1
|
Halim CE, Deng S, Crasta KC, Yap CT. Interplay Between the Cytoskeleton and DNA Damage Response in Cancer Progression. Cancers (Basel) 2025; 17:1378. [PMID: 40282554 PMCID: PMC12025774 DOI: 10.3390/cancers17081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
DNA damage has emerged as a critical factor in fuelling the development and progression of cancer. DNA damage response (DDR) pathways lie at the crux of cell fate decisions following DNA damage induction, which can either trigger the repair of detrimental DNA lesions to protect cancer cells or induce the cell death machinery to eliminate damaged cells. Cytoskeletal dynamics have a critical role to play and influence the proper function of DDR pathways. Microfilaments, intermediate filaments, microtubules, and their associated proteins are well involved in the DDR. For instance, they are not only implicated in the recruitment of specific DDR molecules to the sites of DNA damage but also in the regulation of the mobility of the damaged DNA to repair sites in the periphery of the nucleus. The exquisite roles that these cytoskeletal proteins play in different DDR pathways, such as non-homologous end joining (NHEJ), homologous recombination (HR), base excision repair (BER), and nucleotide excision repair (NER), in cancer cells are extensively discussed in this review. Many cancer treatments are reliant upon inducing DNA damage in cancer cells to eliminate them; thus, it is important to shed light on factors that could affect their efficacy. Although the cytoskeleton is intricately involved in the DDR process, this has often been overlooked in cancer research and has not been exploited in developing DDR-targeting cancer therapy. Understanding the interplay between the cytoskeleton and the DDR in cancer will then provide insights into improving the development of cancer therapies that can leverage the synergistic action of DDR inhibitors and cytoskeleton-targeting agents.
Collapse
Affiliation(s)
- Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
2
|
Latancia MT, Leandro GDS, Bastos AU, Moreno NC, Ariwoola ABA, Martins DJ, Ashton NW, Ribeiro VC, Hoch NC, Rocha CRR, Woodgate R, Menck CFM. Human translesion DNA polymerases ι and κ mediate tolerance to temozolomide in MGMT-deficient glioblastoma cells. DNA Repair (Amst) 2024; 141:103715. [PMID: 39029375 PMCID: PMC11330349 DOI: 10.1016/j.dnarep.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (Polɩ) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of Polɩ and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding Polɩ and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of Polɩ and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.
Collapse
Affiliation(s)
- Marcela Teatin Latancia
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Giovana da Silva Leandro
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - André Uchimura Bastos
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Natália Cestari Moreno
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Abu-Bakr Adetayo Ariwoola
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Davi Jardim Martins
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicholas William Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Victória Chaves Ribeiro
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicolas Carlos Hoch
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | | |
Collapse
|
3
|
Bickerdike MJ, Nafia I, Bessede A, Chen CB, Wangpaichitr M. AT-0174, a novel dual IDO1/TDO2 enzyme inhibitor, synergises with temozolomide to improve survival in an orthotopic mouse model of glioblastoma. BMC Cancer 2024; 24:889. [PMID: 39048947 PMCID: PMC11267968 DOI: 10.1186/s12885-024-12631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Glioblastoma is an aggressive brain cancer, usually of unknown etiology, and with a very poor prognosis. Survival from diagnosis averages only 3 months if left untreated and this only increases to 12-15 months upon treatment. Treatment options are currently limited and typically comprise radiotherapy plus a course of the DNA-alkylating chemotherapeutic temozolomide. Unfortunately, the disease invariably relapses after several months of treatment with temozolomide, due to the development of resistance to the drug. Increased local tryptophan metabolism is a feature of many solid malignant tumours through increased expression of tryptophan metabolising enzymes. Glioblastomas are notable for featuring increased expression of the tryptophan catabolizing enzymes indole-2,3-dioxygenase-1 (IDO1), and especially tryptophan-2,3-dioxygenase-2 (TDO2). Increased IDO1 and TDO2 activity is known to suppress the cytotoxic T cell response to tumour cells, and this has led to the proposal that the IDO1 and TDO2 enzymes represent promising immuno-oncology targets. In addition to immune modulation, however, recent studies have also identified the activity of these enzymes is important in the development of resistance to chemotherapeutic agents. METHODS In the current study, the efficacy of a novel dual inhibitor of IDO1 and TDO2, AT-0174, was assessed in an orthotopic mouse model of glioblastoma. C57BL/6J mice were stereotaxically implanted with GL261(luc2) cells into the striatum and then administered either vehicle control, temozolomide (8 mg/kg IP; five 8-day cycles of treatment every 2 days), AT-0174 (120 mg/kg/day PO) or both temozolomide + AT-0174, all given from day 7 after implantation. RESULTS Temozolomide decreased tumour growth and improved median survival but increased the infiltration of CD4+ Tregs. AT-0174 had no significant effect on tumour growth or survival when given alone, but provided clear synergy in combination with temozolomide, further decreasing tumour growth and significantly improving survival, as well as elevating CD8+ T cell expression and decreasing CD4+ Treg infiltration. CONCLUSION AT-0174 exhibited an ideal profile for adjunct treatment of glioblastomas with the first-line chemotherapeutic drug temozolomide to prevent development of CD4+ Treg-mediated chemoresistance.
Collapse
Affiliation(s)
- Michael J Bickerdike
- Antido Therapeutics (Australia) Pty Ltd, Level 7, 616 St Kilda Road, Melbourne, VIC, 3004, Australia.
- BioTarget Consulting Ltd, Auckland, New Zealand.
| | | | | | | | - Medhi Wangpaichitr
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Miami VA Healthcare System, Miami, FL, USA
| |
Collapse
|
4
|
Bainbridge LJ, Daigaku Y. Adaptive use of error-prone DNA polymerases provides flexibility in genome replication during tumorigenesis. Cancer Sci 2024; 115:2125-2137. [PMID: 38651239 PMCID: PMC11247608 DOI: 10.1111/cas.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Human cells possess many different polymerase enzymes, which collaborate in conducting DNA replication and genome maintenance to ensure faithful duplication of genetic material. Each polymerase performs a specialized role, together providing a balance of accuracy and flexibility to the replication process. Perturbed replication increases the requirement for flexibility to ensure duplication of the entire genome. Flexibility is provided via the use of error-prone polymerases, which maintain the progression of challenged DNA replication at the expense of mutagenesis, an enabling characteristic of cancer. This review describes our recent understanding of mechanisms that alter the usage of polymerases during tumorigenesis and examines the implications of this for cell survival and tumor progression. Although expression levels of polymerases are often misregulated in cancers, this does not necessarily alter polymerase usage since an additional regulatory step may govern the use of these enzymes. We therefore also examine how the regulatory mechanisms of DNA polymerases, such as Rad18-mediated PCNA ubiquitylation, may impact the functionalization of error-prone polymerases to tolerate oncogene-induced replication stress. Crucially, it is becoming increasingly evident that cancer cells utilize error-prone polymerases to sustain ongoing replication in response to oncogenic mutations which inactivate key DNA replication and repair pathways, such as BRCA deficiency. This accelerates mutagenesis and confers chemoresistance, but also presents a dependency that can potentially be exploited by therapeutics.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
5
|
Ribeiro D, Latancia M, de Souza I, Ariwoola AB, Mendes D, Rocha CRR, Lengert A, Menck C. Temozolomide resistance mechanisms: unveiling the role of translesion DNA polymerase kappa in glioblastoma spheroids in vitro. Biosci Rep 2024; 44:BSR20230667. [PMID: 38717250 PMCID: PMC11139666 DOI: 10.1042/bsr20230667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 μM); (iii) exerts antiproliferative effects (≤25 μM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela Teatin Latancia
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Abu-Bakr Adetayo Ariwoola
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Davi Mendes
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - André Van Helvoort Lengert
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Tian LF, Gao H, Yang S, Liu YP, Li M, Xu W, Yan XX. Structure and function of extreme TLS DNA polymerase TTEDbh from Thermoanaerobacter tengcongensis. Int J Biol Macromol 2023; 253:126770. [PMID: 37683741 DOI: 10.1016/j.ijbiomac.2023.126770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Translesion synthesis (TLS) is a kind of DNA repair that maintains the stability of the genome and ensures the normal growth of life in cells under emergencies. Y-family DNA polymerases, as a kind of error-prone DNA polymerase, mainly perform TLS. Previous studies have suggested that the occurrence of tumors is associated with the overexpression of human DNA polymerase of the Y family. And the combination of Y-family DNA polymerase inhibitors is promising for cancer therapy. Here we report the functional and structural characterization of a member of the Y-family DNA polymerases, TTEDbh. We determine TTEDbh is an extreme TLS polymerase that can cross oxidative damage sites, and further identify the amino acids and novel structures that are critical for DNA binding, synthesis, fidelity, and oxidative damage bypass. Moreover, previously unnoticed structural elements with important functions have been discovered and analyzed. These studies provide a more experimental basis for further elucidating the molecular mechanisms of DNA polymerase in the Y family. It could also shed light on the design of drugs to target tumors.
Collapse
Affiliation(s)
- Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhou Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
8
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Sun H, Gao Q, Zhu G, Han C, Yan H, Wang T. Identification of influential observations in high-dimensional survival data through robust penalized Cox regression based on trimming. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:5352-5378. [PMID: 36896549 DOI: 10.3934/mbe.2023248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Penalized Cox regression can efficiently be used for the determination of biomarkers in high-dimensional genomic data related to disease prognosis. However, results of Penalized Cox regression is influenced by the heterogeneity of the samples who have different dependent structure between survival time and covariates from most individuals. These observations are called influential observations or outliers. A robust penalized Cox model (Reweighted Elastic Net-type maximum trimmed partial likelihood estimator, Rwt MTPL-EN) is proposed to improve the prediction accuracy and identify influential observations. A new algorithm AR-Cstep to solve Rwt MTPL-EN model is also proposed. This method has been validated by simulation study and application to glioma microarray expression data. When there were no outliers, the results of Rwt MTPL-EN were close to the Elastic Net (EN). When outliers existed, the results of EN were impacted by outliers. And whenever the censored rate was large or low, the robust Rwt MTPL-EN performed better than EN. and could resist the outliers in both predictors and response. In terms of outliers detection accuracy, Rwt MTPL-EN was much higher than EN. The outliers who "lived too long" made EN perform worse, but were accurately detected by Rwt MTPL-EN. Through the analysis of glioma gene expression data, most of the outliers identified by EN were those "failed too early", but most of them were not obvious outliers according to risk estimated from omics data or clinical variables. Most of the outliers identified by Rwt MTPL-EN were those who "lived too long", and most of them were obvious outliers according to risk estimated from omics data or clinical variables. Rwt MTPL-EN can be adopted to detect influential observations in high-dimensional survival data.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China
| | - Qian Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China
| | - Guiming Zhu
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
| | - Chunlei Han
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
| | - Haosen Yan
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China
| |
Collapse
|
10
|
Li Y, Liu X, Chang Y, Fan B, Shangguan C, Chen H, Zhang L. Identification and Validation of a DNA Damage Repair-Related Signature for Diffuse Large B-Cell Lymphoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2645090. [PMID: 36281462 PMCID: PMC9587677 DOI: 10.1155/2022/2645090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 10/06/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma in adults, whose prognostic scoring system remains to be improved. Dysfunction of DNA repair genes is closely associated with the development and prognosis of diffuse large B-cell lymphoma. The aim of this study was to establish and validate a DNA repair-related gene signature associated with the prognosis of DLBCL and to investigate the clinical predictive value of this signature. METHODS DLBCL cases were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. One hundred ninety-nine DNA repair-related gene sets were retrieved from the GeneCards database. The LASSO Cox regression was used to generate the DNA repair-related gene signature. Subsequently, the level of immune cell infiltration and the correlation between the gene signature and immune cells were analyzed using the CIBERSORT algorithm. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) database, the relationship between the signature and drug sensitivity was analyzed, and together with the nomogram and gene set variation analysis (GSVA), the value of the signature for clinical application was evaluated. RESULTS A total of 14 DNA repair genes were screened out and included in the final risk model. Subgroup analysis of the training and validation cohorts showed that the risk model accurately predicted overall survival of DLBCL patients, with patients in the high-risk group having a worse prognosis than patients in the low-risk group. Subsequently, the risk score was confirmed as an independent prognostic factor by multivariate analysis. Furthermore, by CIBERSORT analysis, we discovered that immune cells, such as regulatory T cells (Tregs), activated memory CD4+ T cells, and gamma delta T cells showed significant differences between the high- and low-risk groups. In addition, we found some interesting associations of our signature with immune checkpoint genes (CD96, TGFBR1, and TIGIT). By analyzing drug sensitivity data in the GDSC database, we were able to identify potential therapeutics for DLBCL patients stratified according to our signature. CONCLUSIONS Our study identified and validated a 14-DNA repair-related gene signature for stratification and prognostic prediction of DLBCL patients, which might guide clinical personalization of treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Xiyang Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Bingjie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Chenxing Shangguan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Huan Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| |
Collapse
|
11
|
The Kynurenine Pathway and Cancer: Why Keep It Simple When You Can Make It Complicated. Cancers (Basel) 2022; 14:cancers14112793. [PMID: 35681770 PMCID: PMC9179486 DOI: 10.3390/cancers14112793] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The kynurenine pathway has two main physiological roles: (i) it protects specific organs such as the eyes and placenta from strong immune reactions and (ii) it additionally generate in the liver and kidney a metabolite essential to all cells of human body. Abnormal activation of this pathway is recurrently observed in numerous cancer types. Its two functions are hijacked to promote tumor growth and cancer cell dissemination through multiple mechanisms. Clinical assays including administration of inhibitors of this pathway have not yet been successful. The complex regulation of this pathway is likely the reason behind this failure. In this review, we try to give an overview of the current knowledge about this pathway, to point out the next challenges, and to propose alternative therapeutic routes. Abstract The kynurenine pathway has been highlighted as a gatekeeper of immune-privileged sites through its ability to generate from tryptophan a set of immunosuppressive metabolic intermediates. It additionally constitutes an important source of cellular NAD+ for the organism. Hijacking of its immunosuppressive functions, as recurrently observed in multiple cancers, facilitates immune evasion and promotes tumor development. Based on these observations, researchers have focused on characterizing indoleamine 2,3-dioxygenase (IDO1), the main enzyme catalyzing the first and limiting step of the pathway, and on developing therapies targeting it. Unfortunately, clinical trials studying IDO1 inhibitors have thus far not met expectations, highlighting the need to unravel this complex signaling pathway further. Recent advances demonstrate that these metabolites additionally promote tumor growth, metastatic dissemination and chemoresistance by a combination of paracrine and autocrine effects. Production of NAD+ also contributes to cancer progression by providing cancer cells with enhanced plasticity, invasive properties and chemoresistance. A comprehensive survey of this complexity is challenging but necessary to achieve medical success.
Collapse
|
12
|
Latancia MT, Moreno NC, Leandro GS, Ribeiro VC, de Souza I, Vieira WKM, Bastos AU, Hoch NC, Rocha CRR, Menck CFM. DNA polymerase eta protects human cells against DNA damage induced by the tumor chemotherapeutic temozolomide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503498. [PMID: 35649682 DOI: 10.1016/j.mrgentox.2022.503498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.
Collapse
Affiliation(s)
- Marcela T Latancia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Natália C Moreno
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Giovana S Leandro
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Izadora de Souza
- Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - André Uchimura Bastos
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Nicolas Carlos Hoch
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carlos F M Menck
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Kaszubowski JD, Trakselis MA. Beyond the Lesion: Back to High Fidelity DNA Synthesis. Front Mol Biosci 2022; 8:811540. [PMID: 35071328 PMCID: PMC8766770 DOI: 10.3389/fmolb.2021.811540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
High fidelity (HiFi) DNA polymerases (Pols) perform the bulk of DNA synthesis required to duplicate genomes in all forms of life. Their structural features, enzymatic mechanisms, and inherent properties are well-described over several decades of research. HiFi Pols are so accurate that they become stalled at sites of DNA damage or lesions that are not one of the four canonical DNA bases. Once stalled, the replisome becomes compromised and vulnerable to further DNA damage. One mechanism to relieve stalling is to recruit a translesion synthesis (TLS) Pol to rapidly synthesize over and past the damage. These TLS Pols have good specificities for the lesion but are less accurate when synthesizing opposite undamaged DNA, and so, mechanisms are needed to limit TLS Pol synthesis and recruit back a HiFi Pol to reestablish the replisome. The overall TLS process can be complicated with several cellular Pols, multifaceted protein contacts, and variable nucleotide incorporation kinetics all contributing to several discrete substitution (or template hand-off) steps. In this review, we highlight the mechanistic differences between distributive equilibrium exchange events and concerted contact-dependent switching by DNA Pols for insertion, extension, and resumption of high-fidelity synthesis beyond the lesion.
Collapse
|
14
|
Vaziri C, Rogozin IB, Gu Q, Wu D, Day TA. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021; 40:6549-6565. [PMID: 34663880 PMCID: PMC8639439 DOI: 10.1038/s41388-021-02032-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Mutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways. Therefore, understanding the contributions of DNA polymerases is critical to develop a more comprehensive picture of mutagenic mechanisms in tumors. Selection of an appropriate DNA polymerase-whether error-free or error-prone-for a particular DNA template is critical to the maintenance of genome stability. We review different modes of DNA polymerase dysregulation including mutation, polymorphism, and over-expression of the polymerases themselves or their associated activators. Based upon recent findings connecting DNA polymerases with specific mechanisms of mutagenesis, we propose that compensation for DNA repair defects by error-prone polymerases may be a general paradigm molding the mutational landscape of cancer cells. Notably, we demonstrate that correlation of error-prone polymerase expression with mutation burden in a subset of patient tumors from The Cancer Genome Atlas can identify mechanistic hypotheses for further testing. We contrast experimental approaches from broad, genome-wide strategies to approaches with a narrower focus on a few hundred base pairs of DNA. In addition, we consider recent developments in computational annotation of patient tumor data to identify patterns of mutagenesis. Finally, we discuss the innovations and future experiments that will develop a more comprehensive portrait of mutagenic mechanisms in human tumors.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC, 27599, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qisheng Gu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Su Z, Gao A, Li X, Zou S, He C, Wu J, Ding WQ, Zhou J. DNA Polymerase Iota Promotes Esophageal Squamous Cell Carcinoma Proliferation Through Erk-OGT-Induced G6PD Overactivation. Front Oncol 2021; 11:706337. [PMID: 34354953 PMCID: PMC8329663 DOI: 10.3389/fonc.2021.706337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers with rapid progression and a high mortality rate. Our previous study demonstrated that DNA polymerase iota (Pol ι) is overexpressed in ESCC tumors and correlates with poor prognosis. However, its role in ESCC proliferation remains obscure. We report here that Pol ι promotes ESCC proliferation and progression through Erk- O-GlcNAc transferase (OGT) regulated Glucose-6-phosphate dehydrogenase (G6PD) overactivation. Cell clonogenic ability was assessed by colony formation assay. Cell proliferation was assessed by EdU incorporation assay. Our transcriptome data was reanalyzed by GSEA and validated by analysis of cellular metabolism, G6PD activity, and cellular NADPH concentration. The level of Pol ι, OGT, G6PD and O-GlcNAcylation in ESCC cells and patient samples were analyzed. The MEK inhibitor PD98059 was applied to confirm OGT expression regulation by the Erk signaling. The G6PD inhibitor polydatin was used to examine the role of G6PD activation in Pol ι promoted proliferation. We found that Pol ι promotes ESCC proliferation. It shunted the glucose flux towards the pentose phosphate pathway (PPP) by activating G6PD through OGT-promoted O-GlcNAcylation. The expression of OGT was positively correlated with Pol ι expression and O-GlcNAcylation. Notably, elevated O-GlcNAcylation was correlated with poor prognosis in ESCC patients. Pol ι was shown to stimulate Erk signaling to enhance OGT expression, and the G6PD inhibitor polydatin attenuated Pol ι induced tumor growth in vitro and in vivo. In conclusion, Pol ι activates G6PD through Erk-OGT-induced O-GlcNAcylation to promote the proliferation and progression of ESCC, supporting the notion that Pol ι is a potential biomarker and therapeutic target of ESCC.
Collapse
Affiliation(s)
- Zhenzi Su
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoqing Li
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Jundong Zhou
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
16
|
Division of labor of Y-family polymerases in translesion-DNA synthesis for distinct types of DNA damage. PLoS One 2021; 16:e0252587. [PMID: 34061890 PMCID: PMC8168857 DOI: 10.1371/journal.pone.0252587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Living organisms are continuously under threat from a vast array of DNA-damaging agents, which impact genome DNA. DNA replication machinery stalls at damaged template DNA. The stalled replication fork is restarted via bypass replication by translesion DNA-synthesis polymerases, including the Y-family polymerases Polη, Polι, and Polκ, which possess the ability to incorporate nucleotides opposite the damaged template. To investigate the division of labor among these polymerases in vivo, we generated POLη−/−, POLι−/−, POLκ−/−, double knockout (KO), and triple knockout (TKO) mutants in all combinations from human TK6 cells. TKO cells exhibited a hypersensitivity to ultraviolet (UV), cisplatin (CDDP), and methyl methanesulfonate (MMS), confirming the pivotal role played by these polymerases in bypass replication of damaged template DNA. POLη−/− cells, but not POLι−/− or POLκ−/− cells, showed a strong sensitivity to UV and CDDP, while TKO cells showed a slightly higher sensitivity to UV and CDDP than did POLη−/− cells. On the other hand, TKO cells, but not all single KO cells, exhibited a significantly higher sensitivity to MMS than did wild-type cells. Consistently, DNA-fiber assay revealed that Polη plays a crucial role in bypassing lesions caused by UV-mimetic agent 4-nitroquinoline-1-oxide and CDDP, while all three polymerases play complementary roles in bypassing MMS-induced damage. Our findings indicate that the three Y-family polymerases play distinctly different roles in bypass replication, according to the type of DNA damage generated on the template strand.
Collapse
|
17
|
Russo M, Sogari A, Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov 2021; 11:1886-1895. [PMID: 33952585 DOI: 10.1158/2159-8290.cd-20-1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| | - Alberto Sogari
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| |
Collapse
|
18
|
DNA Polymerase and dRP-lyase activities of polymorphic variants of human Pol ι. Biochem J 2021; 478:1399-1412. [PMID: 33600564 DOI: 10.1042/bcj20200491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022]
Abstract
Y-family DNA polymerase iota (Pol ι) is involved in DNA damage response and tolerance. Mutations and altered expression level of POLI gene are linked to a higher incidence of cancer. We biochemically characterized five active site polymorphic variants of human Pol ι: R71G (rs3218778), P118L (rs554252419), I236M (rs3218784), E251K (rs3218783) and P365R (rs200852409). We analyzed fidelity of nucleotide incorporation on undamaged DNA, efficiency and accuracy of DNA damage bypass, as well as 5'-deoxyribophosphate lyase (dRP-lyase) activity. The I236M and P118L variants were indistinguishable from the wild-type Pol ι in activity. The E251K and P365R substitutions altered the spectrum of nucleotide incorporation opposite several undamaged DNA bases. The P365R variant also reduced the dRP-lyase activity and possessed the decreased TLS activity opposite 8-oxo-G. The R71G mutation dramatically affected the catalytic activities of Pol ι. The reduced DNA polymerase activity of the R71G variant correlated with an enhanced fidelity of nucleotide incorporation on undamaged DNA, altered lesion-bypass activity and reduced dRP-lyase activity. Therefore, this amino acid substitution likely alters Pol ι functions in vivo.
Collapse
|
19
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
20
|
Xie P, Li X, Chen R, Liu Y, Liu D, Liu W, Cui G, Xu J. Upregulation of HOTAIRM1 increases migration and invasion by glioblastoma cells. Aging (Albany NY) 2020; 13:2348-2364. [PMID: 33323548 PMCID: PMC7880397 DOI: 10.18632/aging.202263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) promote invasion and migration by glioblastoma (GBM) cells. In this study, quantitative real-time polymerase chain reaction was used to detect expression levels of the lncRNA HOTAIRM1 in GBM tissue samples and cells. The function of HOTAIRM1 was examined using wound healing assays, transwell assays, and in vivo experiments after GBM cells were transfected with either sh-ctrl or sh-HOTAIRM1. Luciferase reporter assays and RIP assays were performed to determine the interactions between HOTAIRM1 and miR-153-5p and between miR-153-5p and SNAI2. We also used luciferase reporter assays and ChIP assays to assess the transcriptional regulation of HOTAIRM1 by SNAI2 and CDH1. HOTAIRM1 was significantly overexpressed in GBM tissues and cells. HOTAIRM1 knockdown significantly weakened the migration and invasion by GBM cells. HOTAIRM1 was found to sponge miR-153-5p, and SNAI2 is a direct target of miR-153-5p. In addition, SNAI2 was shown to force HOTAIRM1 expression through directly promoting transcription and suppressing the negative regulation of CDH1 on transcription. Our results indicate a positive feedback loop between HOTAIRM1 and SNAI2, and suggest that the lncRNA HOTAIRM1 is a potential biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Xiang Li
- Department of Oncology, Huaian Hospital of Huaian District, Huai'an, Jiangsu Province, China.,Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Yue Liu
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - DaChao Liu
- Department of Image, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Wenguang Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu Province, China
| |
Collapse
|
21
|
Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Trends Cancer 2020; 7:430-446. [PMID: 33203609 DOI: 10.1016/j.trecan.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
DNA replication stress describes a state of impaired replication fork progress that triggers a cellular stress response to maintain genome stability and complete DNA synthesis. Replication stress is a common state that must be tolerated in many cancers. One promising therapeutic approach is targeting replication stress response factors such as the ataxia telangiectasia and rad 3-related kinase (ATR) or checkpoint kinase 1 (CHK1) kinases that some cancers depend upon to survive endogenous replication stress. However, research revealing the complexity of the replication stress response suggests new genetic interactions and candidate therapeutic targets. Many of these candidates regulate DNA transactions around reversed replication forks, including helicases, nucleases and alternative polymerases that promote fork stability and restart. Here we review emerging strategies to exploit replication stress for cancer therapy.
Collapse
|
22
|
Wilkinson NA, Mnuskin KS, Ashton NW, Woodgate R. Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers (Basel) 2020; 12:cancers12102848. [PMID: 33023096 PMCID: PMC7600381 DOI: 10.3390/cancers12102848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs). However, due to the lower fidelity of the specialized polymerases involved in TLS, the activation and suppression of these pathways must be tightly regulated by post-translational modifications such as ubiquitination in order to limit the risk of mutagenesis. Many cancer cells rely on the deregulation of DNA damage bypass to promote carcinogenesis and tumor formation, often giving them heightened resistance to DNA damage from chemotherapeutic agents. In this review, we discuss the key functions of ubiquitin and ubiquitin-like proteins in regulating DNA damage bypass in human cells, and highlight ways in which these processes are both deregulated in cancer progression and might be targeted in cancer therapy.
Collapse
Affiliation(s)
| | | | - Nicholas W. Ashton
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| | - Roger Woodgate
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| |
Collapse
|
23
|
Temprine K, Campbell NR, Huang R, Langdon EM, Simon-Vermot T, Mehta K, Clapp A, Chipman M, White RM. Regulation of the error-prone DNA polymerase Polκ by oncogenic signaling and its contribution to drug resistance. Sci Signal 2020; 13:13/629/eaau1453. [PMID: 32345725 DOI: 10.1126/scisignal.aau1453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The DNA polymerase Polκ plays a key role in translesion synthesis, an error-prone replication mechanism. Polκ is overexpressed in various tumor types. Here, we found that melanoma and lung and breast cancer cells experiencing stress from oncogene inhibition up-regulated the expression of Polκ and shifted its localization from the cytoplasm to the nucleus. This effect was phenocopied by inhibition of the kinase mTOR, by induction of ER stress, or by glucose deprivation. In unstressed cells, Polκ is continually transported out of the nucleus by exportin-1. Inhibiting exportin-1 or overexpressing Polκ increased the abundance of nuclear-localized Polκ, particularly in response to the BRAFV600E-targeted inhibitor vemurafenib, which decreased the cytotoxicity of the drug in BRAFV600E melanoma cells. These observations were analogous to how Escherichia coli encountering cell stress and nutrient deprivation can up-regulate and activate DinB/pol IV, the bacterial ortholog of Polκ, to induce mutagenesis that enables stress tolerance or escape. However, we found that the increased expression of Polκ was not excessively mutagenic, indicating that noncatalytic or other functions of Polκ could mediate its role in stress responses in mammalian cells. Repressing the expression or nuclear localization of Polκ might prevent drug resistance in some cancer cells.
Collapse
Affiliation(s)
- Kelsey Temprine
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathaniel R Campbell
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Tri-Institutional M.D./Ph.D. Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Langdon
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Theresa Simon-Vermot
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Krisha Mehta
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Mollie Chipman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Sasatani M, Zaharieva EK, Kamiya K. The in vivo role of Rev1 in mutagenesis and carcinogenesis. Genes Environ 2020; 42:9. [PMID: 32161626 PMCID: PMC7048032 DOI: 10.1186/s41021-020-0148-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 11/23/2022] Open
Abstract
Translesion synthesis (TLS) is an error-prone pathway required to overcome replication blockage by DNA damage. Aberrant activation of TLS has been suggested to play a role in tumorigenesis by promoting genetic mutations. However, the precise molecular mechanisms underlying TLS-mediated tumorigenesis in vivo remain unclear. Rev1 is a member of the Y family polymerases and plays a key role in the TLS pathway. Here we introduce the existing to date Rev1-mutated mouse models, including the Rev1 transgenic (Tg) mouse model generated in our laboratory. We give an overview of the current knowledge on how different disruptions in Rev1 functions impact mutagenesis and the suggested molecular mechanisms underlying these effects. We summarize the available data from ours and others’ in vivo studies on the role of Rev1 in the initiation and promotion of cancer, emphasizing how Rev1-mutated mouse models can be used as complementary tools for future research.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553 Japan
| | - Elena Karamfilova Zaharieva
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553 Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553 Japan
| |
Collapse
|
25
|
Sobolewska A, Halas A, Plachta M, McIntyre J, Sledziewska-Gojska E. Regulation of the abundance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage. Curr Genet 2020; 66:749-763. [PMID: 32076806 PMCID: PMC7363672 DOI: 10.1007/s00294-020-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.
Collapse
Affiliation(s)
- Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
26
|
Choi J, Berdis A. An artificial nucleoside that simultaneously detects and combats drug resistance to doxorubicin. Eur J Haematol 2019; 104:97-109. [DOI: 10.1111/ejh.13347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jung‐Suk Choi
- Department of Chemistry Cleveland State University Cleveland OH
| | - Anthony Berdis
- Department of Chemistry Cleveland State University Cleveland OH
- Center for Gene Regulation in Health and Disease Cleveland State University Cleveland OH
| |
Collapse
|
27
|
Wu Y, Zhou L, Deng Y, Li N, Yang P, Dong S, Yang S, Zheng Y, Yao L, Zhang M, Zhai Z, Dai Z, Wu Y. The polymorphisms (rs3213801 and rs5744533) of DNA polymerase kappa gene are not related with glioma risk and prognosis: A case-control study. Cancer Med 2019; 8:7446-7453. [PMID: 31595696 PMCID: PMC6885875 DOI: 10.1002/cam4.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
DNA polymerase kappa (POLK), one of the specialized Y family DNA polymerases, functions in translesion synthesis and is suggested to be related with cancers. Single nucleotide polymorphisms (SNPs) in specialized DNA polymerases have been demonstrated to be associated with cancer risk. To evaluate the association of two common POLK variants (rs3213801 C>T and rs5744533 C>T) with glioma, we conducted a case-control study and genotyped these two POLK variants in 605 patients and 1300 healthy controls. The association analysis revealed no significant correlations were observed between these two POLK SNPs and glioma risk. However, the POLK rs3213801 CT genotype was found to be higher in older glioma patients (≥40) than in younger patients (P = .026). Compared with patients harboring the CC genotype, the frequencies of POLK rs5744533 CT and CT+TT genotypes were increased in patients with lower World Health Organization (WHO) grade glioma (P = .028, 0.044, respectively). According to Kaplan-Meier analysis and log-rank tests, POLK SNPs were not correlated with either the overall survival or progression-free survival. Nevertheless, multivariate analysis revealed that the age (≥40) could increase the risk of death in glioma patients (P < .05), while gross-total resection and temozolomide treatment were found to play protective roles in glioma prognosis (P < .001, respectively). Overall, our results indicated that POLK variants rs3213801 and rs5744533 are not associated with glioma risk and prognosis. However, these polymorphisms are likely to be associated with certain glioma characteristics, such as age and WHO grade. The age, surgery types, and chemotherapy could be independent prognostic factors in glioma. More studies are required to confirm our findings.
Collapse
Affiliation(s)
- Ying Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Linghui Zhou
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yujiao Deng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Na Li
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Pengtao Yang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shanshan Dong
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Si Yang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yi Zheng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Li Yao
- Department of NeurologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ming Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityShannxiChina
| | - Zhen Zhai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhijun Dai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yuan Wu
- Department of Critical Care MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityShannxiChina
| |
Collapse
|
28
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
29
|
Stern HR, Sefcikova J, Chaparro VE, Beuning PJ. Mammalian DNA Polymerase Kappa Activity and Specificity. Molecules 2019; 24:E2805. [PMID: 31374881 PMCID: PMC6695781 DOI: 10.3390/molecules24152805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.
Collapse
Affiliation(s)
- Hannah R Stern
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jana Sefcikova
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Victoria E Chaparro
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Fan L, Chen Z, Wu X, Cai X, Feng S, Lu J, Wang H, Liu N. Ubiquitin-Specific Protease 3 Promotes Glioblastoma Cell Invasion and Epithelial–Mesenchymal Transition via Stabilizing Snail. Mol Cancer Res 2019; 17:1975-1984. [PMID: 31266817 DOI: 10.1158/1541-7786.mcr-19-0197] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Ligang Fan
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoting Wu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaomin Cai
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuang Feng
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiacheng Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ning Liu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
31
|
Ketkar A, Maddukuri L, Penthala NR, Reed MR, Zafar MK, Crooks PA, Eoff RL. Inhibition of Human DNA Polymerases Eta and Kappa by Indole-Derived Molecules Occurs through Distinct Mechanisms. ACS Chem Biol 2019; 14:1337-1351. [PMID: 31082191 DOI: 10.1021/acschembio.9b00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overexpression of human DNA polymerase kappa (hpol κ) in glioblastoma is associated with shorter survival time and resistance to the alkylating agent temozolomide (TMZ), making it an attractive target for the development of small-molecule inhibitors. We previously reported on the development and characterization of indole barbituric acid-derived (IBA) inhibitors of translesion DNA synthesis polymerases (TLS pols). We have now identified a potent and selective inhibitor of hpol κ based on the indole-aminoguanidine (IAG) chemical scaffold. The most promising IAG analogue, IAG-10, exhibited greater inhibitory action against hpol κ than any other human Y-family member, as well as pols from the A-, B-, and X-families. Inhibition of hpol κ by IAG analogues appears to proceed through a mechanism that is distinct from inhibition of hpol η based on changes in DNA binding affinity and nucleotide insertion kinetics. By way of comparison, both IAG and IBA analogues inhibited binary complex formation by hpol κ and ternary complex formation by hpol η. Decreasing the concentration of enzyme and DNA in the reaction mixture lowered the IC50 value of IAG-10 to submicromolar values, consistent with inhibition of binary complex formation for hpol κ. Chemical footprinting experiments revealed that IAG-10 binds to a cleft between the finger, little finger, and N-clasp domains on hpol κ and that this likely disrupts the interaction between the N-clasp and the TLS pol core. In cell culture, IAG-10 potentiated the antiproliferative activity and DNA damaging effects of TMZ in hpol κ-proficient cells but not in hpol κ-deficient cells, indicative of a target-dependent effect. Mutagenic replication across alkylation damage increased in hpol κ-proficient cells treated with IAG-10, while no change in mutation frequency was observed for hpol κ-deficient cells. In summary, we developed a potent and selective small-molecule inhibitor of hpol κ that takes advantage of structural features unique to this TLS enzyme to potentiate TMZ, a standard-of-care drug used in the treatment of malignant brain tumors. Furthermore, the IAG scaffold represents a new chemical space for the exploration of TLS pol inhibitors, which could prove useful as a strategy for improving patient response to genotoxic drugs.
Collapse
Affiliation(s)
- Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Narsimha R. Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Megan R. Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Maroof K. Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
32
|
Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:166. [PMID: 30992025 PMCID: PMC6469146 DOI: 10.1186/s13046-019-1139-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Background Acquired drug resistance is a constraining factor in clinical treatment of glioblastoma (GBM). However, the mechanisms of chemoresponsive tumors acquire therapeutic resistance remain poorly understood. Here, we aim to investigate whether temozolomide (TMZ) resistance of chemoresponsive GBM was enhanced by long non-coding RNA SBF2 antisense RNA 1 (lncRNA SBF2-AS1) enriched exosomes. Method LncSBF2-AS1 level in TMZ-resistance or TMZ-sensitive GBM tissues and cells were analyzed by qRT-PCR and FISH assays. A series of in vitro assay and xenograft tumor models were performed to observe the effect of lncSBF2-AS1 on TMZ-resistance in GBM. CHIP assay were used to investigate the correlation of SBF2-AS1 and transcription factor zinc finger E-box binding homeobox 1 (ZEB1). Dual-luciferase reporter, RNA immunoprecipitation (RIP), immunofluorescence and western blotting were performed to verify the relation between lncSBF2-AS1, miR-151a-3p and XRCC4. Comet assay and immunoblotting were performed to expound the effect of lncSBF2-AS1 on DNA double-stand break (DSB) repair. A series of in vitro assay and intracranial xenografts tumor model were used to determined the function of exosomal lncSBF2-AS1. Result It was found that SBF2-AS1 was upregulated in TMZ-resistant GBM cells and tissues, and overexpression of SBF2-AS1 led to the promotion of TMZ resistance, whereas its inhibition sensitized resistant GBM cells to TMZ. Transcription factor ZEB1 was found to directly bind to the SBF2-AS1 promoter region to regulate SBF2-AS1 level and affected TMZ resistance in GBM cells. SBF2-AS1 functions as a ceRNA for miR-151a-3p, leading to the disinhibition of its endogenous target, X-ray repair cross complementing 4 (XRCC4), which enhances DSB repair in GBM cells. Exosomes selected from temozolomide-resistant GBM cells had high levels of SBF2-AS1 and spread TMZ resistance to chemoresponsive GBM cells. Clinically, high levels of lncSBF2-AS1 in serum exosomes were associated with poor response to TMZ treatment in GBM patients. Conclusion We can conclude that GBM cells remodel the tumor microenvironment to promote tumor chemotherapy-resistance by secreting the oncogenic lncSBF2-AS1-enriched exosomes. Thus, exosomal lncSBF2-AS1 in human serum may serve as a possible diagnostic marker for therapy-refractory GBM. Electronic supplementary material The online version of this article (10.1186/s13046-019-1139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuoran Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Wu B, Wang H, Zhang L, Sun C, Li H, Jiang C, Liu X. High expression of RAD18 in glioma induces radiotherapy resistance via down-regulating P53 expression. Biomed Pharmacother 2019; 112:108555. [PMID: 30798132 DOI: 10.1016/j.biopha.2019.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
As a key regulator of DNA translesion synthesis (TLS) pathway, RAD18 is reported to be abnormally expressed in many kinds of cancers. In glioma, RAD18 was overexpressed in the primary and recurrent glioblastoma multiforme specimens, and its overexpression weakened ionizing radiation-induced apoptosis in glioma A172 cells. Moreover, A172 cells with mutational P53 also showed enhanced radiation resistance. And RAD18 activation induced by cyclin-dependent kinase 2 (CDK2) was repressed by P53. However, whether P53 involves in RAD18-induced radiation resistance remains unknown. Therefore, this study was conducted to explore the effects and mechanism of RAD18 in the radiation resistance of glioma and study P53 role in this process. Results showed that, RAD18 expression was obviously elevated in glioma tissues and cell lines such as U251, SHG-44, A172, U-87 MG and U-118 MG as compared with the normal brain tissues and neuroglia cells. Up-regulation of RAD18 in U-118 MG and A172 cells with lentivirus infection significantly increased cell growth and inhibited cell apoptosis, determined by CCK-8 and flow cytometry technologies. Besides, RAD18 overexpression enhanced cell growth and inhibited cell apoptosis after U-118 MG or A172 cells were irradiated at a dose of 4 Gy. On the contrary, silencing of endogenous RAD18 sensitized U-118 MG and A172 cells to radiation. Moreover, RAD18 and P53 proteins were co-located in the nucleus, and up-regulation of RAD18 decreased the expression of P53 protein and facilitated its nuclear export. Furthermore, cell growth promotion and cell apoptosis inhibition induced by RAD18 up-regulation were impaired when P53 expression was up-regulated under radiation condition. In a word, this study clarifies that RAD18 functions as a promoter in glioma progression and reduces glioma cells' sensibility to radiation through down-regulating P53, which provides new strategies to overcome the radiation resistance in glioma.
Collapse
Affiliation(s)
- Bing Wu
- NHC Key Lab of Radiobiology, Jilin University, Changchun, Jilin 130021, China; Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, China; Department of Immunology in College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lenign Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, China
| | - Hang Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chunyan Jiang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaodong Liu
- NHC Key Lab of Radiobiology, Jilin University, Changchun, Jilin 130021, China; School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
34
|
Zhang J, Zhang J, Qiu W, Zhang J, Li Y, Kong E, Lu A, Xu J, Lu X. MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma. J Neurooncol 2018; 139:547-562. [PMID: 29774498 PMCID: PMC6132976 DOI: 10.1007/s11060-018-2903-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE MicroRNAs (miRNAs) have been shown to be involved in the initiation and progression of glioma. However, the underlying molecular mechanisms are still unclear. METHODS We performed microarray analysis to evaluate miRNA expression levels in 158 glioma tissue samples, and examined miR-1231 levels in glioma samples and healthy brain tissues using qRT-PCR. In vitro analyses were performed using miR-1231 mimics, inhibitors, and siRNA targeting EGFR. We used flow cytometry, CCK-8 assays, and colony formation assays to examine glioma proliferation and cell cycle analysis. A dual luciferase reporter assay was performed to examine miR-1231 regulation of EGFR, and the effect of upregulated miR-1231 was investigated in a subcutaneous GBM model. RESULTS We found that miR-1231 expression was decreased in human glioma tissues and negatively correlated with EGFR levels. Moreover, the downregulation of miR-1231 negatively correlated with the clinical stage of human glioma patients. miR-1231 overexpression dramatically downregulated glioma cell proliferation, and suppressed tumor growth in a nude mouse model. Bioinformatics prediction and a luciferase assay confirmed EGFR as a direct target of miR-1231. EGFR overexpression abrogated the suppressive effect of miR-1231 on the PI3K/AKT pathway and G1 arrest. CONCLUSIONS Taken together, these results demonstrated that EGFR is a direct target of miR-1231. Our findings suggest that the miR-1231/EGFR axis may be a helpful future diagnostic target for malignant glioma.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street Road, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yangyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Enjun Kong
- Department of Emergency, Danyang People's Hospital of Jiangsu Province, 2 Xinmin West Road, Danyang, 212300, Jiangsu Province, People's Republic of China
| | - Ailin Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Jia Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xiaoming Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
35
|
Yang Y, Gao Y, Zlatanou A, Tateishi S, Yurchenko V, Rogozin IB, Vaziri C. Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis. Cell Cycle 2018; 17:833-843. [PMID: 29683380 PMCID: PMC6056224 DOI: 10.1080/15384101.2018.1456296] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutagenesis is a hallmark and enabling characteristic of cancer cells. The E3 ubiquitin ligase RAD18 and its downstream effectors, the ‘Y-family’ Trans-Lesion Synthesis (TLS) DNA polymerases, confer DNA damage tolerance at the expense of DNA replication fidelity. Thus, RAD18 and TLS polymerases are attractive candidate mediators of mutagenesis and carcinogenesis. The skin cancer-propensity disorder xeroderma pigmentosum-variant (XPV) is caused by defects in the Y-family DNA polymerase Pol eta (Polη). However it is unknown whether TLS dysfunction contributes more generally to other human cancers. Recent analyses of cancer genomes suggest that TLS polymerases generate many of the mutational signatures present in diverse cancers. Moreover biochemical studies suggest that the TLS pathway is often reprogrammed in cancer cells and that TLS facilitates tolerance of oncogene-induced DNA damage. Here we review recent evidence supporting widespread participation of RAD18 and the Y-family DNA polymerases in the different phases of multi-step carcinogenesis.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Pathology and Laboratory Medicine , University of North Carolina at Chapel Hill Chapel Hill , NC , USA
| | - Yanzhe Gao
- a Department of Pathology and Laboratory Medicine , University of North Carolina at Chapel Hill Chapel Hill , NC , USA
| | - Anastasia Zlatanou
- a Department of Pathology and Laboratory Medicine , University of North Carolina at Chapel Hill Chapel Hill , NC , USA
| | - Satoshi Tateishi
- b Division of Cell Maintenance , Institute of Molecular Embryology and Genetics (IMEG) , Kumamoto University , Kumamoto , Japan
| | - Vyacheslav Yurchenko
- c Life Science Research Center , University of Ostrava , Ostrava , Czech Republic
| | - Igor B Rogozin
- d National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - Cyrus Vaziri
- a Department of Pathology and Laboratory Medicine , University of North Carolina at Chapel Hill Chapel Hill , NC , USA
| |
Collapse
|
36
|
Choi JS, Kim S, Motea E, Berdis A. Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents. Oncotarget 2018; 8:40804-40816. [PMID: 28489578 PMCID: PMC5522278 DOI: 10.18632/oncotarget.17254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023] Open
Abstract
Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anti-cancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Seol Kim
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Edward Motea
- Departments of Radiation Oncology and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
37
|
Zafar MK, Maddukuri L, Ketkar A, Penthala NR, Reed MR, Eddy S, Crooks PA, Eoff RL. A Small-Molecule Inhibitor of Human DNA Polymerase η Potentiates the Effects of Cisplatin in Tumor Cells. Biochemistry 2018; 57:1262-1273. [PMID: 29345908 DOI: 10.1021/acs.biochem.7b01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Translesion DNA synthesis (TLS) performed by human DNA polymerase eta (hpol η) allows tolerance of damage from cis-diamminedichloroplatinum(II) (CDDP or cisplatin). We have developed hpol η inhibitors derived from N-aryl-substituted indole barbituric acid (IBA), indole thiobarbituric acid (ITBA), and indole quinuclidine scaffolds and identified 5-((5-chloro-1-(naphthalen-2-ylmethyl)-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (PNR-7-02), an ITBA derivative that inhibited hpol η activity with an IC50 value of 8 μM and exhibited 5-10-fold specificity for hpol η over replicative pols. We conclude from kinetic analyses, chemical footprinting assays, and molecular docking that PNR-7-02 binds to a site on the little finger domain and interferes with the proper orientation of template DNA to inhibit hpol η. A synergistic increase in CDDP toxicity was observed in hpol η-proficient cells co-treated with PNR-7-02 (combination index values = 0.4-0.6). Increased γH2AX formation accompanied treatment of hpol η-proficient cells with CDDP and PNR-7-02. Importantly, PNR-7-02 did not impact the effect of CDDP on cell viability or γH2AX in hpol η-deficient cells. In summary, we observed hpol η-dependent effects on DNA damage/replication stress and sensitivity to CDDP in cells treated with PNR-7-02. The ability to employ a small-molecule inhibitor of hpol η to improve the cytotoxic effect of CDDP may aid in the development of more effective chemotherapeutic strategies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Narsimha R Penthala
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Sarah Eddy
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Peter A Crooks
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
38
|
Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017; 30:1942-1955. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic landscape of cancer is one marred by instability, but the mechanisms that underlie these alterations are multifaceted and remain a topic of intense research. Cellular responses to DNA damage and/or replication stress can affect genome stability in tumors and influence the response of patients to therapy. In addition to direct repair, DNA damage tolerance (DDT) is an element of genomic maintenance programs that contributes to the etiology of several types of cancer. DDT mechanisms primarily act to resolve replication stress, and this can influence the effectiveness of genotoxic drugs. Translesion DNA synthesis (TLS) is an important component of DDT that facilitates direct bypass of DNA adducts and other barriers to replication. The central role of TLS in the bypass of drug-induced DNA lesions, the promotion of tumor heterogeneity, and the involvement of these enzymes in the maintenance of the cancer stem cell niche presents an opportunity to leverage inhibition of TLS as a way of improving existing therapies. In the review that follows, we summarize mechanisms of DDT, misregulation of TLS in cancer, and discuss the potential for targeting these pathways as a means of improving cancer therapies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
39
|
Sasatani M, Xi Y, Kajimura J, Kawamura T, Piao J, Masuda Y, Honda H, Kubo K, Mikamoto T, Watanabe H, Xu Y, Kawai H, Shimura T, Noda A, Hamasaki K, Kusunoki Y, Zaharieva EK, Kamiya K. Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level. Carcinogenesis 2017; 38:570-578. [PMID: 28498946 PMCID: PMC5872566 DOI: 10.1093/carcin/bgw208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer development often involves mutagenic replication of damaged DNA by the error-prone translesion synthesis (TLS) pathway. Aberrant activation of this pathway plays a role in tumorigenesis by promoting genetic mutations. Rev1 controls the function of the TLS pathway, and Rev1 expression levels are associated with DNA damage induced cytotoxicity and mutagenicity. However, it remains unclear whether deregulated Rev1 expression triggers or promotes tumorigenesis in vivo. In this study, we generated a novel Rev1-overexpressing transgenic (Tg) mouse and characterized its susceptibility to tumorigenesis. Using a small intestinal tumor model induced by N-methyl-N-nitrosourea (MNU), we found that transgenic expression of Rev1 accelerated intestinal adenoma development in proportion to the Rev1 expression level; however, overexpression of Rev1 alone did not cause spontaneous development of intestinal adenomas. In Rev1 Tg mice, MNU-induced mutagenesis was elevated, whereas apoptosis was suppressed. The effects of hREV1 expression levels on the cytotoxicity and mutagenicity of MNU were confirmed in the human cancer cell line HT1080. These data indicate that dysregulation of cellular Rev1 levels leads to the accumulation of mutations and suppression of cell death, which accelerates the tumorigenic activities of DNA-damaging agents.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yang Xi
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Junko Kajimura
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Toshiyuki Kawamura
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jinlian Piao
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuji Masuda
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Toxicogenomics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kei Kubo
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takahiro Mikamoto
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiromitsu Watanabe
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yanbin Xu
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako, Saitama 351-0197, Japan and
| | - Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Elena Karamfilova Zaharieva
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
40
|
Zhang J, Zhang J, Zhang J, Qiu W, Xu S, Yu Q, Liu C, Wang Y, Lu A, Zhang J, Lu X. MicroRNA-625 inhibits the proliferation and increases the chemosensitivity of glioma by directly targeting AKT2. Am J Cancer Res 2017; 7:1835-1849. [PMID: 28979807 PMCID: PMC5622219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023] Open
Abstract
Glioma is a malignant tumor for which new therapies are needed. Growing evidence has demonstrated that microRNAs (miRNAs) have a major effect on glioma development. Here, we aimed to characterize a novel anti-cancer miRNA, miR-625, by investigating its expression, function, and mechanism of action in glioma progression. The expression of miR-625 and its target mRNA in human glioma tissues and cell lines was assessed by real-time PCR, western blotting, and immunohistochemistry. Functional significance was assessed by examining cell cycle progression, proliferation, apoptosis, and chemosensitivity to temozolomide in vitro, and by examining growth of subcutaneous glioblastoma in a mouse model in vivo. We found that miR-625 expression was significantly lower in human glioma samples and cell lines than in normal brain tissue and human astrocytes. Furthermore, miR-625 overexpression not only suppressed glioma cell proliferation in culture and in the tumor xenograft model but also induced cell cycle arrest and apoptosis. AKT2 was identified as a direct miR-625 target in glioma cell lines, and AKT2 overexpression reversed the suppressive effects of miR-625 in the cell lines and the tumor xenograft model. Finally, we found that the sensitivity of glioma cells to temozolomide was increased by miR-625 overexpression, and this was reversed by concomitant AKT2 expression. In conclusion, our findings suggest that the miR-625-AKT2 axis could be a new prognostic marker and diagnostic target for gliomas.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University300 Guangzhou Road, Guiyang 550004, Guizhou Province, People’s Republic of China
| | - Shuo Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Qun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Chengke Liu
- Department of Neurosurgery, Liyang Hospital of TCM121# Xihou Street, Liyang 213300, Jiangsu Province, People’s Repubulic of China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Ailin Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Xiaoming Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| |
Collapse
|
41
|
|
42
|
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res 2017; 808:62-73. [PMID: 28843435 DOI: 10.1016/j.mrfmmm.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.
Collapse
Affiliation(s)
- Elodie Bournique
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Marina Dall'Osto
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France.
| |
Collapse
|
43
|
Jiang K, Zhi T, Xu W, Xu X, Wu W, Yu T, Nie E, Zhou X, Bao Z, Jin X, Zhang J, Wang Y, Liu N. MicroRNA-1468-5p inhibits glioma cell proliferation and induces cell cycle arrest by targeting RRM1. Am J Cancer Res 2017; 7:784-800. [PMID: 28469953 PMCID: PMC5411788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/12/2017] [Indexed: 06/07/2023] Open
Abstract
MicroRNAs are associated with different types of cancers. In this study, we found that miR-1468-5p could inhibit growth and cell cycle progression in glioma by targeting ribonucleotide reductase large subunit M1 (RRM1). First, we analyzed miR-1468-5p expression in different glioma grades and the prognostic significance of its expression in glioblastoma multiform patients from the Chinese Glioma Genome Atlas. Then, we expressed miR-1468-5p in U87 and U251 cells and assessed the effects on proliferation and cell cycle progression using cell counting kit-8, colony formation, EdU and flow cytometry assays. Western blotting and luciferase reporter assays identified RRM1 as a novel direct target of miR-1468-5p. Experiments to determine the role of RRM1 in glioma showed that RRM1 expression was significantly higher in glioma than in normal brain tissues, and silencing RRM1 with small-interfering RNAs decreased proliferation and suppressed cell cycle progression, which indicated that RRM1 had pro-tumor functions. miR-1468-5p overexpression suppressed RRM1 expression, reduced glioma cell proliferation and induced cell cycle arrest, which was partially rescued by forced RRM1 expression. In summary, our study revealed that the regulatory mechanism of miR-1468-5p in glioma cell cycle progression involved direct regulation of RRM1 expression, suggesting that RRM1 may be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Kuan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
- Department of Neurosurgery, Yixing People’s HospitalYixing 214200, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Wenhui Xu
- Department of Neurosurgery, Yixing People’s HospitalYixing 214200, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Er Nie
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Xu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Xin Jin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu Province, China
| |
Collapse
|
44
|
Bostian ACL, Eoff RL. Aberrant Kynurenine Signaling Modulates DNA Replication Stress Factors and Promotes Genomic Instability in Gliomas. Chem Res Toxicol 2016; 29:1369-80. [PMID: 27482758 DOI: 10.1021/acs.chemrestox.6b00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
45
|
Peng C, Chen Z, Wang S, Wang HW, Qiu W, Zhao L, Xu R, Luo H, Chen Y, Chen D, You Y, Liu N, Wang H. The Error-Prone DNA Polymerase κ Promotes Temozolomide Resistance in Glioblastoma through Rad17-Dependent Activation of ATR-Chk1 Signaling. Cancer Res 2016; 76:2340-53. [PMID: 26960975 DOI: 10.1158/0008-5472.can-15-1884] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
The acquisition of drug resistance is a persistent clinical problem limiting the successful treatment of human cancers, including glioblastoma (GBM). However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. In this study, we report that Pol κ, an error-prone polymerase that participates in translesion DNA synthesis, was significantly upregulated in GBM cell lines and tumor tissues following temozolomide treatment. Overexpression of Pol κ in temozolomide-sensitive GBM cells conferred resistance to temozolomide, whereas its inhibition markedly sensitized resistant cells to temozolomide in vitro and in orthotopic xenograft mouse models. Mechanistically, depletion of Pol κ disrupted homologous recombination (HR)-mediated repair and restart of stalled replication forks, impaired the activation of ATR-Chk1 signaling, and delayed cell-cycle re-entry and progression. Further investigation of the relationship between Pol κ and temozolomide revealed that Pol κ inactivation facilitated temozolomide-induced Rad17 ubiquitination and proteasomal degradation, subsequently silencing ATR-Chk1 signaling and leading to defective HR repair and the reversal of temozolomide resistance. Moreover, overexpression of Rad17 in Pol κ-depleted GBM cells restored HR efficiency, promoted the clearance of temozolomide-induced DNA breaks, and desensitized cells to the cytotoxic effects of temozolomide observed in the absence of Pol κ. Finally, we found that Pol κ overexpression correlated with poor prognosis in GBM patients undergoing temozolomide therapy. Collectively, our findings identify a potential mechanism by which GBM cells develop resistance to temozolomide and suggest that targeting the DNA damage tolerance pathway may be beneficial for overcoming resistance. Cancer Res; 76(8); 2340-53. ©2016 AACR.
Collapse
Affiliation(s)
- Chenghao Peng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Wei Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjin Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Luo
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Chen
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Chinese Glioma Cooperative Group (CGCG)
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Chinese Glioma Cooperative Group (CGCG)
| | - Huibo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Chinese Glioma Cooperative Group (CGCG).
| |
Collapse
|
46
|
Dai ZJ, Liu XH, Ma YF, Kang HF, Jin TB, Dai ZM, Guan HT, Wang M, Liu K, Dai C, Yang XW, Wang XJ. Association Between Single Nucleotide Polymorphisms in DNA Polymerase Kappa Gene and Breast Cancer Risk in Chinese Han Population: A STROBE-Compliant Observational Study. Medicine (Baltimore) 2016; 95:e2466. [PMID: 26765445 PMCID: PMC4718271 DOI: 10.1097/md.0000000000002466] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases are responsible for ensuring stability of the genome and avoiding genotoxicity caused by a variety of factors during DNA replication. Consequently, these proteins have been associated with an increased cancer risk. DNA polymerase kappa (POLK) is a specialized DNA polymerase involved in translesion DNA synthesis (TLS) that allows DNA synthesis over the damaged DNA. Recently, some studies investigated relationships between POLK polymorphisms and cancer risk, but the role of POLK genetic variants in breast cancer (BC) remains to be defined. In this study, we aimed to evaluate the effects of POLK polymorphisms on BC risk.We used the Sequenom MassARRAY method to genotype 3 single nucleotide polymorphisms (SNPs) in POLK (rs3213801, rs10077427, and rs5744533), in order to determine the genotypes of 560 BC patients and 583 controls. The association of genotypes and BC was assessed by computing the odds ratio (OR) and 95% confidence intervals (95% CIs) from logistic regression analyses.We found a statistically significant difference between patient and control groups in the POLK rs10077427 genotypic groups, excluding the recessive model. A positive correlation was also found between positive progesterone receptor (PR) status, higher Ki67 index, and rs10077427 polymorphism. For rs5744533 polymorphism, the codominant, dominant, and allele models frequencies were significantly higher in BC patients compared to healthy controls. Furthermore, our results indicated that rs5744533 SNP has a protective role in the postmenopausal women. However, we failed to find any associations between rs3213801 polymorphism and susceptibility to BC.Our results indicate that POLK polymorphisms may influence the risk of developing BC, and, because of this, may serve as a prognostic biomarker among Chinese women.
Collapse
Affiliation(s)
- Zhi-Jun Dai
- From the Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University (Z-JD, X-HL, X-JW, H-FK, H-TG, MW, KL, CD, X-WY, X-JW); Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University (Y-FM); National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University (T-BJ); and Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Z-MD)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bostian ACL, Maddukuri L, Reed MR, Savenka T, Hartman JH, Davis L, Pouncey DL, Miller GP, Eoff RL. Kynurenine Signaling Increases DNA Polymerase Kappa Expression and Promotes Genomic Instability in Glioblastoma Cells. Chem Res Toxicol 2015; 29:101-8. [PMID: 26651356 DOI: 10.1021/acs.chemrestox.5b00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexpression of the translesion synthesis polymerase hpol κ in glioblastomas has been linked to poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating AhR in glioblastoma, led to a decrease in the endogenous AhR agonist kynurenine and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling, and the resulting overexpression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that upregulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Tatsiana Savenka
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Lauren Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Dakota L Pouncey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
48
|
Zhang X, Chen Q, Chen J, He C, Mao J, Dai Y, Yang X, Hu W, Zhu C, Chen B. Association of polymorphisms in translesion synthesis genes with prognosis of advanced non-small-cell lung cancer patients treated with platinum-based chemotherapy. J Surg Oncol 2015; 113:17-23. [PMID: 26611653 DOI: 10.1002/jso.24103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Translesion synthesis (TLS) polymerases enable cells to bypass or overcome DNA damage during DNA replication and contributes to genomic instability and cancer. Inhibition of the expression of TLS genes enhances the sensitivity of cancer cells to cisplatin. This study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) in the TLS genes and clinical outcome of advanced non-small-cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. METHODS A total of 16 SNPs were genotyped and analyzed in 302 advanced NSCLC patients (discovery set), and the results were further validated in additional 428 NSCLC patients (validation set). RESULTS Analyses revealed significant associations of two SNPs, rs3213801 and rs3792136, with overall survival, with the lowest combined P values of 0.003 and 0.016, respectively. These effects also remained in stratification analyses by clinical variables. Furthermore, the number of risk genotypes of the two SNPs showed a cumulative effect on overall survival (P = 0.03). CONCLUSIONS Genetic polymorphisms in the TLS genes might serve as potential predictive biomarkers of prognosis of advanced NSCLC patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Thoracic Surgery, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qun Chen
- Department of Oncology, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jia Chen
- School of Medical Laboratory Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunya He
- Department of Surgical Oncology, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Jianlin Mao
- Department of Thoracic Surgery, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Yuechu Dai
- Department of Surgical Oncology, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Xi Yang
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Wei Hu
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Chengchu Zhu
- Department of Radiotherapy, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Baofu Chen
- Department of Radiotherapy, Taizhou Central Hospital, Taizhou, Zhejiang, China.,Department of Thoracic Surgery, Taizhou Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
49
|
Luo H, Chen Z, Wang S, Zhang R, Qiu W, Zhao L, Peng C, Xu R, Chen W, Wang HW, Chen Y, Yang J, Zhang X, Zhang S, Chen D, Wu W, Zhao C, Cheng G, Jiang T, Lu D, You Y, Liu N, Wang H. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain 2015; 138:3654-72. [PMID: 26450587 DOI: 10.1093/brain/awv287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Resistance to temozolomide poses a major clinical challenge in glioblastoma multiforme treatment, and the mechanisms underlying the development of temozolomide resistance remain poorly understood. Enhanced DNA repair and mutagenesis can allow tumour cells to survive, contributing to resistance and tumour recurrence. Here, using recurrent temozolomide-refractory glioblastoma specimens, temozolomide-resistant cells, and resistant-xenograft models, we report that loss of miR-29c via c-Myc drives the acquisition of temozolomide resistance through enhancement of REV3L-mediated DNA repair and mutagenesis in glioblastoma. Importantly, disruption of c-Myc/miR-29c/REV3L signalling may have dual anticancer effects, sensitizing the resistant tumours to therapy as well as preventing the emergence of acquired temozolomide resistance. Our findings suggest a rationale for targeting the c-Myc/miR-29c/REV3L signalling pathway as a promising therapeutic approach for glioblastoma, even in recurrent, treatment-refractory settings.
Collapse
Affiliation(s)
- Hui Luo
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengxin Chen
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Wang
- 2 Department of Haematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenjin Qiu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Zhao
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenghao Peng
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ran Xu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wanghao Chen
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Wei Wang
- 3 Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuanyuan Chen
- 4 Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo 00015, Italy
| | - Jingmin Yang
- 5 State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiaotian Zhang
- 6 Department of Molecular Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuyu Zhang
- 7 School of Radiation Medicine and Protection, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Dan Chen
- 8 Department of Immunology, Genetics and Pathology, Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenting Wu
- 9 Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chunsheng Zhao
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gang Cheng
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Jiang
- 10 Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing 100050, China 11 Chinese Glioma Cooperative Group (CGCG)
| | - Daru Lu
- 5 State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yongping You
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China 11 Chinese Glioma Cooperative Group (CGCG)
| | - Ning Liu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China 11 Chinese Glioma Cooperative Group (CGCG)
| | - Huibo Wang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China 11 Chinese Glioma Cooperative Group (CGCG)
| |
Collapse
|
50
|
Yadav S, Mukhopadhyay S, Anbalagan M, Makridakis N. Somatic Mutations in Catalytic Core of POLK Reported in Prostate Cancer Alter Translesion DNA Synthesis. Hum Mutat 2015; 36:873-80. [PMID: 26046662 DOI: 10.1002/humu.22820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
DNA polymerase kappa is a Y-family polymerase that participates to bypass the damaged DNA known as translesion synthesis (TLS) polymerase. Higher frequency of mutations in DNA polymerase kappa (POLK) recently been reported in prostate cancer. We sequenced entire exons of the POLK gene on genomic DNA from 40 prostate cancers and matched normal samples. We identified that 28% of patients have somatic mutations in the POLK gene of the prostate tumors. Mutations in these prostate cancers have somatic mutation spectra, which are dominated by C-to-T transitions. In the current study, we further investigate the effect of p.E29K, p.G154E, p.F155S, p.E430K, p.L442F, and p.E449K mutations on the biochemical properties of the polymerase in vitro, using TLS assay and nucleotide incorporation fidelity, following site-directed mutagenesis bacterial expression, and purification of the respective polymerase variants. We report that following missense mutations p.E29K, p.G154E, p.F155S, p.E430K, and p.L442F significantly diminished the catalytic efficiencies of POLK with regard to the lesion bypass (AP site). POLK variants show extraordinarily low fidelity by misincorporating T, C, and G as compared to wild-type variants. Taken together, these results suggest that interfering with normal polymerase kappa function by these mutations may be involved in prostate carcinogenesis.
Collapse
Affiliation(s)
- Santosh Yadav
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana.,Nephrology, Tulane University, New Orleans, Louisiana
| | | | | | - Nick Makridakis
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana
| |
Collapse
|