1
|
Spinello Z, Besharat ZM, Mainiero F, Rughetti A, Masuelli L, Ferretti E, Catanzaro G. MiR-326: Role and significance in brain cancers. Noncoding RNA Res 2025; 12:56-64. [PMID: 40115178 PMCID: PMC11925037 DOI: 10.1016/j.ncrna.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that act as critical regulators of gene expression by repressing mRNA translation. The role of miRNAs in cell physiology spans from cell cycle control to cell proliferation and differentiation, both during development and in adult tissues. Accordingly, dysregulated expression of miRNAs has been reported in several diseases, including cancer, where miRNAs can act as oncogenes or oncosuppressors. Of note, miRNA signatures are also under investigation for classification, diagnosis, and prognosis of cancer patients. Brain tumours are primarily associated with poor prognosis and high mortality, highlighting an urgent need for novel diagnostic, prognostic, and therapeutic tools. Among miRNAs investigated in brain tumours, miR-326 has been shown to act as a tumour suppressor in adult and paediatric brain cancers. In this review, we describe the role of miR-326 in malignant as well as benign cancers originating from brain tissue. In addition, since miR-326 expression can be regulated by other non-coding RNA species, adding a further layer of regulation in the cancer-promoting axis, we discuss this miRNA's role in targeted therapy for brain cancers.
Collapse
Affiliation(s)
- Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppina Catanzaro
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165, Rome, Italy
| |
Collapse
|
2
|
Ma Y, Wang Y, Wang C, Wang Y, Hu J, Zhang Z, Dong T, Chen X. miR-200a-3p promotes the malignancy of endometrial carcinoma through negative regulation of epithelial-mesenchymal transition. Discov Oncol 2024; 15:243. [PMID: 38916621 PMCID: PMC11199454 DOI: 10.1007/s12672-024-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND miR-200a-3p is involved in the progression of malignant behavior in various tumors, and its mechanism of action in endometrial cancer is speculated to be related to epithelial-mesenchymal transition (EMT). Therefore, this study explored the metastatic mechanism of miR-200a-3p and EMT in endometrial cancer, with the aim of identifying potential therapeutic targets. METHODS qRT-PCR was used to analyze miR-200a-3p expression in HEC-1B and Ishikawa cell lines. The cell proliferation assay, transwell assay, and cell scratch test were used to assess changes in the malignant phenotypes of cells after regulating miR-200a-3p expression. Changes in EMT-related protein zinc finger E-box binding homeobox 1 (ZEB1) were detected after regulating miR-200a-3p expression. An endometrial carcinoma transplantation mouse tumor model was constructed, and multiple EMT-related proteins were examined. RESULTS The expression of miR-200a-3p and ZEB1 in the endometrial cancer cell lines was higher than in normal endometrial epithelial cell lines (P < 0.05). After silencing miR-200a-3p, the expression of EMT-related protein ZEB1 increased, indicating a negative correlation. Simultaneously, the proliferation, invasion, and metastasis of endometrial cancer cells were significantly enhanced. After miR-200a-3p overexpression, the corresponding malignant phenotype was reversed (P < 0.05). In in vivo experiments, the degree of tumor malignancy and the expression level of EMT-related proteins were significantly reduced in the miR-200a-3p mimic group (P < 0.05). CONCLUSION This study found that miR-200a-3p is a promising target, regulating the EMT process and promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yiru Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Can Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yan Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Jingshu Hu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Zexue Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Tuo Dong
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, No. 157 Baojian Road, Harbin, 150081, Heilongjiang, China.
| | - Xiuwei Chen
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
3
|
Yuan M, Mahmud I, Katsushima K, Joshi K, Saulnier O, Pokhrel R, Lee B, Liyanage W, Kunhiraman H, Stapleton S, Gonzalez-Gomez I, Kannan RM, Eisemann T, Kolanthai E, Seal S, Garrett TJ, Abbasi S, Bockley K, Hanes J, Chapagain P, Jallo G, Wechsler-Reya RJ, Taylor MD, Eberhart CG, Ray A, Perera RJ. miRNA-211 maintains metabolic homeostasis in medulloblastoma through its target gene long-chain acyl-CoA synthetase 4. Acta Neuropathol Commun 2023; 11:203. [PMID: 38115140 PMCID: PMC10729563 DOI: 10.1186/s40478-023-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.
Collapse
Affiliation(s)
- Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rudramani Pokhrel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Bongyong Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Haritha Kunhiraman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Ignacio Gonzalez-Gomez
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tanja Eisemann
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Timothy J Garrett
- Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Kimberly Bockley
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, 77030, USA
- Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA.
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
4
|
Jain CK, Srivastava P, Pandey AK, Singh N, Kumar RS. miRNA therapeutics in precision oncology: a natural premium to nurture. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:511-532. [PMID: 36071981 PMCID: PMC9446160 DOI: 10.37349/etat.2022.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The dynamic spectrum of microRNA (miRNA) has grown significantly over the years with its identification and exploration in cancer therapeutics and is currently identified as an important resource for innovative strategies due to its functional behavior for gene regulation and modulation of complex biological networks. The progression of cancer is the consequence of uncontrolled, nonsynchronous procedural faults in the biological system. Diversified and variable cellular response of cancerous cells has always raised challenges in effective cancer therapy. miRNAs, a class of non-coding RNAs (ncRNAs), are the natural genetic gift, responsible to preserve the homeostasis of cell to nurture. The unprecedented significance of endogenous miRNAs has exhibited promising therapeutic potential in cancer therapeutics. Currently, miRNA mimic miR-34, and an antimiR aimed against miR-122 has entered the clinical trials for cancer treatments. This review, highlights the recent breakthroughs, challenges, clinical trials, and advanced delivery vehicles in the administration of miRNA therapies for precision oncology.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Poornima Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, GIFT city 382355, India
| | - R Suresh Kumar
- Molecular Genetics Lab, Molecular Biology Group, National Institute of Cancer Prevention and Research (ICMR), Noida 201307, India
| |
Collapse
|
5
|
Liu Y, Wang C, Zhang C, Chen R, Liu B, Zhang K. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sens 2022; 7:2320-2327. [PMID: 35925869 DOI: 10.1021/acssensors.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sensitive analysis of microRNAs (miRNAs) in cerebrospinal fluid (CSF) holds promise for the minimally invasive early diagnosis of brain cancers such as pediatric medulloblastoma but remains challenging due partially to a lack of facile yet sensitive sensing methods. Herein, an enzyme-free triple-signal amplification electrochemical assay for miRNA was developed by integrating the target-triggered cyclic strand-displacement reaction (TCSDR), hybridization chain reaction (HCR), and methylene blue (MB) intercalation. In this assay, the presence of target miRNA (miR-9) initiated the TCSDR and produced primers that triggered the subsequent HCR amplification to generate copious double-stranded DNAs (dsDNAs) on the electrode surface. Intercalation of a large number of MB reporters into the long nicked double helixes of dsDNAs yielded a more enhanced signal of differential pulse voltammetry. The enzyme-free multiple-amplification approach allowed for highly sensitive (detection limit: 6.5 fM) and sequence-specific (single-base mismatch resolution) detection of miR-9 from tumor cells and human CSF with minimal sample consumption (10 μL). Moreover, the clinical utilization of this method was documented by accurate discrimination of five medulloblastoma patients from the nontumoral controls. In light of its sensitivity, specificity, and convenience of use, this electrochemical method was expected to facilitate the early detection of malignant brain tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chen Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
6
|
Wang C, Liu Y, Chen R, Wang X, Wang Y, Wei J, Zhang K, Zhang C. Electrochemical biosensing of circulating microRNA-21 in cerebrospinal fluid of medulloblastoma patients through target-induced redox signal amplification. Mikrochim Acta 2022; 189:105. [DOI: 10.1007/s00604-022-05210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
|
7
|
Pediatric brain tumor cell lines exhibit miRNA-depleted, Y RNA-enriched extracellular vesicles. J Neurooncol 2022; 156:269-279. [PMID: 34984645 DOI: 10.1007/s11060-021-03914-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized. The overall aim of this pilot study was to isolate EVs from MB and DIPG patient-derived cell lines and to explore the small ncRNA transcriptome. METHODS EVs from 3 DIPG and 4 MB patient-derived cell lines were analyzed. High-throughput next generation sequencing interrogated the short non-coding RNA (ncRNA) transcriptome. Known and novel miRNAs were quantified. Differential expression analysis, in silico target prediction, and functional gene enrichment were performed. RESULTS EV secretomes from MB and DIPG patient-derived cell lines demonstrated discrete ncRNA biotypes. Notably, miRNAs were depleted and Y RNAs were enriched in EV samples. Hierarchical cluster analysis revealed high discrimination in miRNA expression between DIPG and MB cell lines and RNA-Seq identified novel miRNAs not previously implicated in MB or DIPG pathogenesis. Known and putative target genes of dysregulated miRNAs were identified. Functional annotation analysis of the target genes for differentially expressed EV-and parental-derived miRNAs revealed significant cancer-related pathway involvement. CONCLUSIONS This hypothesis-generating study demonstrated that pediatric brain tumor-derived cell lines secrete EVs comprised of various ncRNA cargoes. Validation of these findings in patient samples may provide new insights into the pediatric brain tumor microenvironment and identification of novel therapeutic candidates.
Collapse
|
8
|
Panwalkar P, Khire A, Shirsat N. Validation of microRNA Target Genes Using Luciferase Reporter assay and Western Blot Analysis. Methods Mol Biol 2022; 2423:27-38. [PMID: 34978685 DOI: 10.1007/978-1-0716-1952-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MicroRNA s regulate gene expression by binding to the 3'untranslated region (UTR) of the mRNA of their target genes. Identification of microRNA target genes enables the determination of their functional role in the cells. A single microRNA can target multiple genes, all of which have a microRNA binding site in their 3' UTR. Putative target genes can be identified using target prediction software and gene expression analysis of microRNA expressing cells. The validation of the putative target genes is carried out using the luciferase reporter assay and western blot analysis. This chapter describes the protocol for using these techniques for validation of putative microRNA target genes.
Collapse
Affiliation(s)
- Pooja Panwalkar
- Shirsat Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| | - Atul Khire
- Shirsat Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Department of Cell biology, Memorial Sloan -Kettering Cancer Centre, New York, NY, USA
| | - Neelam Shirsat
- Shirsat Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
10
|
Osuna-Marco MP, López-Barahona M, López-Ibor B, Tejera ÁM. Ten Reasons Why People With Down Syndrome are Protected From the Development of Most Solid Tumors -A Review. Front Genet 2021; 12:749480. [PMID: 34804119 PMCID: PMC8602698 DOI: 10.3389/fgene.2021.749480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
People with Down syndrome have unique characteristics as a result of the presence of an extra chromosome 21. Regarding cancer, they present a unique pattern of tumors, which has not been fully explained to date. Globally, people with Down syndrome have a similar lifetime risk of developing cancer compared to the general population. However, they have a very increased risk of developing certain tumors (e.g., acute leukemia, germ cell tumors, testicular tumors and retinoblastoma) and, on the contrary, there are some other tumors which appear only exceptionally in this syndrome (e.g., breast cancer, prostate cancer, medulloblastoma, neuroblastoma and Wilms tumor). Various hypotheses have been developed to explain this situation. The genetic imbalance secondary to the presence of an extra chromosome 21 has molecular consequences at several levels, not only in chromosome 21 but also throughout the genome. In this review, we discuss the different proposed mechanisms that protect individuals with trisomy 21 from developing solid tumors: genetic dosage effect, tumor suppressor genes overexpression, disturbed metabolism, impaired neurogenesis and angiogenesis, increased apoptosis, immune system dysregulation, epigenetic aberrations and the effect of different microRNAs, among others. More research into the molecular pathways involved in this unique pattern of malignancies is still needed.
Collapse
Affiliation(s)
- Marta Pilar Osuna-Marco
- Biology of Ageing Group, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain.,Pediatric Oncology and Hematology Unit, HM Hospitals, Madrid, Spain
| | | | | | - Águeda Mercedes Tejera
- Biology of Ageing Group, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
11
|
Wang X, Yung MMH, Sharma R, Chen F, Poon YT, Lam WY, Li B, Ngan HYS, Chan KKL, Chan DW. Epigenetic Silencing of miR-33b Promotes Peritoneal Metastases of Ovarian Cancer by Modulating the TAK1/FASN/CPT1A/NF-κB Axis. Cancers (Basel) 2021; 13:cancers13194795. [PMID: 34638280 PMCID: PMC8508465 DOI: 10.3390/cancers13194795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Peritoneal metastases are frequently found in high-grade serous carcinoma (HGSOC) patients and are commonly associated with a poor prognosis. The tumor microenvironment (TME) is a complex milieu that plays a critical role in epigenetic alterations driving tumor development and metastatic progression. However, the impact of epigenetic alterations on metastatic ovarian cancer cells in the harsh peritoneal microenvironment remains incompletely understood. Here, we identified that miR-33b is frequently silenced by promoter hypermethylation in HGSOC cells derived from metastatic omental tumor tissues. Enforced expression of miR-33b abrogates the oncogenic properties of ovarian cancer cells cocultured in omental conditioned medium (OCM), which mimics the ascites microenvironment, and in vivo tumor growth. Of note, restoration of miR-33b inhibited OCM-upregulated de novo lipogenesis and fatty acid β-oxidation in ovarian cancer cells, indicating that miR-33b may play a novel tumor suppressor role in the lipid-mediated oncogenic properties of metastatic ovarian cancer cells found in the omentum. Mechanistic studies demonstrated that miR-33b directly targets transforming growth factor beta-activated kinase 1 (TAK1), thereby suppressing the activities of fatty acid synthase (FASN) and carnitine palmitoyltransferase 1A (CPT1A) in modulating lipid metabolic activities and simultaneously inhibiting the phosphorylation of NF-κB signaling to govern the oncogenic behaviors of ovarian cancer cells. Thus, our data suggest that a lipid-rich microenvironment may cause epigenetic silencing of miR-33b, which negatively modulates ovarian cancer peritoneal metastases, at least in part, by suppressing TAK1/FASN/CPT1A/NF-κB signaling.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Rakesh Sharma
- Centre for PanorOmic Sciences Proteomics and Metabolomics Core, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Fushun Chen
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Ying-Tung Poon
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Wai-Yip Lam
- Lee’s Pharmaceutical (HK) Ltd., 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, China; (W.-Y.L.); (B.L.)
| | - Benjamin Li
- Lee’s Pharmaceutical (HK) Ltd., 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, China; (W.-Y.L.); (B.L.)
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
- Correspondence: (K.K.L.C.); (D.W.C.)
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
- Correspondence: (K.K.L.C.); (D.W.C.)
| |
Collapse
|
12
|
Liquid Biomarkers for Pediatric Brain Tumors: Biological Features, Advantages and Perspectives. J Pers Med 2020; 10:jpm10040254. [PMID: 33260839 PMCID: PMC7711550 DOI: 10.3390/jpm10040254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tumors of the central nervous system are the most frequent solid tumor type and the major cause for cancer-related mortality in children and adolescents. These tumors are biologically highly heterogeneous and comprise various different entities. Molecular diagnostics are already well-established for pediatric brain tumors and have facilitated a more accurate patient stratification. The availability of targeted, biomarker-driven therapies has increased the necessity of longitudinal monitoring of molecular alterations within tumors for precision medicine-guided therapy. Nevertheless, diagnosis is still primarily based on analyses of the primary tumor and follow-up is usually performed by imaging techniques which lack important information on tumor biology possibly changing the course of the disease. To overcome this shortage of longitudinal information, liquid biopsy has emerged as a promising diagnostic tool representing a less-invasive source of biomarkers for tumor monitoring and therapeutic decision making. Novel ultrasensitive methods for detection of allele variants, genetic alterations with low abundance, have been developed and are promising tools for establishing and integrating liquid biopsy techniques into clinical routine. Pediatric brain tumors harbor multiple molecular alterations with the potential to be used as liquid biomarkers. Consequently, studies have already investigated different types of biomarker in diverse entities of pediatric brain tumors. However, there are still certain pitfalls until liquid biomarkers can be unleashed and implemented into routine clinical care. Within this review, we summarize current knowledge on liquid biopsy markers and technologies in pediatric brain tumors, their advantages and drawbacks, as well as future potential biomarkers and perspectives with respect to clinical implementation in patient care.
Collapse
|
13
|
Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V, Khatua S. Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 2020; 150:35-46. [PMID: 32816225 DOI: 10.1007/s11060-020-03591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.
Collapse
Affiliation(s)
- Amanda R Haltom
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Toll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, USA
| | - Donghang Cheng
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat Rev Cancer 2020; 20:42-56. [PMID: 31819232 PMCID: PMC9113832 DOI: 10.1038/s41568-019-0223-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Medulloblastoma, a malignant brain tumour primarily diagnosed during childhood, has recently been the focus of intensive molecular profiling efforts, profoundly advancing our understanding of biologically and clinically heterogeneous disease subgroups. Genomic, epigenomic, transcriptomic and proteomic landscapes have now been mapped for an unprecedented number of bulk samples from patients with medulloblastoma and, more recently, for single medulloblastoma cells. These efforts have provided pivotal new insights into the diverse molecular mechanisms presumed to drive tumour initiation, maintenance and recurrence across individual subgroups and subtypes. Translational opportunities stemming from this knowledge are continuing to evolve, providing a framework for improved diagnostic and therapeutic interventions. In this Review, we summarize recent advances derived from this continued molecular characterization of medulloblastoma and contextualize this progress towards the deployment of more effective, molecularly informed treatments for affected patients.
Collapse
Affiliation(s)
- Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
15
|
Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C, Urban GA. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905311. [PMID: 31663165 DOI: 10.1002/adma.201905311] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Indexed: 05/17/2023]
Abstract
Noncoding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated with many different diseases, such as cancer, dementia, and cardiovascular conditions. The key for effective treatment is an accurate initial diagnosis at an early stage, improving the patient's survival chances. In this work, the first clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a-powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs is introduced. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a is realized without any nucleic acid amplification. With a readout time of 9 min and an overall process time of less than 4 h, a limit of detection of 10 pm is achieved, using a measuring volume of less than 0.6 µL. Furthermore, the feasibility of the biosensor platform to detect miR-19b in serum samples of children, suffering from brain cancer, is demonstrated. The validation of the obtained results with a standard quantitative real-time polymerase chain reaction method shows the ability of the electrochemical CRISPR-powered system to be a low-cost, easily scalable, and target amplification-free tool for nucleic acid based diagnostics.
Collapse
Affiliation(s)
- Richard Bruch
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, 79110, Freiburg, Germany
| | - Julia Baaske
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Claire Chatelle
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Mailin Meirich
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Molecular Neuro-Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, 79110, Freiburg, Germany
- Department of Bioengineering, Royal School of Mines, Imperial College London, SW7 2AZ, London, UK
| | - Gerald Anton Urban
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| |
Collapse
|
16
|
Bharambe HS, Paul R, Panwalkar P, Jalali R, Sridhar E, Gupta T, Moiyadi A, Shetty P, Kazi S, Deogharkar A, Masurkar S, Yogi K, Kunder R, Gadewal N, Goel A, Goel N, Chinnaswamy G, Ramaswamy V, Shirsat NV. Downregulation of miR-204 expression defines a highly aggressive subset of Group 3/Group 4 medulloblastomas. Acta Neuropathol Commun 2019; 7:52. [PMID: 30944042 PMCID: PMC6448261 DOI: 10.1186/s40478-019-0697-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/10/2019] [Indexed: 11/18/2022] Open
Abstract
Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.
Collapse
|