an inhibitor for both TGF-β/Smad and nuclear factor κB (NF-κB) signaling, increased cardiac Smad7 could be another mechanism through which SIS3 treatment blocked Smad3-mediated myocardial fibrosis and NF-κB-driven cardiac inflammation. In conclusion, SIS3 is a therapeutic agent for hypertensive heart disease. Results from this study demonstrate that targeting Smad3 signaling with SIS3 may be a novel and effective therapy for chronic heart disease.
Collapse
Affiliation(s)
- Jinxiu Meng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuyan Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzhe Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lihua Wei
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Xiaoting L, Shanshan L, Qiuhong W, Weichen D, Haixue K. Metagenomics approach the intestinal microbiome structure and function in the anti-H1N1 of a traditional chinese medicine acid polysaccharide. Microb Pathog 2020; 147:104351. [PMID: 32634615 DOI: 10.1016/j.micpath.2020.104351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022]
Abstract
Ephedra sinica Stapf polysaccharide is a pure acidic uniform polysaccharide extracted from the traditional Chinese medicine Ephedra sinica Stapf. In our past research, it was found that it has anti-inflammatory response and suppresses immunity. Therefore, in this experiment, mice were infected with FM1 virus, treated with Ephedra sinica Stapf polysaccharide, and metagene sequencing was used to sequence the mouse intestinal contents. As a result, we found that Ephedra sinica Stapf polysaccharide has obvious therapeutic effect on acute lung injury caused by H1N1. In the intestinal flora, the abundance of Lactobacillales and Bifidobacteriaceae increased significantly, and the metabolome increased significantly in the KEGG pathway. The intestinal flora may be an important target of Ephedra sinica Stapf polysaccharides metabolism against H1N1.
Collapse
Affiliation(s)
- Lin Xiaoting
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| | - Liang Shanshan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| | - Wang Qiuhong
- Guangdong Pharmaceutical University, 510224, China.
| | - Duanmu Weichen
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| | - Kuang Haixue
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| |
Collapse
|
38
|
Shi Y, Chen X, Huang C, Pollock C. RIPK3: A New Player in Renal Fibrosis. Front Cell Dev Biol 2020; 8:502. [PMID: 32613000 PMCID: PMC7308494 DOI: 10.3389/fcell.2020.00502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is the end result of a plethora of renal insults, including repeated episodes of acute or toxic kidney injury, glomerular, or diabetic kidney disease. It affects a large number of the population worldwide, resulting in significant personal morbidity and mortality and economic cost to the community. Hence it is appropriate to focus on treatment strategies that interrupt the development of kidney fibrosis, the end result of all forms of CKD, in addition to upstream factors that may be specific to certain diseases. However, the current clinical approach to prevent or manage renal fibrosis remains unsatisfactory. The rising importance of receptor-interacting serine/threonine-protein kinase (RIPK) 3 in the inflammatory response and TGF-β1 signaling is increasingly recognized. We discuss here the biological functions of RIPK3 and its role in the development of renal fibrosis.
Collapse
Affiliation(s)
- Ying Shi
- Nephrology, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Xinming Chen
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Chunling Huang
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Li X, Fan X, Yin X, Liu H, Yang Y. Alteration of N 6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy. Epigenomics 2020; 12:1157-1173. [PMID: 32543222 DOI: 10.2217/epi-2020-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To reveal the alterations of N6-methyladenosine (m6A) epitranscriptome profile in kidney after unilateral ureteral obstruction in mice. Materials & methods: Total renal m6A and expressions of methyltransferases and demethylases were detected by colorimetric quantification method, real-time PCR and western blot, respectively. Methylated RNA immunoprecipitation sequencing was performed to map epitranscriptome-wide m6A profile. Results: Total m6A levels were time-dependent decreased within 1 week, with the lowest level detected at day 7. A total of 823 differentially methylated transcripts in 507 genes were identified. Specifically, demethylated mRNAs selectively acted on multiple pathways, including TGF-β and WNT. Conclusion: m6A modification has a functional importance in renal interstitial fibrosis during obstructive nephropathy and might be a promising therapeutic target.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Huajian Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
40
|
Saifi MA, Peddakkulappagari CS, Ahmad A, Godugu C. Leveraging the Pathophysiological Alterations of Obstructive Nephropathy to Treat Renal Fibrosis by Cerium Oxide Nanoparticles. ACS Biomater Sci Eng 2020; 6:3563-3573. [PMID: 33463173 DOI: 10.1021/acsbiomaterials.9b01944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) has wide prevalence globally that affects a considerable population and has renal fibrosis (RF) as a hallmark feature. RF is characterized by abnormal deposition of extracellular matrix (ECM) in the interstitial space of renal tissue. There are only few studies where nanoparticles (NPs) were used for targeting the kidney mainly due to their size-dependent constraints. Further, most of the studies have been carried out in healthy animals. As the diseased kidney becomes susceptible to accumulation of nanoparticles, we hypothesized that nanoparticles (size ∼10 nm) could reach the kidney and might provide protective effects due to their inherent properties. We investigated the protective effects of cerium oxide nanoparticles (CONPs) with promising antioxidant activity in a CKD model. We, to the best of our knowledge, are first to report that CONPs abrogated RF by inhibiting transforming growth factor-β (TGF-β) signaling and epithelial-mesenchymal transition (EMT) in a fibrotic kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Chandra Sekhar Peddakkulappagari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| |
Collapse
|
41
|
Liao Y, Tan RZ, Li JC, Liu TT, Zhong X, Yan Y, Yang JK, Lin X, Fan JM, Wang L. Isoliquiritigenin Attenuates UUO-Induced Renal Inflammation and Fibrosis by Inhibiting Mincle/Syk/NF-Kappa B Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1455-1468. [PMID: 32341639 PMCID: PMC7166058 DOI: 10.2147/dddt.s243420] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Purpose Chronic kidney disease (CKD) is a global nephrotic syndrome characterized by chronic inflammation, oxidative stress and fibrosis in the kidney. Isoliquiritigenin (ISL), a flavonoid from licorice, has historically been reported to inhibit innate immune responses to inflammation and fibrosis in vivo. However, the effect of ISL on CKD progression is largely unknown. Materials and Methods In this study, we employed the inflammatory and fibrotic models of LPS/TGF-β-induced bone marrow-derived macrophages (BMDM) in vitro and unilateral ureteral obstruction (UUO) model in vivo to explore the potential effects and mechanism of ISL on renal inflammation and fibrosis. Results Our results manifest that ISL improved UUO-induced renal dysfunction and reduced tubular damage with a significantly downregulated mRNA expression and secretion of IL-1β, IL-6, TNF-α and MCP-1 in vitro and in vivo. It is worth noting that ISL can strongly inhibit the mRNA and protein expression of Mincle (macrophage-induced c-type lectin) in BMDM and UUO. ISL inhibited the phosphorylation of Syk and NF-kappa B and simultaneously reduced the expression of α-SMA and Col III in vivo and in vitro. More interestingly, when dealing with TDB, a ligand of Mincle, it revealed significant reversal of protein expression levels as that observed with ISL. The expressions of IL-1β, IL-6, TNF-α, iNOS, p-Syk, p-NF-kappa B, α-SMA and FN in BMDM inflammatory model were significantly upregulated with TDB treatment. This confirms that ISL inhibits inflammation and fibrosis of macrophage by suppressing Mincle/Syk/NF-kappa B signaling pathway. Conclusion To conclude, ISL protects UUO-induced CKD by inhibiting Mincle-induced inflammation and suppressing renal fibrosis, which might be a specific renal protective mechanism of ISL, making it a novel drug to ameliorate CKD.
Collapse
Affiliation(s)
- Yuan Liao
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Rui-Zhi Tan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jian-Chun Li
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tong-Tong Liu
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Xia Zhong
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ying Yan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jie-Ke Yang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiao Lin
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, Sichuan 610000, People's Republic of China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
42
|
Abstract
Renal fibrosis is a hallmark of chronic kidney disease. Although considerable achievements in the pathogenesis of renal fibrosis have been made, the underlying mechanisms of renal fibrosis remain largely to be explored. Now we have reached the consensus that TGF-β is a master regulator of renal fibrosis. Indeed, TGF-β regulates renal fibrosis via both canonical and noncanonical TGF-β signaling. Moreover, ongoing renal inflammation promotes fibrosis as inflammatory cells such as macrophages, conventional T cells and mucosal-associated invariant T cells may directly or indirectly contribute to renal fibrosis, which is also tightly regulated by TGF-β. However, anti-TGF-β treatment for renal fibrosis remains ineffective and nonspecific. Thus, research into mechanisms and treatment of renal fibrosis remains highly challenging.
Collapse
|
43
|
Xu BH, Sheng J, You YK, Huang XR, Ma RCW, Wang Q, Lan HY. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism 2020; 103:154013. [PMID: 31734275 DOI: 10.1016/j.metabol.2019.154013] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-β/Smad3 signaling is highly activated in kidneys of patients with type 2 diabetic nephropathy (T2DN), however, the precise role of Smad3 in the pathogenesis of diabetic nephropathy remains unclear. METHODS Smad3 knockout (KO)-db/db mice were generated by intercrossing of male and female double-heterozygous Smad3+/- db/m mice. Renal functions including urinary albumin excretion and serum creatinine were determined. Renal histological injury including renal fibrosis and inflammation were examined by periodic acid Schiff (PAS), periodic acid-silver methenamine (PASM), and immunohistochemistry (IHC) staining. RESULTS Smad3 knockout (KO)-db/db mice were protected from the development of diabetic kidney injury, characterized by the normal levels of urinary albumin excretion and serum creatinine without any evidence for renal fibrosis and inflammation. In contrast, Smad3 wild-type (WT) db/db and Smad3+/- db/db mice developed progressively decline in renal function over the 12 to 32-week time course, including increased microalbuminuria and elevated levels of serum creatinine. Pathologically, Smad3 WT db/db and Smad3+/- db/db mice exhibited a marked deposition of collagen-I (colI), collagen-IV(col-IV), and an increased infiltration of F4/80+ macrophages in kidney. Mechanistically, Smad3 deficiency decreased the lncRNA Erbb4-IR transcription, while increased miR-29b transcription and therefore protected the kidney from progressive renal injury in db/db mice. CONCLUSION Results from this study imply that Smad3 may represent as a novel and effective therapeutic target for T2DN.
Collapse
Affiliation(s)
- Bi-Hua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyi Sheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Ke You
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Ru Huang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ronald C W Ma
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingwen Wang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China..
| | - Hui-Yao Lan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
44
|
Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM, Choi ME. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 2019; 4:132826. [PMID: 31639106 DOI: 10.1172/jci.insight.132826] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis. We demonstrate downregulation of mitophagy regulators mitofusin-2 (MFN2) and Parkin downstream of PINK1 in kidney fibrosis. Loss of either Pink1 or Prkn promoted renal extracellular matrix accumulation and frequency of profibrotic/M2 macrophages. Pink1-/- or Prkn-/- BM-derived macrophages (BMDMs) showed enhanced expression of rictor. Mitochondria from TGF-β1-treated Pink1-/- BMDMs exhibited increased superoxide levels, along with reduced respiration and ATP production. In addition, mitophagy in macrophages involves PINK1-mediated phosphorylation of downstream MFN2, MFN2-facilitated recruitment of Parkin to damaged mitochondria, and macrophage-specific deletion of Mfn2 aggravates kidney fibrosis. Moreover, mitophagy regulators were downregulated in human CKD kidney and TGF-β1-treated human renal macrophages, whereas Mdivi1 treatment suppressed mitophagy mediators and promoted fibrotic response. Taken together, our study is the first to our knowledge to demonstrate that macrophage mitophagy plays a protective role against kidney fibrosis via regulating the PINK1/MFN2/Parkin-mediated pathway.
Collapse
Affiliation(s)
| | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Oleh M Akchurin
- NewYork-Presbyterian Hospital, New York, New York, USA.,Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
45
|
Mao L, Liu L, Zhang T, Wu X, Zhang T, Xu Y. MKL1 mediates TGF-β-induced CTGF transcription to promote renal fibrosis. J Cell Physiol 2019; 235:4790-4803. [PMID: 31637729 DOI: 10.1002/jcp.29356] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Aberrant fibrogenesis impairs the architectural and functional homeostasis of the kidneys. It also predicts poor diagnosis in patients with end-stage renal disease (ESRD). Renal tubular epithelial cells (RTEC) can trans-differentiate into myofibroblasts to produce extracellular matrix proteins and contribute to renal fibrosis. Connective tissue growth factor (CTGF) is a cytokine upregulated in RTECs during renal fibrosis. In the present study, we investigated the regulation of CTGF transcription by megakaryocytic leukemia 1 (MKL1). Genetic deletion or pharmaceutical inhibition of MKL1 in mice mitigated renal fibrosis following the unilateral ureteral obstruction procedure. Notably, MKL1 deficiency in mice downregulated CTGF expression in the kidneys. Likewise, MKL1 knockdown or inhibition in RTEs blunted TGF-β induced CTGF expression. Further, it was discovered that MKL1 bound directly to the CTGF promoter by interacting with SMAD3 to activate CTGF transcription. In addition, MKL1 mediated the interplay between p300 and WDR5 to regulate CTGF transcription. CTGF knockdown dampened TGF-β induced pro-fibrogenic response in RTEs. MKL1 activity was reciprocally regulated by CTGF. In conclusion, we propose that targeting the MKL1-CTGF axis may generate novel therapeutic solutions against aberrant renal fibrogenesis.
Collapse
Affiliation(s)
- Lei Mao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
46
|
Abstract
Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM) that disrupts and replaces functional parenchyma, which leads to organ failure. It is known as the major pathological mechanism of chronic kidney disease (CKD). Although CKD has an impact on no less than 10% of the world population, therapeutic options are still limited. Regardless of etiology, elevated TGF-β levels are highly correlated with the activated pro-fibrotic pathways and disease progression. TGF-β, the key driver of renal fibrosis, is involved in a dynamic pathophysiological process that leads to CKD and end-stage renal disease (ESRD). It is becoming clear that epigenetics regulates renal programming, and therefore, the development and progression of renal disease. Indeed, recent evidence shows TGF-β1/Smad signaling regulates renal fibrosis via epigenetic-correlated mechanisms. This review focuses on the function of TGF-β/Smads in renal fibrogenesis, and the role of epigenetics as a regulator of pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Tao-Tao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
47
|
Song MK, Lee JH, Ryoo IG, Lee SH, Ku SK, Kwak MK. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation. Free Radic Biol Med 2019; 138:33-42. [PMID: 31059771 DOI: 10.1016/j.freeradbiomed.2019.04.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-β (TGF-β) is a potent pathogenic factor of renal injury through the upregulation of extracellular matrix (ECM) expression and facilitation of renal fibrosis. Nuclear factor erythroid 2-like 2 (Nfe2l2; Nrf2), a master regulator of antioxidant and detoxifying systems, is mainly controlled by the binding with cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) and subsequent proteasomal degradation. The protective effect of Nrf2 on renal injury has been attributed to its antioxidant role, where it aids in coping with oxidative stress-associated progression of renal disease. In this study, we investigated the effect of Nrf2 activation on ECM production and TGF-β/Smad signaling using Keap1-silenced MES-13 cells (a genetic glomerular mesangial cell model with Nrf2 overexpression). The TGF-β1-inducible expression of fibronectin and α-smooth muscle actin (α-Sma) was suppressed and Smad2/3 phosphorylation was blocked in Nrf2-high mesangial cells as compared with that in control cells. Notably, in these Nrf2-high mesangial cells, levels of TGF-β1 receptor 1 (TβR1) were substantially diminished, and the protein levels of Smad7, an inhibitor TGF-β1/Smad signaling, were increased. Nrf2-mediated Smad7 elevation and its anti-fibrotic role in Keap1-silenced cells were confirmed by studies with Nrf2-or Smad7-silencing. As a molecular link for Smad7 elevation in Nrf2-high cells, the reduction of Smad-ubiquitination-regulatory factor 1 (Smurf1), an E3 ubiquitin ligase for Smad7, was notable. Silencing of Smurf1 increased Smad7 in the control mesangial cells; however, forced expression of Smurf1 repressed Smad7 levels in Keap1-silenced cells. Additionally, we demonstrate that bardoxolone (BARD; CDDO-methyl), a pharmacological activator of Nrf2, increased Smad7 levels and attenuated TGF-β/Smad/ECM expression in MES-13. Moreover, in an aristolochic acid (AA)-mediated nephropathy mouse model, the renal expression of Nrf2 and Smad7 was elevated by BARD treatment, and AA-induced tubular necrosis and interstitial fibrosis were substantially ameliorated by BARD. Collectively, these results indicate that the Nrf2-Smad7 axis plays a key role in the protection of TGF-β-induced renal fibrosis, and further suggest a novel molecular mechanism of beneficial effect of BARD on renal disease.
Collapse
Affiliation(s)
- Min-Kyun Song
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Jin-Hee Lee
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Republic of Korea
| | - In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Republic of Korea
| | - Sang-Hwan Lee
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeonsangbuk-do, 712-715, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea; Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Republic of Korea; College of Pharmacy, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
48
|
You YK, Luo Q, Wu WF, Zhang JJ, Zhu HJ, Lao L, Lan HY, Chen HY, Cheng YX. Petchiether A attenuates obstructive nephropathy by suppressing TGF-β/Smad3 and NF-κB signalling. J Cell Mol Med 2019; 23:5576-5587. [PMID: 31211499 PMCID: PMC6652659 DOI: 10.1111/jcmm.14454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/14/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.
Collapse
Affiliation(s)
- Yong-Ke You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qi Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiao-Jiao Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
49
|
Chen HA, Chen CM, Guan SS, Chiang CK, Wu CT, Liu SH. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152917. [PMID: 30978648 DOI: 10.1016/j.phymed.2019.152917] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The pathology change of renal tubulointerstitial fibrosis is a critical feature of chronic kidney disease (CKD), regardless of the primary insults. The infiltration of inflammatory cells and the consecutive secretion of profibrotic factors are frequently and conspicuously observed during the development of renal fibrosis. Icariin, an active polyphenol of the Epimedium genus, has been found to alleviate the symptoms of chronic diseases like diabetes, neurodegeneration, and heart and renal diseases. The effect and mechanism of icariin on the prevention of CKD-associated renal fibrosis still needed clarification. PURPOSE The aims of this study were to investigate whether icariin treatment improves the development of CKD-associated renal fibrosis and its possible mechanism. METHODS An experimental unilateral ureteral obstruction (UUO)-induced chronic renal fibrosis mouse model was used. Mice were orally administered with icariin (20 mg/kg/day) for 3 consecutive days before and 14 consecutive days after UUO surgery. RESULTS The pathological changes, collagen deposition, and protein expressions of profibrotic factors (transforming growth factor-β and connective tissue growth factor) and fibrotic markers (α-smooth muscle actin and fibronectin), which were significantly elevated in the kidneys of UUO mice, could be significantly reversed by icariin treatment. Icariin treatment also significantly inhibited the increased Smad2/3 and decreased E-cadherin protein expressions in the kidneys of UUO mice. Icariin treatment prominently mitigated the protein expression of proinflammatory factors like nuclear factor-κB, cyclooxygenase-2, interleukin 1-β and prooxidative enzyme (NADPH oxidase-4), and it increased the protein expression of antioxidative enzymes (superoxide dismutase and catalase). CONCLUSION Icariin treatment protects against CKD-associated renal fibrosis via its antifibrotic and anti-inflammatory properties. Icariin may serve as a therapeutic agent in the prevention of CKD-associated renal fibrosis.
Collapse
Affiliation(s)
- Hsin-An Chen
- Graduate Institute of Clinical Medicine and Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chang-Mu Chen
- Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics & Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Paediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
50
|
Hu B, Mao Z, Du Q, Jiang X, Wang Z, Xiao Z, Zhu D, Wang X, Zhu Y, Wang H. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull 2019; 149:21-31. [PMID: 30946881 DOI: 10.1016/j.brainresbull.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Prolactinoma is a common subtype of pituitary tumors. Dopamine receptor agonists are the preferred treatment for prolactinoma; however, with this therapy, drug resistance often occurs. In our previous work, we found that partial resistant prolactinomas showed increased fibrosis and that the transforming growth factor (TGF)-β1/Smad3 signaling pathway mediated fibrosis and was involved in drug resistance. Additionally, the success of surgery is known to be heavily influenced by the consistency of the pituitary adenoma. Therefore, in this study, we aimed to clarify the mechanisms of fibrosis in prolactinoma. Using high-throughput sequencing for analysis of microRNAs, we found that miR-93-5p was significantly upregulated in prolactinoma samples with a high degree of fibrosis compared with that in samples without fibrosis. Furthermore, we found that miR-93-5p was negatively correlated with the relative expression of Smad7 and positively correlated with the relative expression of TGF-β1 in clinical prolactinoma samples. In addition, luciferase reporter assays showed that miR-93-5p could downregulate the Smad7 gene, an important inhibitor of the TGF-β1/Smad3 signaling pathway, and activate TGF-β1/Smad3 signaling-mediated fibrosis in a feed-forward loop. Moreover, miR-93-5p could enhance the drug resistance of prolactinoma cells by regulation of TGF-β1/Smad3-dependent fibrosis. Taken together, our findings demonstrated that miR-93-5p may be a potential therapeutic target for inhibiting fibrosis and reducing drug resistance in prolactinoma cells.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiu Du
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|