1
|
Pergolizzi JV, LeQuang JA, El-Tallawy SN, Wagner M, Ahmed RS, Varrassi G. An update on pharmacotherapy for trigeminal neuralgia. Expert Rev Neurother 2024; 24:773-786. [PMID: 38870050 DOI: 10.1080/14737175.2024.2365946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Trigeminal neuralgia is a rare condition that can be effectively treated by carbamazepine or oxcarbazepine but these older drugs are associated with dose-dependent and potentially treatment-limiting adverse effects. Third-generation anticonvulsants, new calcitonin gene-related peptide blockers for migraine, and older drugs such as ketamine and cannabinoids may be promising adjuvants or monotherapeutic options. AREAS COVERED The new drugs, their presumed mechanisms of action, safety and efficacy are discussed herein. There is a paucity of robust clinical evidence in support of these drugs for trigeminal neuralgia. New migraine agents are considered as well although migraines and trigeminal neuralgia are distinct, albeit similar, conditions. No new drugs have been released to market in recent years with the specific indication of trigeminal neuralgia. EXPERT OPINION In real-world clinical practice, about half of trigeminal neuralgia patients take more than one agent for prevention and combination therapy may be the optimal approach. Combination therapy might allow for lower doses of carbamazepine or oxcarbazepine, thus reducing the number and severity of potential adverse events but the potential for pharmacokinetic drug-drug interactions must be considered. Drug therapy for trigeminal neuralgia involves acute or abortive treatments, often administered in hospital versus long-term preventive therapy, usually involving oral agents.
Collapse
Affiliation(s)
| | | | - Salah N El-Tallawy
- Anesthesia and Pain Department, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Anesthesia Department, Medicine, Minia University & NCI, Minia, Egypt
| | | | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Román-Vargas Y, Porras-Arguello JD, Blandón-Naranjo L, Pérez-Pérez LD, Benjumea DM. Evaluation of the Analgesic Effect of High-Cannabidiol-Content Cannabis Extracts in Different Pain Models by Using Polymeric Micelles as Vehicles. Molecules 2023; 28:molecules28114299. [PMID: 37298776 DOI: 10.3390/molecules28114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, cannabis is considered an attractive option for the treatment of various diseases, including pain management. Thus, developing new analgesics is paramount for improving the health of people suffering from chronic pain. Safer natural derivatives such as cannabidiol (CBD) have shown excellent potential for the treatment of these diseases. This study aimed to evaluate the analgesic effect of a CBD-rich cannabis extract (CE) encapsulated in polymeric micelles (CBD/PMs) using different pain models. The PEG-PCL polymers were characterized by gel permeation chromatography and 1H-NMR spectroscopy. PMs were prepared by solvent evaporation and characterized by dynamic light scattering (DLS) and transmission electron microscopy. The analgesic activity of CBD/PMs and nonencapsulated CE rich in CBD (CE/CBD) was evaluated using mouse thermal, chemical, and mechanical pain models. The acute toxicity of the encapsulated CE was determined by oral administration in mice at a dose of 20 mg/kg for 14 days. The release of CBD from the nanoparticles was assessed in vitro using a dialysis experiment. CBD/PMs with an average hydrodynamic diameter of 63.8 nm obtained from a biocompatible polyethylene glycol-block-polycaprolactone copolymer were used as nanocarriers for the extract formulations with 9.2% CBD content, which corresponded with a high encapsulation efficiency of 99.9%. The results of the pharmacological assays indicated that orally administered CBD/PMs were safe and exerted a better analgesic effect than CE/CBD. The micelle formulation had a significant analgesic effect in a chemical pain model, reaching a percentage of analgesia of 42%. CE was successfully encapsulated in a nanocarrier, providing better stability. Moreover, it proved to be more efficient as a carrier for CBD release. The analgesic activity of CBD/PMs was higher than that of free CE, implying that encapsulation is an efficient strategy for improving stability and functionality. In conclusion, CBD/PMs could be promising therapeutics for pain management in the future.
Collapse
Affiliation(s)
- Yoreny Román-Vargas
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| | - Julián David Porras-Arguello
- Grupo de Investigación Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 476, Bogotá 11001, Colombia
| | - Lucas Blandón-Naranjo
- Grupo Interdisciplinario de Estudios Moleculares-GIEM, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 1226, Colombia
| | - León Darío Pérez-Pérez
- Grupo de Investigación Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 476, Bogotá 11001, Colombia
| | - Dora María Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| |
Collapse
|
4
|
Iseppon F, Luiz AP, Linley JE, Wood JN. Pregabalin Silences Oxaliplatin-Activated Sensory Neurons to Relieve Cold Allodynia. eNeuro 2023; 10:ENEURO.0395-22.2022. [PMID: 36720644 PMCID: PMC9998121 DOI: 10.1523/eneuro.0395-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Oxaliplatin is a platinum-based chemotherapeutic agent that causes cold and mechanical allodynia in up to 90% of patients. Silent Nav1.8-positive nociceptive cold sensors have been shown to be unmasked by oxaliplatin, and this event has been causally linked to the development of cold allodynia. We examined the effects of pregabalin on oxaliplatin-evoked unmasking of cold sensitive neurons using mice expressing GCaMP-3 in all sensory neurons. Intravenous injection of pregabalin significantly ameliorates cold allodynia, while decreasing the number of cold sensitive neurons by altering their excitability and temperature thresholds. The silenced neurons are predominantly medium/large mechano-cold sensitive neurons, corresponding to the "silent" cold sensors activated during neuropathy. Deletion of α2δ1 subunits abolished the effects of pregabalin on both cold allodynia and the silencing of sensory neurons. Thus, these results define a novel, peripheral inhibitory effect of pregabalin on the excitability of "silent" cold-sensing neurons in a model of oxaliplatin-dependent cold allodynia.
Collapse
Affiliation(s)
- Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
- Discovery UK, Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| | - John E Linley
- Discovery UK, Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Draxler P, Moen A, Galek K, Boghos A, Ramazanova D, Sandkühler J. Spontaneous, Voluntary, and Affective Behaviours in Rat Models of Pathological Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:672711. [PMID: 35295455 PMCID: PMC8915731 DOI: 10.3389/fpain.2021.672711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
In pain patients affective and motivational reactions as well as impairment of daily life activities dominate the clinical picture. In contrast, many rodent pain models have been established on the basis of mechanical hypersensitivity testing. Up to today most rodent studies on pain still rely on reflexive withdrawal responses only. This discrepancy has likely contributed to the low predictive power of preclinical pain models for novel therapies. Here, we used a behavioural test array for rats to behaviourally evaluate five aetiologically distinct pain models consisting of inflammatory-, postsurgical-, cephalic-, neuropathic- and chemotherapy-induced pain. We assessed paralleling clinical expressions and comorbidities of chronic pain with an array of behavioural tests to assess anxiety, social interaction, distress, depression, and voluntary/spontaneous behaviours. Pharmacological treatment of the distinct pain conditions was performed with pathology-specific and clinically efficacious analgesics as gabapentin, sumatriptan, naproxen, and codeine. We found that rats differed in their manifestation of symptoms depending on the pain model and that pathology-specific analgesics also reduced the associated behavioural parameters. Based on all behavioural test performed, we screened for tests that can discriminate experimental groups on the basis of reflexive as well as non-sensory, affective parameters. Together, we propose a set of non-evoked behaviours with a comparable predictive power to mechanical threshold testing for each pain model.
Collapse
Affiliation(s)
- Peter Draxler
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Aurora Moen
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Karolina Galek
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ani Boghos
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Dariga Ramazanova
- Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS) Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Sandkühler
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Starobova H, Monteleone M, Adolphe C, Batoon L, Sandrock CJ, Tay B, Deuis JR, Smith AV, Mueller A, Nadar EI, Lawrence GP, Mayor A, Tolson E, Levesque JP, Pettit AR, Wainwright BJ, Schroder K, Vetter I. Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. J Exp Med 2021; 218:e20201452. [PMID: 33656514 PMCID: PMC7933984 DOI: 10.1084/jem.20201452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Vincristine is an important component of many regimens used for pediatric and adult malignancies, but it causes a dose-limiting sensorimotor neuropathy for which there is no effective treatment. This study aimed to delineate the neuro-inflammatory mechanisms contributing to the development of mechanical allodynia and gait disturbances in a murine model of vincristine-induced neuropathy, as well as to identify novel treatment approaches. Here, we show that vincristine-induced peripheral neuropathy is driven by activation of the NLRP3 inflammasome and subsequent release of interleukin-1β from macrophages, with mechanical allodynia and gait disturbances significantly reduced in knockout mice lacking NLRP3 signaling pathway components, or after treatment with the NLRP3 inhibitor MCC950. Moreover, treatment with the IL-1 receptor antagonist anakinra prevented the development of vincristine-induced neuropathy without adversely affecting chemotherapy efficacy or tumor progression in patient-derived medulloblastoma xenograph models. These results detail the neuro-inflammatory mechanisms leading to vincristine-induced peripheral neuropathy and suggest that repurposing anakinra may be an effective co-treatment strategy to prevent vincristine-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mercedes Monteleone
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Christelle Adolphe
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Lena Batoon
- Mater Research Institute and Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cheyenne J. Sandrock
- Mater Research Institute and Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Bryan Tay
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alexandra V. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Evelyn Israel Nadar
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Grace Pamo Lawrence
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Amanda Mayor
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elissa Tolson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute and Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Allison R. Pettit
- Mater Research Institute and Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Brandon J. Wainwright
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
7
|
Hasan MM, Starobova H, Mueller A, Vetter I, Lewis RJ. Subcutaneous ω-Conotoxins Alleviate Mechanical Pain in Rodent Models of Acute Peripheral Neuropathy. Mar Drugs 2021; 19:106. [PMID: 33670311 PMCID: PMC7917901 DOI: 10.3390/md19020106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
The peripheral effects of ω-conotoxins, selective blockers of N-type voltage-gated calcium channels (CaV2.2), have not been characterised across different clinically relevant pain models. This study examines the effects of locally administered ω-conotoxin MVIIA, GVIA, and CVIF on mechanical and thermal paw withdrawal threshold (PWT) in postsurgical pain (PSP), cisplatin-induced neuropathy (CisIPN), and oxaliplatin-induced neuropathy (OIPN) rodent models. Intraplantar injection of 300, 100 and 30 nM MVIIA significantly (p < 0.0001, p < 0.0001, and p < 0.05, respectively) alleviated mechanical allodynia of mice in PSP model compared to vehicle control group. Similarly, intraplantar injection of 300, 100, and 30 nM MVIIA (p < 0.0001, p < 0.01, and p < 0.05, respectively), and 300 nM and 100 nM GVIA (p < 0.0001 and p < 0.05, respectively) significantly increased mechanical thresholds of mice in OIPN model. The ED50 of GVIA and MVIIA in OIPN was found to be 1.8 pmol/paw and 0.8 pmol/paw, respectively. However, none of the ω-conotoxins were effective in a mouse model of CisIPN. The intraplantar administration of 300 nM GVIA, MVIIA, and CVIF did not cause any locomotor side effects. The intraplantar administration of MVIIA can alleviate incision-induced mechanical allodynia, and GVIA and MVIIA effectively reduce OIPN associated mechanical pain, without locomotor side effects, in rodent models. In contrast, CVIF was inactive in these pain models, suggesting it is unable to block a subset of N-type voltage-gated calcium channels associated with nociceptors in the skin.
Collapse
Affiliation(s)
- Md. Mahadhi Hasan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (M.M.H.); (H.S.); (A.M.); (I.V.)
| | - Hana Starobova
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (M.M.H.); (H.S.); (A.M.); (I.V.)
| | - Alexander Mueller
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (M.M.H.); (H.S.); (A.M.); (I.V.)
| | - Irina Vetter
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (M.M.H.); (H.S.); (A.M.); (I.V.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Richard J. Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (M.M.H.); (H.S.); (A.M.); (I.V.)
| |
Collapse
|
8
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:1393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393&set/a 813269399+839900579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
9
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021. [DOI: 10.3390/ijms22031393
expr 945913974 + 948698388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
10
|
Kawashiri T, Mine K, Kobayashi D, Inoue M, Ushio S, Uchida M, Egashira N, Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:ijms22031393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
- Correspondence: ; Tel.: +81-92-642-6573
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Mizuki Inoue
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| |
Collapse
|
11
|
Karim N, Khan I, Abdelhalim A, Halim SA, Khan A, Altaf N, Ahmad W, Ghaffar R, Al-Harrasi A. Involvement of selective GABA-A receptor subtypes in amelioration of cisplatin-induced neuropathic pain by 2'-chloro-6-methyl flavone (2'-Cl-6MF). Naunyn Schmiedebergs Arch Pharmacol 2020; 394:929-940. [PMID: 33221972 DOI: 10.1007/s00210-020-02021-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin-induced peripheral neuropathic pain is a common adverse effect of chemotherapy. The present study evaluated the effects of 2'-chloro-6-methylflavone (2'-Cl-6MF) at recombinant α1β2γ2L, α2β1-3γ2L, and α3β1-3γ2L GABA-A receptor subtypes expressed in Xenopus oocytes and subsequently evaluated its effectiveness in cisplatin-induced neuropathic pain. The results showed that 2'-Cl-6MF potentiated GABA-elicited currents at α2β2/3γ2L and α3β2/3γ2L GABA-A receptor subtypes. The potentiation was blocked by the co-application of flumazenil (a benzodiazepine (BDZs) site antagonist). In behavioral studies, mechanical allodynia was induced by intraplantar injection of cisplatin (40 μg/paw) in Sprague Dawley rats, and behavioral assessments were made 24 h after injection. 2'-Cl-6MF (1, 10, 30, and 100 mg/kg, i.p.), was administered 1 h before behavioral evaluation. Administration of 2'-Cl-6MF (30 and 100 mg/kg, i.p) significantly enhanced the paw withdrawal threshold and decreased mechanical allodynia. The standard drugs, gabapentin (GBP) at the dose of 70 mg/kg, and HZ 166 (16 mg/kg), i.p. also significantly enhanced the paw withdrawal threshold in mechanical allodynia. Pretreatment with pentylenetetrazole (PTZ) (15 mg/kg, i.p.) and flumazenil reversed the antinociceptive effect of 2'-Cl-6MF in mechanical allodynia indicating GABAergic mechanisms. Moreover, the binding mechanism of 2'-Cl-6MF was rationalized by in silico modeling tools. The 3D-coordinates of α2β2γ2L and α2β3γ2L were generated after homology modeling of the α2 subtype and 2'-Cl-6MF was at predicted binding sites of the developed models. The α2 model was compared with the α1 and α3 subunits via structural and sequence alignment. Molecular docking depicted that the compound binds efficiently at the neuromodulator binding site of the receptors. The findings of this study revealed that 2'-Cl-6MF ameliorated the manifestations of cisplatin-induced neuropathic pain in rats. Furthermore, we also conclude that GABAergic mechanisms may contribute to the antinociceptive effect of 2'-Cl-6MF. The molecular docking studies also confirm the involvement of the BDZs site of GABA-A receptors. It was observed that Ile230 of α2 stabilize the chlorophenyl ring of 2'-Cl-6MF through hydrophobic interactions, which is replaced by Val203 in α1 subunit. However, the smaller side chain of Val203 does not provide hydrophobic interaction to the compound due to high conformational flexibility of α1 subunit.
Collapse
Affiliation(s)
- Nasiara Karim
- Department of Pharmacy, University of Malakand, Chakdara, Dir (Lower), KPK, Pakistan.
| | - Imran Khan
- Department of Pharmacy, University of Swabi, Swabi, KPK, Pakistan
| | - Abeer Abdelhalim
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, 616, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, 616, Nizwa, Oman
| | - Nouman Altaf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (Lower), KPK, Pakistan
| | - Waqar Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Dir (Lower), KPK, Pakistan
| | - Rukhsana Ghaffar
- Department of Pharmacy, University of Malakand, Chakdara, Dir (Lower), KPK, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, 616, Nizwa, Oman
| |
Collapse
|
12
|
McVeigh LG, Perugini AJ, Fehrenbacher JC, White FA, Kacena MA. Assessment, Quantification, and Management of Fracture Pain: from Animals to the Clinic. Curr Osteoporos Rep 2020; 18:460-470. [PMID: 32827293 PMCID: PMC7541703 DOI: 10.1007/s11914-020-00617-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Fractures are painful and disabling injuries that can occur due to trauma, especially when compounded with pathologic conditions, such as osteoporosis in older adults. It is well documented that acute pain management plays an integral role in the treatment of orthopedic patients. There is no current therapy available to completely control post-fracture pain that does not interfere with bone healing or have major adverse effects. In this review, we focus on recent advances in the understanding of pain behaviors post-fracture. RECENT FINDINGS We review animal models of bone fracture and the assays that have been developed to assess and quantify spontaneous and evoked pain behaviors, including the two most commonly used assays: dynamic weight bearing and von Frey testing to assess withdrawal from a cutaneous (hindpaw) stimulus. Additionally, we discuss the assessment and quantification of fracture pain in the clinical setting, including the use of numeric pain rating scales, satisfaction with pain relief, and other biopsychosocial factor measurements. We review how pain behaviors in animal models and clinical cases can change with the use of current pain management therapies. We conclude by discussing the use of pain behavioral analyses in assessing potential therapeutic treatment options for addressing acute and chronic fracture pain without compromising fracture healing. There currently is a lack of effective treatment options for fracture pain that reliably relieve pain without potentially interfering with bone healing. Continued development and verification of reliable measurements of fracture pain in both pre-clinical and clinical settings is an essential aspect of continued research into novel analgesic treatments for fracture pain.
Collapse
Affiliation(s)
- Luke G McVeigh
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge, with increasing impact as oncological treatments, using potentially neurotoxic chemotherapy, improve cancer cure and survival. Acute CIPN occurs during chemotherapy, sometimes requiring dose reduction or cessation, impacting on survival. Around 30% of patients will still have CIPN a year, or more, after finishing chemotherapy. Accurate assessment is essential to improve knowledge around prevalence and incidence of CIPN. Consensus is needed to standardize assessment and diagnosis, with use of well-validated tools, such as the EORTC-CIPN 20. Detailed phenotyping of the clinical syndrome moves toward a precision medicine approach, to individualize treatment. Understanding significant risk factors and pre-existing vulnerability may be used to improve strategies for CIPN prevention, or to use targeted treatment for established CIPN. No preventive therapies have shown significant clinical efficacy, although there are promising novel agents such as histone deacetylase 6 (HDAC6) inhibitors, currently in early phase clinical trials for cancer treatment. Drug repurposing, eg, metformin, may offer an alternative therapeutic avenue. Established treatment for painful CIPN is limited. Following recommendations for general neuropathic pain is logical, but evidence for agents such as gabapentinoids and amitriptyline is weak. The only agent currently recommended by the American Society of Clinical Oncology is duloxetine. Mechanisms are complex with changes in ion channels (sodium, potassium, and calcium), transient receptor potential channels, mitochondrial dysfunction, and immune cell interactions. Improved understanding is essential to advance CIPN management. On a positive note, there are many potential sites for modulation, with novel analgesic approaches.
Collapse
Affiliation(s)
- Lesley A Colvin
- Chair of Pain Medicine, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| |
Collapse
|
14
|
Hashem MA, Shoeeb SB, Abd-Elhakim YM, Mohamed WA. The antitumor activity of Arthrospira platensis and/or cisplatin in a murine model of Ehrlich ascites carcinoma with hematinic and hepato-renal protective action. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
15
|
Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 2020; 15:1623-1630. [PMID: 32209761 PMCID: PMC7437596 DOI: 10.4103/1673-5374.276321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering; Faculty of Biology; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
16
|
MacDonald DI, Wood JN, Emery EC. Molecular mechanisms of cold pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 7:100044. [PMID: 32090187 PMCID: PMC7025288 DOI: 10.1016/j.ynpai.2020.100044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The sensation of cooling is essential for survival. Extreme cold is a noxious stimulus that drives protective behaviour and that we thus perceive as pain. However, chronic pain patients suffering from cold allodynia paradoxically experience innocuous cooling as excruciating pain. Peripheral sensory neurons that detect decreasing temperature express numerous cold-sensitive and voltage-gated ion channels that govern their response to cooling in health and disease. In this review, we discuss how these ion channels control the sense of cooling and cold pain under physiological conditions, before focusing on the molecular mechanisms by which ion channels can trigger pathological cold pain. With the ever-rising number of patients burdened by chronic pain, we end by highlighting the pressing need to define the cells and molecules involved in cold allodynia and so identify new, rational drug targets for the analgesic treatment of cold pain.
Collapse
|
17
|
Alberti P, Canta A, Chiorazzi A, Fumagalli G, Meregalli C, Monza L, Pozzi E, Ballarini E, Rodriguez-Menendez V, Oggioni N, Sancini G, Marmiroli P, Cavaletti G. Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity. Neuropharmacology 2019; 164:107905. [PMID: 31811874 DOI: 10.1016/j.neuropharm.2019.107905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.
Collapse
Affiliation(s)
- Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy.
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Human Physiology Lab., School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Giulio Sancini
- NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Human Physiology Lab., School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
18
|
Hooijmans CR, Draper D, Ergün M, Scheffer GJ. The effect of analgesics on stimulus evoked pain-like behaviour in animal models for chemotherapy induced peripheral neuropathy- a meta-analysis. Sci Rep 2019; 9:17549. [PMID: 31772391 PMCID: PMC6879539 DOI: 10.1038/s41598-019-54152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy induced painful peripheral neuropathy (CIPN) is a common dose-limiting side effect of several chemotherapeutic agents. Despite large amounts of human and animal studies, there is no sufficiently effective pharmacological treatment for CIPN. Although reducing pain is often a focus of CIPN treatment, remarkably few analgesics have been tested for this indication in clinical trials. We conducted a systematic review and meta-analyses regarding the effects of analgesics on stimulus evoked pain-like behaviour during CIPN in animal models. This will form a scientific basis for the development of prospective human clinical trials. A comprehensive search identified forty-six studies. Risk of bias (RoB) analyses revealed that the design and conduct of the included experiments were poorly reported, and therefore RoB was unclear in most studies. Meta-analyses showed that administration of analgesics significantly increases pain threshold for mechanical (SMD: 1.68 [1.41; 1.82]) and cold (SMD: 1. 41 [0.99; 1.83]) evoked pain. Subgroup analyses revealed that dexmedetomidine, celecoxib, fentanyl, morphine, oxycodone and tramadol increased the pain threshold for mechanically evoked pain, and lidocaine and morphine for cold evoked pain. Altogether, this meta-analysis shows that there is ground to investigate the use of morphine in clinical trials. Lidocaine, dexmedetomidine, celecoxib, fentanyl, oxycodone and tramadol might be good alternatives, but more animal-based research is necessary.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department for Health Evidence unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Derk Draper
- Department for Health Evidence unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mehmet Ergün
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Starobova H, Mueller A, Deuis JR, Carter DA, Vetter I. Inflammatory and Neuropathic Gene Expression Signatures of Chemotherapy-Induced Neuropathy Induced by Vincristine, Cisplatin, and Oxaliplatin in C57BL/6J Mice. THE JOURNAL OF PAIN 2019; 21:182-194. [PMID: 31260808 DOI: 10.1016/j.jpain.2019.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Vincristine, oxaliplatin, and cisplatin are commonly prescribed chemotherapeutic agents for the treatment of many tumors. However, a main side effect is chemotherapy-induced peripheral neuropathy (CIPN), which may lead to changes in chemotherapeutic treatment. Although symptoms associated with CIPN are recapitulated by mouse models, there is limited knowledge of how these drugs affect the expression of genes in sensory neurons. The present study carried out a transcriptomic analysis of dorsal root ganglia following vincristine, oxaliplatin, and cisplatin treatment with a view to gain insight into the comparative pathophysiological mechanisms of CIPN. RNA-Seq revealed 368, 295, and 256 differential expressed genes induced by treatment with vincristine, oxaliplatin, and cisplatin, respectively, and only 5 shared genes were dysregulated in all 3 groups. Cell type enrichment analysis and gene set enrichment analysis showed predominant effects on genes associated with the immune system after treatment with vincristine, while oxaliplatin treatment affected mainly neuronal genes. Treatment with cisplatin resulted in a mixed gene expression signature. PERSPECTIVE: These results provide insight into the recruitment of immune responses to dorsal root ganglia and indicate enhanced neuroinflammatory processes following administration of vincristine, oxaliplatin, and cisplatin. These gene expression signatures may provide insight into novel drug targets for treatment of CIPN.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - David A Carter
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
20
|
Starobova H, Mueller A, Allavena R, Lohman RJ, Sweet MJ, Vetter I. Minocycline Prevents the Development of Mechanical Allodynia in Mouse Models of Vincristine-Induced Peripheral Neuropathy. Front Neurosci 2019; 13:653. [PMID: 31316337 PMCID: PMC6610325 DOI: 10.3389/fnins.2019.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Vincristine is an antineoplastic substance that is part of many chemotherapy regimens, used especially for the treatment of a variety of pediatric cancers including leukemias and brain tumors. Unfortunately, many vincristine-treated patients develop peripheral neuropathy, a side effect characterized by sensory, motoric, and autonomic symptoms. The sensory symptoms include pain, in particular hypersensitivity to light touch, as well as loss of sensory discrimination to detect vibration and touch. The symptoms of vincristine-induced neuropathy are only poorly controlled by currently available analgesics and therefore often necessitate dose reductions or even cessation of treatment. The aim of this study was to identify new therapeutic targets for the treatment of vincristine-induced peripheral neuropathy (VIPN) by combining behavioral experiments, histology, and pharmacology after vincristine treatment. Local intraplantar injection of vincristine into the hind paw caused dose- and time-dependent mechanical hypersensitivity that developed into mechanical hyposensitivity at high doses, and lead to a pronounced, dose-dependent infiltration of immune cells at the site of injection. Importantly, administration of minocycline effectively prevented the development of mechanical hypersensitivity and infiltration of immune cells in mouse models of vincristine induce peripheral neuropathy (VIPN) based on intraperitoneal or intraplantar administration of vincristine. Similarly, Toll-like receptor 4 knockout mice showed diminished vincristine-induced mechanical hypersensitivity and immune cell infiltration, while treatment with the anti-inflammatory meloxicam had no effect. These results provide evidence for the involvement of Toll-like receptor 4 in the development of VIPN and suggest that minocycline and/or direct Toll-like receptor 4 antagonists may be an effective preventative treatment for patients receiving vincristine.
Collapse
Affiliation(s)
- H Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD, Australia
| | - A Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD, Australia
| | - R Allavena
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - R J Lohman
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - M J Sweet
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD, Australia
| | - I Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
21
|
Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20:ijms20061451. [PMID: 30909387 PMCID: PMC6471666 DOI: 10.3390/ijms20061451] [Citation(s) in RCA: 462] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonly used drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
|
22
|
Sałat K, Furgała A, Malikowska-Racia N. Searching for analgesic drug candidates alleviating oxaliplatin-induced cold hypersensitivity in mice. Chem Biol Drug Des 2019; 93:1061-1072. [PMID: 30900821 DOI: 10.1111/cbdd.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Oxaliplatin is a third-generation, platinum-based derivative used to treat advanced colorectal cancer. Within the patient population on oxaliplatin therapy, a lower incidence of hematological adverse effects and gastrointestinal toxicity is noted, but severe neuropathic pain episodes characterized by increased cold and tactile hypersensitivity are present in ~95% of patients. This drug is also used to induce a rodent model of chemotherapy-induced peripheral neuropathy (CIPN)-related neuropathic pain which is widely used in the search for novel therapies for CIPN prevention and treatment. This paper provides a step-by-step, detailed description of the prevention and intervention protocols used in our laboratory for the assessment of oxaliplatin-induced cold allodynia in mice. To establish cold sensitivity in mice, the cold plate test was used. Latencies to pain reaction in response to cold stimulus (2.5°C) for vehicle-treated non-neuropathic mice, vehicle-treated mice injected with oxaliplatin (neuropathic control), and oxaliplatin-treated mice treated additionally with duloxetine are compared. Duloxetine is a serotonin/noradrenaline reuptake inhibitor which was found to produce significant pain relief in patients with CIPN symptoms. In our present study, duloxetine administered intraperitoneally at the dose of 30 mg/kg served as a model antiallodynic drug which attenuated or partially prevented cold allodynia caused by oxaliplatin.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Furgała
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
23
|
Progressive Increase of Inflammatory CXCR4 and TNF-Alpha in the Dorsal Root Ganglia and Spinal Cord Maintains Peripheral and Central Sensitization to Diabetic Neuropathic Pain in Rats. Mediators Inflamm 2019; 2019:4856156. [PMID: 31001066 PMCID: PMC6437743 DOI: 10.1155/2019/4856156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is a common and serious complication of diabetic patients. The pathogenesis of DNP is largely unclear. The proinflammation proteins, CXCR4, and TNF-α play critical roles in the development of pain, while their relative roles in the development of DNP and especially its progression is unknown. We proposed that establishment of diabetic pain models in rodents and evaluating the stability of behavioral tests are necessary approaches to better understand the mechanism of DNP. In this study, Von Frey and Hargreaves Apparatus was used to analyze the behavioral changes of mechanical allodynia and heat hyperalgesia in streptozotocin-induced diabetic rats at different phases of diabetes. Moreover, CXCR4 and TNF-α of spinal cord dorsal and dorsal root ganglia (DRG) were detected by western blotting and immunostaining over time. The values of paw withdrawal threshold (PWT) and paw withdrawal latencies (PWL) were reduced as early as 1 week in diabetic rats and persistently maintained at lower levels during the progression of diabetes as compared to control rats that were concomitant with significant increases of both CXCR4 and TNF-α protein expressions in the DRG at 2 weeks and 5 weeks (the end of the experiments) of diabetes. By contrast, CXCR4 and TNF-α in the spinal cord dorsal horn did not significantly increase at 2 weeks of diabetes while both were significantly upregulated at 5 weeks of diabetes. The results indicate that central sensitization of spinal cord dorsal may result from persistent peripheral sensitization and suggest a potential reference for further treatment of DNP.
Collapse
|
24
|
Gaps in Understanding Mechanism and Lack of Treatments: Potential Use of a Nonhuman Primate Model of Oxaliplatin-Induced Neuropathic Pain. Pain Res Manag 2018; 2018:1630709. [PMID: 29854035 PMCID: PMC5954874 DOI: 10.1155/2018/1630709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The antineoplastic agent oxaliplatin induces an acute hypersensitivity evoked by cold that has been suggested to be due to sensitized central and peripheral neurons. Rodent-based preclinical studies have suggested numerous treatments for the alleviation of oxaliplatin-induced neuropathic pain, but few have demonstrated robust clinical efficacy. One issue is that current understanding of the pathophysiology of oxaliplatin-induced neuropathic pain is primarily based on rodent models, which might not entirely recapitulate the clinical pathophysiology. In addition, there is currently no objective physiological marker for pain that could be utilized to objectively indicate treatment efficacy. Nonhuman primates are phylogenetically and neuroanatomically similar to humans; thus, disease mechanism in nonhuman primates could reflect that of clinical oxaliplatin-induced neuropathy. Cold-activated pain-related brain areas in oxaliplatin-treated macaques were attenuated with duloxetine, the only drug that has demonstrated clinical efficacy for chemotherapy-induced neuropathic pain. By contrast, drugs that have not demonstrated clinical efficacy in oxaliplatin-induced neuropathic pain did not reduce brain activation. Thus, a nonhuman primate model could greatly enhance understanding of clinical pathophysiology beyond what has been obtained with rodent models and, furthermore, brain activation could serve as an objective marker of pain and therapeutic efficacy.
Collapse
|
25
|
Schmitt LI, Leo M, Kleinschnitz C, Hagenacker T. Oxaliplatin Modulates the Characteristics of Voltage-Gated Calcium Channels and Action Potentials in Small Dorsal Root Ganglion Neurons of Rats. Mol Neurobiol 2018; 55:8842-8855. [DOI: 10.1007/s12035-018-1029-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
26
|
Effects of ralfinamide in models of nerve injury and chemotherapy-induced neuropathic pain. Eur J Pharmacol 2018; 823:27-34. [PMID: 29408090 DOI: 10.1016/j.ejphar.2018.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/29/2017] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Neuropathic pain is among the most common and difficult-to-treat types of chronic pain and is associated with sodium channel malfunction. The sodium channel blocker ralfinamide has exhibited potent analgesic effects in several preclinical pain models and in patients with mixed neuropathic pain syndromes (Phase II trials), but it failed to ameliorate neuropathic low back pain in Phase III trials. It is unclear whether ralfinamide is effective against neuropathic pain induced by specified etiologies. In the present study, the antinociceptive effects of ralfinamide in neuropathic pain models induced by spared nerve injury and chemotherapy were compared in a gabapentin-controlled manner. The effects of ralfinamide on physiological pain were evaluated in mechanical withdrawal, hot plate, and acetic acid writhing tests. We also investigated the effects of ralfinamide on cardiovascular function and locomotor activity. Oral ralfinamide dose-dependently alleviated spared nerve injury-induced allodynia in rats and mice. Ralfinamide increased mechanical withdrawal thresholds in oxaliplatin-induced and paclitaxel-induced neuropathic pain. Ralfinamide did not affect physiological pain, locomotion, or cardiovascular function. Together, ralfinamide attenuated mechanical allodynia in all the neuropathic pain models tested, with subtle differences in efficacy. The effect of ralfinamide is comparable to that of gabapentin, but with no interference in basal mechanical sensitivity. The present study supports the effectiveness of selective sodium channel blockade as an analgesic strategy, as well as the development of compounds similar to ralfinamide.
Collapse
|
27
|
Cavaletti G, Marmiroli P. Pharmacotherapy options for managing chemotherapy-induced peripheral neurotoxicity. Expert Opin Pharmacother 2017; 19:113-121. [DOI: 10.1080/14656566.2017.1415326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guido Cavaletti
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Paola Marmiroli
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
28
|
Brunton E, Blau CW, Nazarpour K. Separability of neural responses to standardised mechanical stimulation of limbs. Sci Rep 2017; 7:11138. [PMID: 28894171 PMCID: PMC5593983 DOI: 10.1038/s41598-017-11349-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Considerable scientific and technological efforts are currently being made towards the development of neural prostheses. Understanding how the peripheral nervous system responds to electro-mechanical stimulation of the limb, will help to inform the design of prostheses that can restore function or accelerate recovery from injury to the sensory motor system. However, due to differences in experimental protocols, it is difficult, if not impossible, to make meaningful comparisons between different peripheral nerve interfaces. Therefore, we developed a low-cost electronic system to standardise the mechanical stimulation of a rat’s hindpaw. Three types of mechanical stimulations, namely, proprioception, touch and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from the sciatic nerve with a 16-contact cuff electrode. For the first time, results indicate separability of neural responses according to stimulus type as well as intensity. Statistical analysis reveal that cuff contacts placed circumferentially, rather than longitudinally, are more likely to lead to higher classification rates. This flexible setup may be readily adapted for systematic comparison of various electrodes and mechanical stimuli in rodents. Hence, we have made its electro-mechanical design and computer programme available online
Collapse
Affiliation(s)
- Emma Brunton
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, Newcastle, UK.
| | - Christoph W Blau
- Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, Newcastle, UK
| | - Kianoush Nazarpour
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, Newcastle, UK.,Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, Newcastle, UK
| |
Collapse
|
29
|
Deuis JR, Dvorakova LS, Vetter I. Methods Used to Evaluate Pain Behaviors in Rodents. Front Mol Neurosci 2017; 10:284. [PMID: 28932184 PMCID: PMC5592204 DOI: 10.3389/fnmol.2017.00284] [Citation(s) in RCA: 756] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Rodents are commonly used to study the pathophysiological mechanisms of pain as studies in humans may be difficult to perform and ethically limited. As pain cannot be directly measured in rodents, many methods that quantify “pain-like” behaviors or nociception have been developed. These behavioral methods can be divided into stimulus-evoked or non-stimulus evoked (spontaneous) nociception, based on whether or not application of an external stimulus is used to elicit a withdrawal response. Stimulus-evoked methods, which include manual and electronic von Frey, Randall-Selitto and the Hargreaves test, were the first to be developed and continue to be in widespread use. However, concerns over the clinical translatability of stimulus-evoked nociception in recent years has led to the development and increasing implementation of non-stimulus evoked methods, such as grimace scales, burrowing, weight bearing and gait analysis. This review article provides an overview, as well as discussion of the advantages and disadvantages of the most commonly used behavioral methods of stimulus-evoked and non-stimulus-evoked nociception used in rodents.
Collapse
Affiliation(s)
- Jennifer R Deuis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of QueenslandSt. Lucia, QLD, Australia
| | - Lucie S Dvorakova
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of QueenslandSt. Lucia, QLD, Australia
| | - Irina Vetter
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of QueenslandSt. Lucia, QLD, Australia.,School of Pharmacy, The University of QueenslandWoolloongabba, QLD, Australia
| |
Collapse
|
30
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
31
|
Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M. NaV1.7 as a pain target – From gene to pharmacology. Pharmacol Ther 2017; 172:73-100. [DOI: 10.1016/j.pharmthera.2016.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Deuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR, Bhola RF, Imlach WL, Herzig V, Armstrong DA, Rosengren KJ, Bosmans F, Waxman SG, Dib-Hajj SD, Escoubas P, Minett MS, Christie MJ, King GF, Alewood PF, Lewis RJ, Wood JN, Vetter I. Pharmacological characterisation of the highly Na V1.7 selective spider venom peptide Pn3a. Sci Rep 2017; 7:40883. [PMID: 28106092 PMCID: PMC5247677 DOI: 10.1038/srep40883] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40-1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective NaV1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective NaV1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted NaV1.7 inhibitors can only produce analgesia when administered in combination with an opioid.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zoltan Dekan
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Joshua S. Wingerd
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jennifer J. Smith
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nehan R. Munasinghe
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Rebecca F. Bhola
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Wendy L. Imlach
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Volker Herzig
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - David A. Armstrong
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Frank Bosmans
- Department of Physiology & Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | | | - Michael S. Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Macdonald J. Christie
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Glenn F. King
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Paul F. Alewood
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Richard J. Lewis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Irina Vetter
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
33
|
Leo M, Schmitt LI, Erkel M, Melnikova M, Thomale J, Hagenacker T. Cisplatin-induced neuropathic pain is mediated by upregulation of N-type voltage-gated calcium channels in dorsal root ganglion neurons. Exp Neurol 2016; 288:62-74. [PMID: 27823926 DOI: 10.1016/j.expneurol.2016.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/04/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
Cisplatin is important in the treatment of various types of cancer. Although it is highly effective, it also has severe side effects, with neurotoxicity in dorsal root ganglion (DRG) neurons being one of the most common. The key mechanisms of neurotoxicity are still controversially discussed; however, disturbances of the calcium homeostasis in DRG neurons have been suggested to mediate cisplatin neurotoxicity. By using the whole-cell patch-clamp technique, immunostaining and behavioral experiments with Sprague-Dawley rats, we examined the influence of short- and long-term exposure to cisplatin on voltage-gated calcium channel (VGCC) currents (ICa(V)) in small DRG neurons. In vitro exposure to cisplatin reduced ICa(V) in a concentration-dependent manner (0.01-50μM; 13.8-77.3%; IC50 5.07μM). Subtype-specific measurements of VGCCs showed differential effects on ICa(V). While the ICa(V) of P/Q-, L- and T-type VGCCs were reduced, ICa(V) of N-type VGCCs were increased by 30.3% during depolarization to 0mV. Exposure of DRG neurons to cisplatin (0.5 or 5μM) for 24-48h in vitro significantly increased a CaMK II-mediated ICa(V) current density. Immunostaining and western blot analysis revealed an increase of N-type VGCC protein level in DRG neurons 24h after cisplatin exposure. Cisplatin-mediated activation of caspase-3 was prevented by inhibition of N-type VGCCs using Ɯ-conotoxin MVIIA. Behavioral experiments showed that Ɯ-conotoxin MVIIA treatment prevented neuropathic syndromes in vivo by inhibiting upregulation of the N-type protein level. Here we show evidence for the first time for a crucial role of N-type VGCC in the genesis of cisplatin-induced polyneuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Martin Erkel
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Margarita Melnikova
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| |
Collapse
|
34
|
Krukowski K, Nijboer CH, Huo X, Kavelaars A, Heijnen CJ. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain 2016; 156:2184-2192. [PMID: 26473292 DOI: 10.1097/j.pain.0000000000000290] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. It is the most frequent cause of dose reduction or treatment discontinuation in patients treated for cancer with commonly used drugs including taxanes and platinum-based compounds. No FDA-approved treatments for CIPN are available. In rodents, CIPN is represented by peripheral mechanical allodynia in association with retraction of intraepidermal nerve fibers. The mechanism of chemotherapy-induced neurotoxicity is unclear, but it has been established that mitochondrial dysfunction is an important component of the dysregulation in peripheral sensory neurons. We have shown earlier that inhibition of mitochondrial p53 accumulation with the small compound pifithrin-μ (PFT-μ) prevents cerebral neuronal death in a rodent model of hypoxic-ischemic brain damage. We now explore whether PFT-μ is capable of preventing neuronal mitochondrial damage and CIPN in mice. We demonstrate for the first time that PFT-μ prevents both paclitaxel- and cisplatin-induced mechanical allodynia. Electron microscopic analysis of peripheral sensory nerves revealed that PFT-μ secured mitochondrial integrity in paclitaxel-treated mice. In addition, PFT-μ administration protects against chemotherapy-induced loss of intraepidermal nerve fibers in the paw. To determine whether neuroprotective treatment with PFT-μ would interfere with the antitumor effects of chemotherapy, ovarian tumor cells were cultured in vitro with PFT-μ and paclitaxel. Pifithrin-μ does not inhibit tumor cell death but even enhances paclitaxel-induced tumor cell death. These data are the first to identify PFT-μ as a potential therapeutic strategy for prevention of CIPN to combat one of the most devastating side effects of chemotherapy.
Collapse
Affiliation(s)
- Karen Krukowski
- Laboratory of Neuroimmunology, Department Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
35
|
Vincent JA, Wieczerzak KB, Gabriel HM, Nardelli P, Rich MM, Cope TC. A novel path to chronic proprioceptive disability with oxaliplatin: Distortion of sensory encoding. Neurobiol Dis 2016; 95:54-65. [PMID: 27397106 DOI: 10.1016/j.nbd.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/06/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023] Open
Abstract
Persistent neurotoxic side effects of oxaliplatin (OX) chemotherapy, including sensory ataxia, limit the efficacy of treatment and significantly diminish patient quality of life. The common explanation for neurotoxicity is neuropathy, however the degree of neuropathy varies greatly among patients and appears insufficient in some cases to fully account for disability. We recently identified an additional mechanism that might contribute to sensory ataxia following OX treatment. In the present study, we tested whether that mechanism, selective modification of sensory signaling by muscle proprioceptors might result in behavioral deficits in rats. OX was administered once per week for seven weeks (cumulative dose i.p. 70mg/kg) to adult female Wistar rats. Throughout and for three weeks following treatment, behavioral analysis was performed daily on OX and sham control rats. Compared to controls, OX rats demonstrated errors in placing their hind feet securely and/or correctly during a horizontal ladder rung task. These behavioral deficits occurred together with modification of proprioceptor signaling that eliminated sensory encoding of static muscle position while having little effect on encoding of dynamic changes in muscle length. Selective inability to sustain repetitive firing in response to static muscle stretch led us to hypothesize that OX treatment impairs specific ionic currents, possibly the persistent inward Na currents (NaPIC) that are known to support repetitive firing during static stimulation in several neuron types, including the class of large diameter dorsal root ganglion cells that includes muscle proprioceptors. We tested this hypothesis by determining whether the chronic effects of OX on the firing behavior of muscle proprioceptors in vivo were mimicked by acute injection of NaPIC antagonists. Both riluzole and phenytoin, each having multiple drug actions but having only antagonist action on NaPIC in common, reproduced selective modification of proprioceptor signaling observed in OX rats. Taken together, these findings lead us to propose that OX chemotherapy contributes to movement disability by modifying sensory encoding, possibly via a chronic neurotoxic effect on NaPIC in the sensory terminals of muscle proprioceptors.
Collapse
Affiliation(s)
- Jacob A Vincent
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Krystyna B Wieczerzak
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Hanna M Gabriel
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Timothy C Cope
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States.
| |
Collapse
|
36
|
Shidahara Y, Ogawa S, Nakamura M, Nemoto S, Awaga Y, Takashima M, Hama A, Matsuda A, Takamatsu H. Pharmacological comparison of a nonhuman primate and a rat model of oxaliplatin-induced neuropathic cold hypersensitivity. Pharmacol Res Perspect 2016; 4:e00216. [PMID: 26977304 PMCID: PMC4777264 DOI: 10.1002/prp2.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/18/2015] [Accepted: 01/09/2016] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin is a first‐line treatment for colorectal cancer. However, shortly following treatment, cold‐evoked hypersensitivity appears in the extremities and over time, the pain is such that oxaliplatin dosing may need to be markedly reduced or even terminated. There is currently a lack of efficacious treatments for oxaliplatin‐induced peripheral neuropathy, which is due in part to the difficulty in translating findings obtained from preclinical rodent models of chemotherapy‐induced peripheral neuropathy. Nonhuman primates (NHP) are phylogenetically closer to humans than rodents and may show drug responses that parallel those of humans. A significant decrease in tail withdrawal latency to 10°C water (“cold hypersensitivity”) was observed beginning 3 days after intravenous infusion of oxaliplatin (5 mg/kg) in Macaca fascicularis. A single treatment of duloxetine (30 mg/kg, p.o.) ameliorated oxaliplatin‐induced cold hypersensitivity, whereas pregabalin (30 mg/kg, p.o.) and tramadol (30 mg/kg, p.o.) did not. By contrast, in rats, no significant cold hypersensitivity, or increased responsiveness to acetone applied to the hind paws, was observed 3 days after the first injection of oxaliplatin (5 mg/kg, i.p., once per day, two injections). Therefore, rats were tested after six treatments of oxaliplatin, 17 days after the first treatment. All analgesics (30 mg/kg, p.o.) significantly ameliorated cold hypersensitivity in rats. The activity of analgesics in the oxaliplatin‐treated macaques parallel clinical findings. The current results indicate that the NHP could serve as a bridge species to improve translatability of preclinical findings into clinically useful treatments for oxaliplatin‐induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yuka Shidahara
- Hamamatsu Pharma Research, Inc. Hamamatsu Shizuoka Japan
| | - Shinya Ogawa
- Hamamatsu Pharma Research, Inc. Hamamatsu Shizuoka Japan
| | - Mari Nakamura
- Hamamatsu Pharma Research, Inc. Hamamatsu Shizuoka Japan
| | - Shingo Nemoto
- Hamamatsu Pharma Research, Inc. Hamamatsu Shizuoka Japan
| | - Yuji Awaga
- Hamamatsu Pharma Research, Inc. Hamamatsu Shizuoka Japan
| | | | - Aldric Hama
- Hamamatsu Pharma Research, Inc. Hamamatsu Shizuoka Japan
| | | | | |
Collapse
|
37
|
Deuis JR, Whately E, Brust A, Inserra MC, Asvadi NH, Lewis RJ, Alewood PF, Cabot PJ, Vetter I. Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chem Neurosci 2015. [PMID: 26225903 DOI: 10.1021/acschemneuro.5b00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Selective activation of peripheral κ opioid receptors (KORs) may overcome the dose-limiting adverse effects of conventional opioid analgesics. We recently developed a vicinal disulfide-stabilized class of peptides with subnanomolar potency at the KOR. The aim of this study was to assess the analgesic effects of one of these peptides, named conorphin-1, in comparison with the prototypical KOR-selective small molecule agonist U-50488, in several rodent pain models. Surprisingly, neither conorphin-1 nor U-50488 were analgesic when delivered peripherally by intraplantar injection at local concentrations expected to fully activate the KOR at cutaneous nerve endings. While U-50488 was analgesic when delivered at high local concentrations, this effect could not be reversed by coadministration with the selective KOR antagonist ML190 or the nonselective opioid antagonist naloxone. Instead, U-50488 likely mediated its peripheral analgesic effect through nonselective inhibition of voltage-gated sodium channels, including peripheral sensory neuron isoforms NaV1.8 and NaV1.7. Our study suggests that targeting the KOR in peripheral sensory nerve endings innervating the skin is not an alternative analgesic approach.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ella Whately
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Marco C. Inserra
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Naghmeh H. Asvadi
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | | | - Peter J. Cabot
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Irina Vetter
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
38
|
Poupon L, Kerckhove N, Vein J, Lamoine S, Authier N, Busserolles J, Balayssac D. Minimizing chemotherapy-induced peripheral neuropathy: preclinical and clinical development of new perspectives. Expert Opin Drug Saf 2015; 14:1269-82. [DOI: 10.1517/14740338.2015.1056777] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Fehrenbacher JC. Chemotherapy-Induced Peripheral Neuropathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:471-508. [DOI: 10.1016/bs.pmbts.2014.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|