1
|
Yang X, Wu X, Hao X, Li T, Guo H, Yang R. Unleashing the therapeutic potential of tumor-draining lymph nodes: spotlight on bladder cancer. J Transl Med 2025; 23:489. [PMID: 40301883 PMCID: PMC12042586 DOI: 10.1186/s12967-024-05864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 05/01/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are often involved during the metastasis of bladder cancer (BC), which is associated with a poor prognosis. Recent studies have shown that TDLNs are a major source of host anti-tumor immunity, which can impede tumor progression and favor tumor immunotherapy. However, during tumor progression, various tumor-derived mediators modulate the TDLN microenvironment, impairing their protective function. Ultimately, TDLNs provide the soil for the proliferation and dissemination of tumor cells. Therefore, surgical removal of TDLNs is commonly recommended in various solid tumors to prevent metastasis, but this poses significant challenges for leveraging TDLNs in immunotherapy. Additionally, lymph node dissection (LND) has not shown survival benefits in some tumors. Hence, the decision to remove TDLNs in oncological treatment needs to be reconsidered. Herein, we spotlight the TDLNs of BC and introduce how BC cells modulate stromal cells and immune cells to shape an immunosuppressive TDLN microenvironment for BC progression. We summarize the existing therapeutic strategies to reinvigorate anti-tumor immunity in TDLNs. Furthermore, we discuss whether to preserve TDLNs and the role of LND during oncological treatment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuyang Hao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Yang C, Cai YX, Wang ZF, Tian SF, Li ZQ. Tertiary lymphoid structures in the central nervous system. Trends Mol Med 2024:S1471-4914(24)00281-8. [PMID: 39578120 DOI: 10.1016/j.molmed.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Tertiary lymphoid structures (TLSs) frequently occur at sites of chronic inflammation. A more advanced stage of multiple sclerosis (MS) has been associated with certain TLSs. However, tumor-associated TLSs have been shown to correlate with a greater treatment response rate and a better prognosis in glioma mouse models. In this review, we evaluate the clinical significances of TLSs in prognosis and treatment response, as well as the status of TLS-directed therapies targeting alternative biochemical pathways in various central nervous system (CNS) disorders. Potential molecular mechanisms underlying the development of TLSs are also discussed. Exploring these areas may provide an essential understanding of the processes behind disease advancement, uncover new therapeutic objectives, and detect biomarkers that forecast disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu-Xiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
4
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
5
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
6
|
Yu T, Li D, Zeng Z, Xu X, Zhang H, Wu J, Song W, Zhu H. INSC Is Down-Regulated in Colon Cancer and Correlated to Immune Infiltration. Front Genet 2022; 13:821826. [PMID: 35664320 PMCID: PMC9161087 DOI: 10.3389/fgene.2022.821826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Previous studies have verified that Inscuteable Spindle Orientation Adaptor Protein (INSC) can regulate cell proliferation and differentiation in the developing nervous system. It also plays an important role in spindle orientation during mitosis and asymmetric division of fibroblasts and participates in the process of stratification of the squamous epithelium. The role and potential mechanism of INSC in the development of colonic adenocarcinoma (COAD) have not been fully understood. This study aimed at exploring the prognostic value of INSC in COAD and the correlation of its expression with immune infiltration.Methods: The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) project, Gene Expression Profiling Interactive Analysis (GEPIA), and Gene Expression Omnibus (GEO) database were used to analyze the expression of INSC in COAD. The INSC protein expression level was analyzed by immunohistochemistry staining and the Human Protein Atlas (HPA) database. The diagnostic and prognostic values of INSC in COAD patients were analyzed using receiver operating characteristic (ROC) and Kaplan–Meier (KM) survival curves. In order to understand whether INSC is an independent prognostic factor, we used univariable and multivariate Cox analyses to analyze INSC expression and several clinical characteristics with survival. We use STRING analysis to find INSC-related proteins and related biological events analyzed by Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. At last, GEPIA and the Tumor Immune Estimation Resource (TIMER) were employed to explore the relationship between INSC and immune infiltrates and its marker gene set.Results: INSC was lower expressed in COAD tissues than in normal colon tissues, which was correlated with tumor stage. Patients with lower expression of INSC had shorter overall survival (OS). Moreover, univariable Cox analysis demonstrated that high expression of INSC was an independent prognostic factor for COAD. ROC analysis showed INSC was an accurate marker for identifying tumors from normal colon tissue, and the AUC of the curve was 0.923. Significant GO term analysis by GSEA showed that genes correlated with INSC were found to be enriched in several immune-related pathways. Specifically, INSC expression showed significant negative correlations with infiltration levels of B cells, CD4+ T cells, macrophages, DCs, and their marker sets in COAD.Conclusion: INSC was provided with prognostic value in COAD and related to immune invasion.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, Integrated Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Yu, ; Hua Zhu,
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Tao Yu, ; Hua Zhu,
| |
Collapse
|
7
|
Liu W, Wang X, Feng X, Yu J, Liu X, Jia X, Zhang H, Wu H, Wang C, Wu J, Yu B, Yu X. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Lett 2022; 535:215661. [PMID: 35325845 DOI: 10.1016/j.canlet.2022.215661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator determining the antitumor effect of immunotherapy. Oncolytic viruses directly target tumor cells or indirectly modulate the tumor microenvironment (TME) especially when properly armed. It was previously demonstrated that conditionally replicating adenovirus serotype 5 (CRAd5) encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) had outstanding antitumor effects in different human cancer cells xenograft models; however, its antitumor immune mechanism has not been evaluated in immunocompetent preclinical mouse models. We first explored the antitumor activity of CRAd5-TRAIL in several murine tumor models and found that the expression of TRAIL induced increases or activation in tumor-infiltrating T cells. To further improve the antitumor effects, mouse CD40 ligand (mCD40L) as an immune activator expressed by recombinant Ad5 vector was firstly used in combination with CRAd5-TRAIL for tumor immunotherapy. Both in vitro and in vivo studies demonstrated that mCD40L effectively activated dendritic cells (DCs), B cells, and tumor-infiltrating T cells, and also promoted tumor cell apoptosis by increasing the expression of TRAIL receptors, thereby significantly enhancing the antitumor activity of oncolytic adenoviruses in CT26 and B16 tumor-bearing models. Although affected by the restriction of oncolytic adenovirus replication in mouse cells, the combination treatment failed to completely eliminate tumor cells, our research still provided a promising strategy for oncolytic adenovirus-mediated solid tumor immunotherapy.
Collapse
Affiliation(s)
- Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiahao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyuan Jia
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Lu SC, Hansen MJ, Hemsath JR, Parrett BJ, Zell BN, Barry MA. Modulating Oncolytic Adenovirus Immunotherapy by Driving Two Axes of the Immune System by Expressing 4-1BBL and CD40L. Hum Gene Ther 2022; 33:250-261. [PMID: 34731019 PMCID: PMC11981553 DOI: 10.1089/hum.2021.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses (OVs) can have utility for direct killing of cancer cells, but may also serve to activate the immune system against cancer cells. While viruses alone can serve as immune stimulators, there is great interest in arming OVs with genes encoding immune stimulatory proteins to amplify their effects. In this work, we have tested the efficacy of conditionally-replicating adenoviruses (CRAds) with and without selected immunostimulatory payloads, murine CD40L (mCD40L) or 4-1BBL (m4-1BBL), in an immune competent mouse model of melanoma. When CRAd657-m4-1BBL and CRAd657-mCD40L were injected into B16-hCAR murine melanoma tumors, both single vectors delayed tumor growth and prolong survival compared to empty CRAd657. However, combined injection of both CRAd-m4-1BBL and CRAd-mCD40L mediated significantly better control of tumor growth. All of the payloads increased immune cell infiltration into tumors and notably reduced expression of PD-1 exhaustion marker on T cells. Tumor volumes were negatively associated with total infiltrating T cell population. We found that the payloads increased immune cell infiltration into tumors with some specificities: recruitment of CD8+ T cells was higher with m4-1BBL expression, while mCD40L expression induced more CD4+ T cell infiltration. Importantly, the combination of CRAd657-m4-1BBL and CRAd657-mCD40L induced the highest immune cells/T cell infiltration and the highest anti-TRP-2 tumor-associated antigen T cell responses than empty or single gene vector. This combination also caused depigmentation in areas adjacent to the tumor sites in more animals. These data indicate that driving two axes of the immune system with combined immune stimulatory payloads can lead to improved anticancer immune responses and better tumor control in an immune competent model of cancer.
Collapse
Affiliation(s)
- Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Hansen
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Jack R. Hemsath
- Department of Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian J. Parrett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Brady N. Zell
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Grady C, Melnick K, Porche K, Dastmalchi F, Hoh DJ, Rahman M, Ghiaseddin A. Glioma Immunotherapy: Advances and Challenges for Spinal Cord Gliomas. Neurospine 2022; 19:13-29. [PMID: 35130421 PMCID: PMC8987559 DOI: 10.14245/ns.2143210.605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal cord gliomas are rare entities that often have limited surgical options. Immunotherapy has shown promise in intracranial gliomas with some research suggesting benefit for spinal cord gliomas. A focused review of immunotherapies that have been investigated in spinal cord gliomas was performed. The primary methods of immunotherapy investigated in spinal cord gliomas include immune checkpoint inhibitors, adoptive T-cell therapies, and vaccine strategies. There are innumerable challenges that must be overcome to effectively apply immunotherapeutic strategies to the spinal cord gliomas including low incidence, few antigenic targets, the blood spinal cord barrier, the immunosuppressive tumor microenvironment and neurotoxic treatment effects. Nonetheless, research has suggested ways to overcome these challenges and treatments have been effective in case reports for metastatic non-small cell lung cancer, melanoma, midline glioma and glioblastoma. Current therapies for spinal cord gliomas are markedly limited. Further research is needed to determine if the success of immunotherapy for intracranial gliomas can be effectively applied to these unique tumors.
Collapse
Affiliation(s)
- Clare Grady
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA,Corresponding Author Kaitlyn Melnick https://orcid.org/0000-0002-2657-2176 Department of Neurosurgery, University of Florida, Box 100265, Gainesville, FL, USA
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Daniel J. Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
van de Walle T, Vaccaro A, Ramachandran M, Pietilä I, Essand M, Dimberg A. Tertiary Lymphoid Structures in the Central Nervous System: Implications for Glioblastoma. Front Immunol 2021; 12:724739. [PMID: 34539661 PMCID: PMC8442660 DOI: 10.3389/fimmu.2021.724739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, which is uniformly lethal due to its extreme invasiveness and the absence of curative therapies. Immune checkpoint inhibitors have not yet proven efficacious for glioblastoma patients, due in part to the low prevalence of tumor-reactive T cells within the tumor microenvironment. The priming of tumor antigen-directed T cells in the cervical lymph nodes is complicated by the shortage of dendritic cells and lack of appropriate lymphatic vessels within the brain parenchyma. However, recent data suggest that naive T cells may also be primed within brain tumor-associated tertiary lymphoid structures. Here, we review the current understanding of the formation of these structures within the central nervous system, and hypothesize that promotion of tertiary lymphoid structures could enhance priming of tumor antigen-targeted T cells and sensitize glioblastomas to cancer immunotherapy.
Collapse
Affiliation(s)
- Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|