1
|
Tarantino G, Citro V. Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events. IMMUNO 2024; 4:479-501. [DOI: 10.3390/immuno4040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
The aim of this review was to gather pieces of information from available critically evaluated published articles concerning any interplay in which the spleen could be involved. For many years, the spleen has been alleged as an unnecessary biological structure, even though splenomegaly is an objective finding of many illnesses. Indeed, the previous opinion has been completely changed. In fact, the spleen is not a passive participant in or a simple bystander to a relationship that exists between the immune system and other organs. Recently, it has been evidenced in many preclinical and clinical studies that there are close associations between the spleen and other parts of the body, leading to various spleen–organ axes. Among them, the gut–spleen axis, the liver–spleen axis, the gut–spleen–skin axis, the brain–spleen axis, and the cardio-splenic axis are the most explored and present in the medical literature. Such recent sources of evidence have led to revolutionary new ideas being developed about the spleen. What is more, these observations may enable the identification of novel therapeutic strategies targeted at various current diseases. The time has come to make clear that the spleen is not a superfluous body part, while health system operators and physicians should pay more attention to this organ. Indeed, much work remains to be performed to assess further roles that this biological structure could play.
Collapse
Affiliation(s)
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, 84014 Nocera Inferiore, Italy
| |
Collapse
|
2
|
Papastergiou E, Rallis D, Papagianni A, Cholevas V, Katzilakis N, Siomou E, Stiakaki E, Makis A. Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections. BIOLOGY 2024; 13:728. [PMID: 39336155 PMCID: PMC11428972 DOI: 10.3390/biology13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
We intend to evaluate the association of intact Fibroblast Growth Factor 23 (i-FGF23), a phosphaturic hormone that contributes to anemia of inflammation, with markers of iron homeostasis, inflammation, and bone mineral metabolism in acute pediatric infections. Seventy-nine children, aged 1 month-13 years, out of which forty-two were males and thirty-seven females, participated in this study. Children with diseases and nutrient deficiencies causing anemia were excluded. Twenty-six patients had bacterial infections, twenty-six had viral infections, and twenty-seven children served as healthy controls. Complete blood count, markers of inflammation, iron and mineral metabolism, serum hepcidin, and i-FGF23 were compared between the groups. Thirty-nine percent of patients with bacterial infection and twelve percent of patients with viral infection presented characteristics of anemia of inflammation (p < 0.001). Ninety-two percent of patients with bacterial infection and eighty-one percent of patients with viral infection had functional iron deficiency (p < 0.001). Hepcidin was significantly positively correlated with the duration of fever, markers of inflammation, and negatively with iron, mineral metabolism parameters, and i-FGF23. i-FGF23 was positively correlated with iron metabolism parameters and negatively with the duration of fever, markers of inflammation, and hepcidin. Hepcidin levels increase, whereas i-FGF23 levels decrease in acute pediatric infections. Further research is required to understand the role of FGF23 in the hepcidin-ferroportin axis and for hepcidin in the diagnosis of bacterial infections and mineral metabolism.
Collapse
Affiliation(s)
- Eleni Papastergiou
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Postgraduate Program “Hematology-Oncology in Childhood and Adolescence” of Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Afroditi Papagianni
- Laboratory of Child Health, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios Cholevas
- Laboratory of Child Health, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Postgraduate Program “Hematology-Oncology in Childhood and Adolescence” of Medical School, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Postgraduate Program “Hematology-Oncology in Childhood and Adolescence” of Medical School, University of Crete, 71003 Heraklion, Greece
| | - Alexandros Makis
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Laboratory of Child Health, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Courbon G, David V. Fibroblast growth factor 23 is pumping iron: C-terminal-fibroblast growth factor 23 cleaved peptide and its function in iron metabolism. Curr Opin Nephrol Hypertens 2024; 33:368-374. [PMID: 38661434 DOI: 10.1097/mnh.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Guillaume Courbon
- INSERM U1059 SAINBIOSE, University of St Etienne, Mines St Etienne, St Etienne, France
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Ay B, Cyr SM, Klovdahl K, Zhou W, Tognoni CM, Iwasaki Y, Rhee EP, Dedeoglu A, Simic P, Bastepe M. Gα11 deficiency increases fibroblast growth factor 23 levels in a mouse model of familial hypocalciuric hypercalcemia. JCI Insight 2024; 9:e178993. [PMID: 38530370 PMCID: PMC11141917 DOI: 10.1172/jci.insight.178993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1β levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH - at least those with GNA11 mutations - may be at risk for these complications.
Collapse
Affiliation(s)
- Birol Ay
- Endocrine Unit, Department of Medicine, and
| | | | | | - Wen Zhou
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M. Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Eugene P Rhee
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, USA
| | - Petra Simic
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Hamid AK, Pastor Arroyo EM, Calvet C, Hewitson TD, Muscalu ML, Schnitzbauer U, Smith ER, Wagner CA, Egli-Spichtig D. Phosphate Restriction Prevents Metabolic Acidosis and Curbs Rise in FGF23 and Mortality in Murine Folic Acid-Induced AKI. J Am Soc Nephrol 2024; 35:261-280. [PMID: 38189228 PMCID: PMC10914210 DOI: 10.1681/asn.0000000000000291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
SIGNIFICANCE STATEMENT Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.
Collapse
Affiliation(s)
- Ahmad Kamal Hamid
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Charlotte Calvet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Timothy D. Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Maria Lavinia Muscalu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Edward R. Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
6
|
Michael FM, Patel SP, Bachstetter AD, Rabchevsky AG. Proinflammatory and Immunomodulatory Gene and Protein Expression Patterns in Spinal Cord and Spleen Following Acute and Chronic High Thoracic Injury. J Inflamm Res 2023; 16:3341-3349. [PMID: 37576153 PMCID: PMC10423003 DOI: 10.2147/jir.s417435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction In addition to paralysis and loss of sensation, high-level spinal cord injury (SCI) causes sympathetic dysfunction that can lead to autonomic dysreflexia (AD) and chronic immune suppression involving splenic leukopenia. Evidence has shown that treatment with either gabapentin or blockade of TNFα mitigates maladaptive plasticity and the underlying hemodynamic dysfunction, spleen atrophy, and immune dysfunction associated with AD. Because significant improvements long term was noted following treatments only during acute stages of recovery, we sought to systematically examine changes in proinflammatory and immunomodulatory cytokines to ascertain the reason. Methods Adult female Wistar rats underwent complete T4 spinal transection before euthanasia at systematic intervals from 3 days to 8 weeks after injury. Using qRT-PCR and meso scale discovery (MSD) assays, the gene and protein expression of TNFα and IFNγ in the spleen, upper thoracic (T4-9) and lumbosacral (L5-S6) spinal cords were analyzed. Results We found that spleen atrophy occurs in a biphasic manner compared to naïve controls, with significant decreases in the spleen mass noted at 3 days and 8 weeks after injury. Splenic TNFα mRNA and protein levels did not change significantly over time, while IFNγ gene expression dipped acutely with trends for increased protein levels at more chronic time points. TNFα protein increased significantly only in thoracic spinal cord segments from 3 to 14 days post-injury. IFNγ mRNA and protein levels remained unelevated in injured spinal cords over time, with trends for increased protein levels at 2 and 8 weeks in the lumbosacral segments. Discussion Novel temporal-spatial cytokine expression profiles reveal that TNFα protein levels are increased solely in upper thoracic segments after high thoracic SCI, while IFNγ remains unaltered. Splenic leukopenia and latent systemic immunosuppression are not associated with altered TNFα or IFNγ expression in the spleen or spinal cord.
Collapse
Affiliation(s)
- Felicia M Michael
- Department of Physiology, University of Kentucky, Lexington, KY, 40536-0509, USA
- Spinal Cord & Brain Injury Research Center (SCoBIRC); University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samir P Patel
- Department of Physiology, University of Kentucky, Lexington, KY, 40536-0509, USA
- Spinal Cord & Brain Injury Research Center (SCoBIRC); University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center (SCoBIRC); University of Kentucky, Lexington, KY, 40536-0509, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Alexander G Rabchevsky
- Department of Physiology, University of Kentucky, Lexington, KY, 40536-0509, USA
- Spinal Cord & Brain Injury Research Center (SCoBIRC); University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
7
|
Courbon G, Thomas JJ, Martinez-Calle M, Wang X, Spindler J, Von Drasek J, Hunt-Tobey B, Mehta R, Isakova T, Chang W, Creemers JWM, Ji P, Martin A, David V. Bone-derived C-terminal FGF23 cleaved peptides increase iron availability in acute inflammation. Blood 2023; 142:106-118. [PMID: 37053547 PMCID: PMC10356820 DOI: 10.1182/blood.2022018475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammation leads to functional iron deficiency by increasing the expression of the hepatic iron regulatory peptide hepcidin. Inflammation also stimulates fibroblast growth factor 23 (FGF23) production by increasing both Fgf23 transcription and FGF23 cleavage, which paradoxically leads to excess in C-terminal FGF23 peptides (Cter-FGF23), rather than intact FGF23 (iFGF23) hormone. We determined that the major source of Cter-FGF23 is osteocytes and investigated whether Cter-FGF23 peptides play a direct role in the regulation of hepcidin and iron metabolism in response to acute inflammation. Mice harboring an osteocyte-specific deletion of Fgf23 showed a ∼90% reduction in Cter-FGF23 levels during acute inflammation. Reduction in Cter-FGF23 led to a further decrease in circulating iron in inflamed mice owing to excessive hepcidin production. We observed similar results in mice showing impaired FGF23 cleavage owing to osteocyte-specific deletion of Furin. We next showed that Cter-FGF23 peptides bind members of the bone morphogenetic protein (BMP) family, BMP2 and BMP9, which are established inducers of hepcidin. Coadministration of Cter-FGF23 and BMP2 or BMP9 prevented the increase in Hamp messenger RNA and circulating hepcidin levels induced by BMP2/9, resulting in normal serum iron levels. Finally, injection of Cter-FGF23 in inflamed Fgf23KO mice and genetic overexpression of Cter-Fgf23 in wild type mice also resulted in lower hepcidin and higher circulating iron levels. In conclusion, during inflammation, bone is the major source of Cter-FGF23 secretion, and independently of iFGF23, Cter-FGF23 reduces BMP-induced hepcidin secretion in the liver.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John Von Drasek
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA
| | | | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
8
|
Liesen MP, Noonan ML, Ni P, Agoro R, Hum JM, Clinkenbeard EL, Damrath JG, Wallace JM, Swallow EA, Allen MR, White KE. Segregating the effects of ferric citrate-mediated iron utilization and FGF23 in a mouse model of CKD. Physiol Rep 2022; 10:e15307. [PMID: 35656701 PMCID: PMC9163801 DOI: 10.14814/phy2.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.
Collapse
Affiliation(s)
- Michael P. Liesen
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Megan L. Noonan
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Pu Ni
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rafiou Agoro
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Julia M. Hum
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Erica L. Clinkenbeard
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - John G. Damrath
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Joseph M. Wallace
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Matthew R. Allen
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth E. White
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
9
|
Hanudel MR, Czaya B, Wong S, Jung G, Chua K, Qiao B, Gabayan V, Ganz T. Renoprotective effects of ferric citrate in a mouse model of chronic kidney disease. Sci Rep 2022; 12:6695. [PMID: 35461329 PMCID: PMC9035171 DOI: 10.1038/s41598-022-10842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn chronic kidney disease, ferric citrate has been shown to be an effective phosphate binder and source of enteral iron; however, the effects of ferric citrate on the kidney have been less well-studied. Here, in Col4α3 knockout mice—a murine model of progressive chronic kidney disease, we evaluated the effects of five weeks of 1% ferric citrate dietary supplementation. As expected, ferric citrate lowered serum phosphate concentrations and increased serum iron levels in the Col4α3 knockout mice. Consistent with decreased enteral phosphate absorption and possibly improved iron status, ferric citrate greatly reduced circulating fibroblast growth factor 23 levels. Interestingly, ferric citrate also lessened systemic inflammation, improved kidney function, reduced albuminuria, and decreased kidney inflammation and fibrosis, suggesting renoprotective effects of ferric citrate in the setting of chronic kidney disease. The factors mediating possible ferric citrate renoprotection, the mechanisms by which they may act, and whether ferric citrate affects chronic kidney disease progression in humans deserves further study.
Collapse
|
10
|
Kumar P, Liu Y, Shen Y, Maher JJ, Cingolani F, Czaja MJ. Mouse liver injury induces hepatic macrophage FGF23 production. PLoS One 2022; 17:e0264743. [PMID: 35231062 PMCID: PMC8887750 DOI: 10.1371/journal.pone.0264743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 01/22/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a bone marrow cell produced hormone that functions in the intestine and kidney to regulate phosphate homeostasis. Increased serum FGF23 is a well-established predictor of mortality in renal disease, but recent findings linking increased levels to hepatic and cardiac diseases have suggested that other organs are sources of FGF23 or targets of its effects. The potential ability of the liver to produce FGF23 in response to hepatocellular injury was therefore examined. Very low levels of Fgf23 mRNA and FGF23 protein were detected in normal mouse liver, but the amounts increased markedly during acute liver injury from the hepatotoxin carbon tetrachloride. Serum levels of intact FGF23 were elevated during liver injury from carbon tetrachloride. Chronic liver injury induced by a high fat diet or elevated bile acids also increased hepatic FGF23 levels. Stimulation of toll-like receptor (TLR) 4-driven inflammation by gut-derived lipopolysaccharide (LPS) underlies many forms of liver injury, and LPS induced Fgf23 in the liver as well as in other organs. The LPS-inducible cytokines IL-1β and TNF increased hepatic Fgf23 expression as did a TLR2 agonist Pam2CSK3. Analysis of Fgf23 expression and FGF23 secretion in different hepatic cell types involved in liver injury identified the resident liver macrophage or Kupffer cell as a source of hepatic FGF23. LPS and cytokines selectively induced the hormone in these cells but not in hepatocytes or hepatic stellate cells. FGF23 failed to exert any autocrine effect on the inflammatory state of Kupffer cells but did trigger proinflammatory activation of hepatocytes. During liver injury inflammatory factors induce Kupffer cell production of FGF23 that may have a paracrine proinflammatory effect on hepatocytes. Liver-produced FGF23 may have systemic hormonal effects as well that influence diseases in in other organs.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yang Shen
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jacquelyn J. Maher
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Francesca Cingolani
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mark J. Czaja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Alber J, Föller M. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells. Mol Cell Biochem 2022; 477:363-370. [PMID: 34731356 PMCID: PMC8800909 DOI: 10.1007/s11010-021-04287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Endocrine and paracrine fibroblast growth factor 23 (FGF23) is a protein predominantly produced by bone cells with strong impact on phosphate and vitamin D metabolism by targeting the kidney. Plasma FGF23 concentration early rises in kidney and cardiovascular diseases correlating with progression and outcome. Lactic acid is generated in anaerobic glycolysis. Lactic acidosis is the consequence of various physiological and pathological conditions and may be fatal. Since FGF23 production is stimulated by inflammation and lactic acid induces pro-inflammatory signaling, we investigated whether and how lactic acid influences FGF23. Experiments were performed in UMR106 osteoblast-like cells, Fgf23 mRNA levels estimated from quantitative real-time polymerase chain reaction, and FGF23 protein determined by enzyme-linked immunosorbent assay. Lactic acid dose-dependently induced Fgf23 gene expression and up-regulated FGF23 synthesis. Also, Na+-lactate as well as formic acid and acetic acid up-regulated Fgf23. The lactic acid effect was significantly attenuated by nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB) inhibitors wogonin and withaferin A. Lactic acid induces FGF23 production, an effect at least in part mediated by NFκB. Lactic acidosis may, therefore, be paralleled by a surge in plasma FGF23.
Collapse
Affiliation(s)
- Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
12
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
13
|
Bayer J, Vaghela R, Drechsler S, Osuchowski MF, Erben RG, Andrukhova O. The bone is the major source of high circulating intact fibroblast growth factor-23 in acute murine polymicrobial sepsis induced by cecum ligation puncture. PLoS One 2021; 16:e0251317. [PMID: 33989306 PMCID: PMC8121358 DOI: 10.1371/journal.pone.0251317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23), a bone-produced hormone, plays a critical role in mineral homeostasis. Human diseases associated with excessive intact circulating FGF23 (iFGF23) result in hypophosphatemia and low vitamin D hormone in patients with normal kidney function. In addition, there is accumulating evidence linking FGF23 with inflammation. Based on these studies and the frequent observation of hypophosphatemia among septic patients, we sought to elucidate further the relationship between FGF23 and mineral homeostasis in a clinically relevant murine polymicrobial sepsis model. Medium-severity sepsis was induced by cecum ligation puncture (CLP) in adult CD-1 mice of both sexes. Healthy CD-1 mice (without CLP) were used as controls. Forty-eight hours post-CLP, spontaneous urine was collected, and serum, organs and bones were sampled at necropsy. Serum iFGF23 increased ~20-fold in CLP compared to control mice. FGF23 protein concentration was increased in the bones, but not in spleen or liver of CLP mice. Despite the ~20-fold iFGF23 increase, we did not observe any significant changes in mineral homeostasis or parathyroid hormone levels in the blood of CLP animals. Urinary excretion of phosphate, calcium, and sodium remained unchanged in male CLP mice, whereas female CLP mice exhibited lower urinary calcium excretion, relative to healthy controls. In line with renal FGF23 resistance, expression of phosphate-, calcium- and sodium-transporting proteins did not show consistent changes in the kidneys of male and female CLP mice. Renal expression of the co-receptor αKlotho was downregulated in female, but not in male CLP mice. In conclusion, our data demonstrate that the dramatic, sex-independent rise in serum iFGF23 post-CLP was mainly caused by an upregulation of FGF23 secretion in the bone. Surprisingly, the upsurge in circulating iFGF23 did not alter humoral mineral homeostasis in the acutely septic mice. Hence, the biological function of elevated FGF23 in sepsis remains unclear and warrants further studies.
Collapse
Affiliation(s)
- Jessica Bayer
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ravikumar Vaghela
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
14
|
Agoro R, Park MY, Le Henaff C, Jankauskas S, Gaias A, Chen G, Mohammadi M, Sitara D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021; 106:391-403. [PMID: 32193252 PMCID: PMC7849576 DOI: 10.3324/haematol.2019.237040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLR), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte- secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wildtype mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.
Collapse
Affiliation(s)
- Rafiou Agoro
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Min Young Park
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Carole Le Henaff
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | | | - Alina Gaias
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Gaozhi Chen
- Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China
| | - Moosa Mohammadi
- Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, USA
| | - Despina Sitara
- NYU College of Dentistry and NYU School of Medicine, New York, USA
| |
Collapse
|
15
|
Sun S, Liu Z, Chen C, Wang Z, Jin H, Meng X, Dai B, Zhang L, Zhou C, Xue C, Li X. Serum fibroblast growth factor 23 for early detection of acute kidney injury in critical illness. Am J Transl Res 2021; 13:12141-12151. [PMID: 34956442 PMCID: PMC8661170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 03/18/2023]
Abstract
BACKGROUND Serum fibroblast growth factor 23 (FGF23) is associated with acute kidney injury (AKI) and mortality in patients with critical illnesses. However, the accurate predictive performance of FGF23 on AKI remains inconclusive. METHODS Meta-analysis was performed using data sources including PubMed, Web of Science, EMBASE, and Cochrane (until June 1, 2021). Cohort or observational studies including patients with AKI and serum FGF23 level as the index test were included. The primary outcome was the AKI detective accuracy. This study has been registered in PROSPERO (CRD42021249930). RESULTS Eleven studies with 1946 patients in seven countries were included. Across all settings, the sensitivity and specificity for serum FGF23 levels to predict AKI were 82% (95% CI, 66-91%) and 77% (95% CI, 67-85%), respectively. The diagnostic odds ratio of FGF23 was 15.51 (95% CI, 4.89-49.19), with the pooled positive likelihood ratio of 3.62 (95% CI, 2.25-5.83) and a negative likelihood ratio of 0.23 (95% CI, 0.11-0.50). The area under the receiver operating characteristic curve to detect AKI was 0.86 (95% CI, 0.82-0.88). C-terminal FGF23 had a better performance than intact FGF23. CONCLUSIONS Plasma FGF23 is a valuable biomarker for incident AKI in critically ill patients. Comparisons of FGF23 with other biomarkers in AKI still need more studies to prove.
Collapse
Affiliation(s)
- Shu Sun
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China
| | - Zhijia Liu
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China
| | - Changqing Chen
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China
| | - Zhisong Wang
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China
| | - Hailong Jin
- Organ Transplantation Center, The 3rd Medical Center of Chinese PLA General Hospital Beijing 100039, China
| | - Xiaoyun Meng
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China
| | - Bing Dai
- Division of Nephrology, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Liming Zhang
- Department of Nephrology, Zhabei Central Hospital of Jingan District of Shanghai Shanghai 200000, China
| | - Chenchen Zhou
- Outpatient Department, Yangpu Third Military Retreat Shanghai 200000, China.,Department of Nephrology, Yueyang Hospital Shanghai 200000, China
| | - Cheng Xue
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China.,Division of Nephrology, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Xiang Li
- Department of Urology, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091, China
| |
Collapse
|
16
|
Block GA, Rosenbaum DP, Yan A, Greasley PJ, Chertow GM, Wolf M. The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol Dial Transplant 2020; 34:339-346. [PMID: 29617976 PMCID: PMC6365767 DOI: 10.1093/ndt/gfy061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/20/2018] [Indexed: 01/12/2023] Open
Abstract
Background Elevated serum fibroblast growth factor 23 (FGF23) is strongly associated with cardiovascular risk and mortality. Tenapanor, an inhibitor of gastrointestinal sodium/hydrogen exchanger isoform 3, decreased serum phosphate in a randomized, double-blind, placebo-controlled Phase 2 trial (ClinicalTrials.gov identifier NCT02081534) of patients receiving hemodialysis with hyperphosphatemia. Here, we report a secondary analysis of effects on serum FGF23 during that study. Methods After 1–3 weeks of washout of phosphate binders, 162 patients were randomized to receive 4 weeks of treatment with placebo or one of six tenapanor regimens (3 or 30 mg once daily, or 1, 3, 10 or 30 mg twice daily). Intact FGF23 concentrations were determined from serum samples collected at screening, post-washout and end of treatment, assayed in duplicate in a single batch at the end of the study. Results After phosphate-binder washout, serum FGF23 concentrations increased in all groups [range of geometric means: 1430–2605 pg/mL before, to 2601–6294 pg/mL after washout (P < 0.001 for all patients analyzed as a single group)]. Serum FGF23 concentrations subsequently decreased in tenapanor-treated patients (2030–3563 pg/mL), whereas they increased further in placebo-treated patients (6930 pg/mL). In an analysis of covariance, FGF23 decreased by 9.1–27.9% in tenapanor-treated patients and increased by 21.9% in placebo-treated patients (P ≤ 0.001–0.04). Conclusions Following a marked increase in serum FGF23 in response to withdrawal of phosphate binders, tenapanor significantly decreased serum FGF23 in patients receiving hemodialysis with hyperphosphatemia. Further studies are required to explore the long-term effects of controlling FGF23 with tenapanor.
Collapse
Affiliation(s)
| | | | | | | | | | - Myles Wolf
- Duke University School of Medicine and Duke Clinical Research Institute, Durham, NC, USA
| |
Collapse
|
17
|
Matthias J, Cui Q, Shumate LT, Plagge A, He Q, Bastepe M. Extra-Large Gα Protein (XLαs) Deficiency Causes Severe Adenine-Induced Renal Injury with Massive FGF23 Elevation. Endocrinology 2020; 161:5638044. [PMID: 31758181 PMCID: PMC6986553 DOI: 10.1210/endocr/bqz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is critical for phosphate and vitamin D homeostasis. Cellular and molecular mechanisms underlying FGF23 production remain poorly defined. The extra-large Gα subunit (XLαs) is a variant of the stimulatory G protein alpha-subunit (Gsα), which mediates the stimulatory action of parathyroid hormone in skeletal FGF23 production. XLαs ablation causes diminished FGF23 levels in early postnatal mice. Herein we found that plasma FGF23 levels were comparable in adult XLαs knockout (XLKO) and wild-type littermates. Upon adenine-rich diet-induced renal injury, a model of chronic kidney disease, both mice showed increased levels of plasma FGF23. Unexpectedly, XLKO mice had markedly higher FGF23 levels than WT mice, with higher blood urea nitrogen and more severe tubulopathy. FGF23 mRNA levels increased substantially in bone and bone marrow in both genotypes; however, the levels in bone were markedly higher than in bone marrow. In XLKO mice, a positive linear correlation was observed between plasma FGF23 and bone, but not bone marrow, FGF23 mRNA levels, suggesting that bone, rather than bone marrow, is an important contributor to severely elevated FGF23 levels in this model. Upon folic acid injection, a model of acute kidney injury, XLKO and WT mice exhibited similar degrees of tubulopathy; however, plasma phosphate and FGF23 elevations were modestly blunted in XLKO males, but not in females, compared to WT counterparts. Our findings suggest that XLαs ablation does not substantially alter FGF23 production in adult mice but increases susceptibility to adenine-induced kidney injury, causing severe FGF23 elevations in plasma and bone.
Collapse
Affiliation(s)
- Julia Matthias
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qiuxia Cui
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lauren T Shumate
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: Murat Bastepe, MD, PhD, 50 Blossom St. Thier 10 Boston, MA 02114, USA. E-mail: and Qing He, PhD 50 Blossom St. Thier 10 Boston, Massachusetts 02114, USA. E-mail:
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: Murat Bastepe, MD, PhD, 50 Blossom St. Thier 10 Boston, MA 02114, USA. E-mail: and Qing He, PhD 50 Blossom St. Thier 10 Boston, Massachusetts 02114, USA. E-mail:
| |
Collapse
|
18
|
Daryadel A, Natale L, Seebeck P, Bettoni C, Schnitzbauer U, Gassmann M, Wagner CA. Elevated FGF23 and disordered renal mineral handling with reduced bone mineralization in chronically erythropoietin over-expressing transgenic mice. Sci Rep 2019; 9:14989. [PMID: 31628396 PMCID: PMC6802194 DOI: 10.1038/s41598-019-51577-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) is a phosphaturic factor causing increased renal phosphate excretion as well as suppression of 1,25 (OH)2-vitamin D3. Highly elevated FGF23 can promote development of rickets and osteomalacia. We and others previously reported that acute application of erythropoietin (EPO) stimulates FGF23 production. Considering that EPO is clinically used as chronic treatment against anemia, we used here the Tg6 mouse model that constitutively overexpresses human EPO in an oxygen-independent manner, to examine the consequences of long-term EPO therapy on mineral and bone metabolism. Six to eight weeks old female Tg6 mice showed elevated intact and C-terminal fragment of FGF23 but normal plasma levels of PTH, calcitriol, calcium and phosphate. Renal function showed moderate alterations with higher urea and creatinine clearance and mild albuminuria. Renal phosphate excretion was normal whereas mild hypercalciuria was found. Renal expression of the key proteins TRPV5 and calbindin D28k involved in active calcium reabsorption was reduced in Tg6 mice. Plasma levels of the bone turnover marker osteocalcin were comparable between groups. However, urinary excretion of deoxypyridinoline (DPD) was lower in Tg6 mice. MicroCT analysis showed reduced total, cortical, and trabecular bone mineral density in femora from Tg6 mice. Our data reveal that chronic elevation of EPO is associated with high FGF23 levels and disturbed mineral homeostasis resulting in reduced bone mineral density. These observations imply the need to study the impact of therapeutically applied EPO on bone mineralization in patients, especially those suffering from chronic kidney disease.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Luciano Natale
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland. .,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland.
| |
Collapse
|
19
|
FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2019; 16:7-19. [PMID: 31519999 DOI: 10.1038/s41581-019-0189-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This 'liquid bone biopsy for FGF23 dynamics' enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.
Collapse
|
20
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
21
|
de Borst MH. Interaction between inflammation, mineral metabolism and the renin-angiotensin system: implications for cardiorenal outcomes in chronic kidney disease. Nephrol Dial Transplant 2019; 34:547-551. [PMID: 30957171 DOI: 10.1093/ndt/gfz036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Egli-Spichtig D, Zhang MYH, Perwad F. Fibroblast Growth Factor 23 Expression Is Increased in Multiple Organs in Mice With Folic Acid-Induced Acute Kidney Injury. Front Physiol 2018; 9:1494. [PMID: 30405444 PMCID: PMC6206018 DOI: 10.3389/fphys.2018.01494] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and vitamin D metabolism. In patients with acute kidney injury (AKI), FGF23 levels rise rapidly after onset of AKI and are associated with AKI progression and increased mortality. In mouse models of AKI, excessive rise in FGF23 levels is accompanied by a moderate increase in FGF23 expression in bone. We examined the folic acid-induced AKI (FA-AKI) mouse model to determine whether other organs contribute to the increase in plasma FGF23 and assessed the vitamin D axis as a possible trigger for increased Fgf23 gene expression. Twenty-four hours after initiation of FA-AKI, plasma intact FGF23 and 1,25(OH)2D were increased and kidney function declined. FA-treated mice developed renal inflammation as shown by increased Tnf and Tgfb mRNA expression. Fgf23 mRNA expression was 5- to 15-fold upregulated in thymus, spleen and heart of FA-treated mice, respectively, but only 2-fold in bone. Ectopic renal Fgf23 mRNA expression was also detected in FA-AKI mice. Plasma FGF23 and Fgf23 mRNA expression in thymus, spleen, heart, and bone strongly correlated with renal Tnf mRNA expression. Furthermore, Vdr mRNA expression was upregulated in spleen, thymus and heart and strongly correlated with Fgf23 mRNA expression in the same organ. In conclusion, the rapid rise in plasma FGF23 in FA-AKI mice is accompanied by increased Fgf23 mRNA expression in multiple organs and increased Vdr expression in extra osseous tissues together with increased plasma 1,25(OH)2D and inflammation may trigger the rise in FGF23 in FA-AKI.
Collapse
Affiliation(s)
- Daniela Egli-Spichtig
- Department of Pediatrics, Division of Nephrology, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Y H Zhang
- Department of Pediatrics, Division of Nephrology, University of California, San Francisco, San Francisco, CA, United States
| | - Farzana Perwad
- Department of Pediatrics, Division of Nephrology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
23
|
Bora SA, Kennett MJ, Smith PB, Patterson AD, Cantorna MT. The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23. Front Immunol 2018; 9:408. [PMID: 29599772 PMCID: PMC5863497 DOI: 10.3389/fimmu.2018.00408] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
To determine the effect of the microbiota on vitamin D metabolism, serum 25-hydroxyvitamin D(25D), 24,25-dihydroxyvitamin D (24,25D), and 1,25-dihydroxyvitamin D (1,25D) were measured in germ-free (GF) mice before and after conventionalization (CN). GF mice had low levels of 25D, 24,25D, and 1,25D and were hypocalcemic. CN of the GF mice with microbiota, for 2 weeks recovered 25D, 24,25D, and 1,25D levels. Females had more 25D and 24,25D than males both as GF mice and after CN. Introducing a limited number of commensals (eight commensals) increased 25D and 24,25D to the same extent as CN. Monocolonization with the enteric pathogen Citrobacter rodentium increased 25D and 24,25D, but the values only increased after 4 weeks of C. rodentium colonization when inflammation resolved. Fibroblast growth factor (FGF) 23 was extremely high in GF mice. CN resulted in an increase in TNF-α expression in the colon 2 days after CN that coincided with a reduction in FGF23 by 3 days that eventually normalized 25D, 24,25D, 1,25D at 1-week post-CN and reinstated calcium homeostasis. Neutralization of FGF23 in GF mice raised 1,25D, without CN, demonstrating that the high FGF23 levels were responsible for the low calcium and 1,25D in GF mice. The microbiota induce inflammation in the GF mice that inhibits FGF23 to eventually reinstate homeostasis that includes increased 25D, 24,25D, and 1,25D levels. The microbiota through FGF23 regulates vitamin D metabolism.
Collapse
Affiliation(s)
- Stephanie A Bora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States.,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Philip B Smith
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States.,Eberly College of Science, The Pennsylvania State University, University Park, PA, United States
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States.,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States.,Eberly College of Science, The Pennsylvania State University, University Park, PA, United States
| | - Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States.,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
24
|
Richter B, Faul C. FGF23 Actions on Target Tissues-With and Without Klotho. Front Endocrinol (Lausanne) 2018; 9:189. [PMID: 29770125 PMCID: PMC5940753 DOI: 10.3389/fendo.2018.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 is a phosphaturic hormone whose physiologic actions on target tissues are mediated by FGF receptors (FGFR) and klotho, which functions as a co-receptor that increases the binding affinity of FGF23 for FGFRs. By stimulating FGFR/klotho complexes in the kidney and parathyroid gland, FGF23 reduces renal phosphate uptake and secretion of parathyroid hormone, respectively, thereby acting as a key regulator of phosphate metabolism. Recently, it has been shown that FGF23 can also target cell types that lack klotho. This unconventional signaling event occurs in an FGFR-dependent manner, but involves other downstream signaling pathways than in "classic" klotho-expressing target organs. It appears that klotho-independent signaling mechanisms are only activated in the presence of high FGF23 concentrations and result in pathologic cellular changes. Therefore, it has been postulated that massive elevations in circulating levels of FGF23, as found in patients with chronic kidney disease, contribute to associated pathologies by targeting cells and tissues that lack klotho. This includes the induction of cardiac hypertrophy and fibrosis, the elevation of inflammatory cytokine expression in the liver, and the inhibition of neutrophil recruitment. Here, we describe the signaling and cellular events that are caused by FGF23 in tissues lacking klotho, and we discuss FGF23's potential role as a hormone with widespread pathologic actions. Since the soluble form of klotho can function as a circulating co-receptor for FGF23, we also discuss the potential inhibitory effects of soluble klotho on FGF23-mediated signaling which might-at least partially-underlie the pleiotropic tissue-protective functions of klotho.
Collapse
|
25
|
Slavic S, Ford K, Modert M, Becirovic A, Handschuh S, Baierl A, Katica N, Zeitz U, Erben RG, Andrukhova O. Genetic Ablation of Fgf23 or Klotho Does not Modulate Experimental Heart Hypertrophy Induced by Pressure Overload. Sci Rep 2017; 7:11298. [PMID: 28900153 PMCID: PMC5595838 DOI: 10.1038/s41598-017-10140-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Left ventricular hypertrophy (LVH) ultimately leads to heart failure in conditions of increased cardiac pre- or afterload. The bone-derived phosphaturic and sodium-conserving hormone fibroblast growth factor-23 (FGF23) and its co-receptor Klotho have been implicated in the development of uremic LVH. Using transverse aortic constriction (TAC) in gene-targeted mouse models, we examine the role of Fgf23 and Klotho in cardiac hypertrophy and dysfunction induced by pressure overload. TAC profoundly increases serum intact Fgf23 due to increased cardiac and bony Fgf23 transcription and downregulation of Fgf23 cleavage. Aldosterone receptor blocker spironolactone normalizes serum intact Fgf23 levels after TAC by reducing bony Fgf23 transcription. Notably, genetic Fgf23 or Klotho deficiency does not influence TAC-induced hypertrophic remodelling, LV functional impairment, or LV fibrosis. Despite the profound, aldosterone-mediated increase in circulating intact Fgf23 after TAC, our data do not support an essential role of Fgf23 or Klotho in the pathophysiology of pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Svetlana Slavic
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristopher Ford
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Magalie Modert
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Amarela Becirovic
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | - Nejla Katica
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ute Zeitz
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|