1
|
Phabphal K, Kaewborisutsakul A, Leetanaporn K, Choochuen P, Tunthanathip T, Navakanitworakul R, Sangkhathat S. Gene mutations linked to drug-resistant epilepsy in astrocytoma. Front Neurol 2025; 16:1523468. [PMID: 40103938 PMCID: PMC11913685 DOI: 10.3389/fneur.2025.1523468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Epilepsy is common in gliomas, particularly astrocytomas, even in patients who have undergone total tumor resection. Resistance to antiseizure drugs presents a significant challenge in managing epilepsy. Seizure outcomes after brain surgery for drug-resistant epilepsy (DRE) are heterogeneous and difficult to predict using models that evaluate current clinical, imaging, and electrophysiological variables. This study aimed to investigate possible correlations between genetic mutations and antiseizure resistance using whole-exome sequencing. Methods Tumor samples from a medical biobank were subjected to whole-exome sequencing, and the contribution of 64 genes from a previous report was analyzed. Results Fifteen patients had DRE. Compared to the patients who showed drug responsiveness, patients in the DRE group exhibited mutations in glutamate receptor genes (GRIA1, GRIK5, GRIN2B, or GRIN2C), ATRX, and the glutamate-S-transferase gene. No significant differences were found between the groups in terms of mutations in BRAF, Olig2, Ki-67, IDH, PIK3CA, p53, GRM, or BCL2A. Discussion These findings suggest that somatic gene mutations are closely linked to DRE. Identifying the molecular basis of antiseizure drug resistance is crucial for improving the management of DRE.
Collapse
Affiliation(s)
- Kanitpong Phabphal
- Unit of Neurology, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Anukoon Kaewborisutsakul
- Unit of Neurological Surgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thara Tunthanathip
- Unit of Neurological Surgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Courtney MR, Sinclair B, Neal A, Nicolo JP, Kwan P, Law M, O'Brien TJ, Vivash L. Automated segmentation of epilepsy surgical resection cavities: Comparison of four methods to manual segmentation. Neuroimage 2024; 296:120682. [PMID: 38866195 DOI: 10.1016/j.neuroimage.2024.120682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024] Open
Abstract
Accurate resection cavity segmentation on MRI is important for neuroimaging research involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour intensive. Automated pipelines are an efficient potential solution; however, most have been developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy of four automated segmentation pipelines following surgical resection in a mixed cohort of subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks. We manually segmented the resection cavity of 50 consecutive subjects who underwent epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient (DSC) for each algorithm compared to the manual segmentation. No algorithm identified all resection cavities. ResectVol (n = 44, 88 %) and Epic-CHOP (n = 42, 84 %) were able to detect more resection cavities than Resseg (n = 22, 44 %, P < 0.001) and Deep Resection (n = 23, 46 %, P < 0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the deep learning-based pipelines in the overall and extratemporal surgery cohorts. In the temporal cohort, the SPM-based pipelines had higher detection rates, however there was no difference in the accuracy between methods. These pipelines could be applied to machine learning studies of outcome prediction to improve efficiency in pre-processing data, however human quality control is still required.
Collapse
Affiliation(s)
- Merran R Courtney
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew Neal
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - John-Paul Nicolo
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Radiology, Alfred Health, Melbourne, Victoria, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Zhang Q, Tuerxun N, Tuerxun S. IL-6 is associated with poor seizure control in low-grade glioma patients undergoing primary resection. iScience 2024; 27:110267. [PMID: 39021786 PMCID: PMC11253519 DOI: 10.1016/j.isci.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
In this study, 198 patients with low-grade gliomas (LGGs) undergoing primary resection were evaluated for seizure status at 24 months after primary resection with the Engel classification of seizures, and 120 patients had good seizure control (class I) while 78 patients had poor seizure control (class II-IV). Multivariate analysis showed that cortex involvement, subtotal resection, serum IL-6 concentration, and neutrophil to lymphocyte ratio (NLR) were associated with poor seizure control. The area under curve (AUC) of serum IL-6 concentration, NLR and their combination applied in predicting poor seizure control was 0.756, 0.714, and 0.857, respectively. The AUC of combination prediction was significantly higher than those of individual prediction. Therefore, elevated serum IL-6 concentration was associated with poor seizure control in LLG patients undergoing primary resection and could be applied in predicting seizure control, and the predictive value could be elevated through adding other serum indices to IL-6.
Collapse
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Nisagul Tuerxun
- Department of Health Care for Cadres, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Shabier Tuerxun
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
4
|
Xiang Y, Chen Y, Xu Z, Zhou S, Qin Z, Chen L, Xiao D, Liu S. Real-world cost- effectiveness analysis: Tumor Treating Fields for newly diagnosed glioblastoma in China. J Neurooncol 2024; 168:259-267. [PMID: 38563851 DOI: 10.1007/s11060-024-04662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Glioblastoma (GBM) stands as the most aggressive and prevalent primary brain malignancy. Tumor Treating Fields (TTFields), an innovative therapy complementing chemotherapy for GBM treatment, which can significantly enhance overall survival, disease progression-free survival, and patient's quality of life. However, there is a dearth of health economics evaluation on TTFields therapy both domestically and internationally. OBJECTIVE The study aims to assess the cost-effectiveness of TTFields + temozolomide (TMZ) in comparison to TMZ alone for newly diagnosed GBM patients. The intent is to provide robust economic evidence to serve as a foundation for policymaking and decision-making processes in GBM treatment. METHODS We estimated outcomes for newly diagnosed GBM patients over a lifetime horizon using a partitioned survival model with three states: Progression-Free Survival, Progression Disease, and Death. The survival model was derived from a real-world study in China, with long-term survival data drawn from GBM epidemiology literature. Adverse event rates were sourced from the EF-14 trial data. Cost data, validated by expert consultation, was obtained from public literature and databases. Utility values were extracted from published literature. Using Microsoft Excel, we calculated expected costs and quality-adjusted life years (QALYs) over 15 years from a health system perspective. The willingness-to-pay threshold was set at three times the Chinese per capita Gross Domestic Product (GDP) in 2022, amounting to CN¥242,928 (US$37,655) /QALY. A 5% discount rate was applied to costs and utilities. Results underwent analysis through single factor and probability sensitivity analyses. RESULTS TTFields + TMZ demonstrated a mean increase in cost by CN¥389,326 (US$57,859) and an increase of 2.46 QALYs compared to TMZ alone. The incremental cost-effectiveness ratio (ICER) was CN¥157,979 (US$23,474) per QALY gained. The model exhibited heightened sensitivity to changes in the discount rate. Probability sensitivity analysis indicates that, under the existing threshold, the probability of TTFields + TMZ being economical is 95.60%. CONCLUSIONS This cost-effectiveness analysis affirms that incorporating TTFields into TMZ treatment proves to be cost-effective, given a threshold three times the Chinese per capita GDP.
Collapse
Affiliation(s)
- Yuliang Xiang
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Yingyao Chen
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Zian Xu
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Shanyan Zhou
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Dunming Xiao
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Shimeng Liu
- School of Public Health, Fudan University, Shanghai, China.
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China.
| |
Collapse
|
5
|
Meng GQ, Chen S, Ye HB, Ma BJ, Tao S, Ye Z. Efficacy of Personalized Postoperative Epilepsy Management in Patients with Glioblastoma Utilizing IDH1 Gene Assessment. Neuropsychiatr Dis Treat 2024; 20:855-862. [PMID: 38628602 PMCID: PMC11020320 DOI: 10.2147/ndt.s451300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Objective We explored the correlation between the presence of isocitrate dehydrogenase-1 (IDH1) mutations and the incidence of postoperative epilepsy in patients with glioblastoma, as well as assessed the efficacy of preemptive administration of antiepileptic medications in mitigating the occurrence of postoperative epilepsy. Methods Fifty-three patients who received a postoperative pathological diagnosis of glioblastoma, were enrolled in this study. Tumor specimens were subjected to IDH1 gene analysis. The patient cohort was stratified based on their IDH1 mutation status and the administration of prophylactic antiepileptic drugs during the postoperative phase. We subsequently conducted a comparative analysis of postoperative epileptic complications within each patient subgroup. Results In the cohort of 53 patients under study, the occurrence of epilepsy was observed in 10 out of 21 patients carrying IDH1 mutations, while 5 out of 32 patients with wild-type IDH1 also experienced epilepsy, revealing a statistically significant difference (P < 0.05). Among the 27 patients who received prophylactic antiepileptic drugs, 6 of them developed epilepsy, whereas 9 out of 26 patients who did not receive prophylactic antiepileptic drugs exhibited concurrent epilepsy, with no statistically significant difference (P > 0.05). However, when performing a subgroup analysis, it was found that 3 out of 12 patients with IDH1 mutations who received prophylactic antiepileptic drugs experienced epilepsy, whereas 7 out of 9 patients who did not receive prophylactic antiepileptic drugs developed epilepsy, demonstrating a statistically significant difference (P < 0.05). Furthermore, within the group of 15 patients with wild-type IDH1, 3 patients who received prophylactic antiepileptic drugs developed epilepsy, while 2 cases of epilepsy occurred among the 17 patients who did not receive prophylactic antiepileptic drugs, with no statistically significant difference (P > 0.05). Conclusion In individuals with IDH1 mutant glioblastoma who have undergone surgical resection, the implementation of preventive antiepileptic therapy demonstrates a potential to diminish the occurrence of postoperative epilepsy.
Collapse
Affiliation(s)
- Gao-Qiang Meng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Shu Chen
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Bao-Jun Ma
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Shuo Tao
- Department of Out-Patient, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Zi Ye
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| |
Collapse
|
6
|
Nandoliya KR, Thirunavu V, Ellis E, Dixit K, Tate MC, Drumm MR, Templer JW. Pre-operative predictors of post-operative seizure control in low-grade glioma: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:94. [PMID: 38411788 DOI: 10.1007/s10143-024-02329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
As many as 80% of low-grade gliomas (LGGs) present with seizures, negatively impacting quality of life. While seizures are associated with gliomas regardless of grade, the importance of minimizing impact of seizures for patients with low grade tumors cannot be understated given the prolonged survival period in this population. The objective of this systematic review and meta-analysis was to summarize existing literature and identify factors associated with post-operative seizure control (defined as Engel I classification) in patients with LGGs, with a focus on pre-operative factors. Patient data extracted include tumor location and histology, pre-operative anti-seizure medication use, extent of resection (EOR), adjuvant treatment, pre-operative seizure type, duration, and frequency, and post-operative Engel classification. A random-effects model was used to calculate the effects of EOR, pre-operative seizure duration, adjuvant radiation, and adjuvant chemotherapy on post-operative seizure control. The effect of tumor location and histology on post-operative Engel I classification was determined using contingency analyses. Thirteen studies including 1628 patients with seizures were included in the systematic review. On meta-analyses, Engel I classification was associated with pre-operative seizure type (OR = 0.79 (0.63-0.99), p = 0.0385, focal versus generalized), frontal lobe LGGs (OR = 1.5 (1.1-2.0), p = 0.0195), and EOR (OR (95% CI) = 4.5 (2.3-6.7), p < 0.0001 gross-total versus subtotal). Pre-operative seizure duration less than one year, adjuvant radiation, adjuvant chemotherapy, and tumor histology were not associated with achieving Engel I classification. In addition to the known effects of EOR, Engel I classification is less likely to be achieved in patients with focal pre-operative seizures and more likely to be achieved in patients with frontal lobe LGGs.
Collapse
Affiliation(s)
- Khizar R Nandoliya
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Vineeth Thirunavu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Erin Ellis
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Karan Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 675 N. St. Clair Street, Suite 20-100, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Michael R Drumm
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jessica W Templer
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 675 N. St. Clair Street, Suite 20-100, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Tang T, Wang Y, Dai Y, Liu Q, Fan X, Cheng Y, Tang J, Xiao X, Shan Y, Wei P, Zhao G. IDH1 mutation predicts seizure occurrence and prognosis in lower-grade glioma adults. Pathol Res Pract 2024; 254:155165. [PMID: 38286053 DOI: 10.1016/j.prp.2024.155165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Epileptic seizures are frequently the first symptom in glioma patients. However, the causal relationship between glioma and epilepsy is not yet fully understood, as it cannot be explained solely by tumor mass effect or peritumoral factors. In this study, we retrospectively enrolled 320 patients with grade 2-4 glioma who received treatment between January 2019 and July 2022, and explored the biomarkers of seizure occurrence and seizure outcome prediction using univariate and multivariate logistic regression analyses. Our results showed that IDH1 R132H mutation was an independent risk factor for seizure occurrence in lower-grade glioma (LGG) patients (OR = 4.915, 95%CI = 1.713 - 14.103, P = 0.003). Additionally, IDH1 R132H mutation predicted higher seizure-free ratios in LGG patients with intact ATRX expression (OR = 6.793, 95%CI = 1.217 - 37.923, P = 0.029) one year after diagnosis. Therefore, our findings suggest that IDH1 mutation can predict seizure occurrence and control in LGG patients, providing further insights into the relationship between glioma and epilepsy.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yang Dai
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Quanlei Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| |
Collapse
|
8
|
Li J, Guo Q, Xing R. Construction and validation of an immune infiltration-related risk model for predicting prognosis and immunotherapy response in low grade glioma. BMC Cancer 2023; 23:727. [PMID: 37543576 PMCID: PMC10403952 DOI: 10.1186/s12885-023-11222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Low grade glioma (LGG) is considered a heterogeneous tumor with highly variable survival and limited efficacy of immunotherapy. To identify high-risk subsets and apply immunotherapy effectively in LGG, the status and function of immune infiltration in the glioma microenvironment must be explored. METHODS Four independent glioma cohorts comprising 1,853 patients were enrolled for bioinformatics analysis. We used ConsensusClusterPlus to cluster patients into four different immune subtypes based on immune infiltration. The immune-infiltration signature (IIS) was constructed by LASSO regression analysis. Somatic mutation and copy number variation (CNV) analyses were performed to explore genomic and transcriptomic traits in the high- and low- risk groups. The correlation between response to programmed cell death 1 (PD-1) blockade and the IIS risk score was confirmed in an in vivo glioma model. RESULTS Patients were clustered into four different immune subtypes based on immune infiltration, and the high immune infiltration subtype was associated with worse survival in LGG. The high immune infiltration subtype had stronger inflammatory response, immune response and immune cell chemotaxis. The IIS, consisting of EMP3, IQGAP2, METTL7B, SLC1A6 and TNFRSF11B, could predict LGG malignant progression, which was validated with internal clinical samples. M2 macrophage infiltration positively correlated with the IIS risk score. The high-risk group had significantly more somatic mutations and CNVs. The IIS risk score was related to immunomodulatory molecules and could predict immunotherapy clinical benefit. In vivo, immunotherapy-sensitive glioma model exhibited higher IIS risk score and more infiltration of immune cells, especially M2 macrophages. The IIS risk score was decreased in an immunotherapy-sensitive glioma model after anti-PD1 immunotherapy. CONCLUSION Different immune subtypes of LGG had unique immune cell infiltration characteristics, and the high immune infiltration subtype was associated with immunosuppressive signaling pathways. A novel IIS prognostic model based on immune infiltration status was constructed for immunophenotypic classification, risk stratification, prognostication and immunotherapy response prediction in LGG.
Collapse
Affiliation(s)
- Jinna Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110000, China.
| | - Rui Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
9
|
Wu S, Wang C, Li N, Ballah AK, Lyu J, Liu S, Wang X. Analysis of Prognostic Factors and Surgical Management of Elderly Patients with Low-Grade Gliomas. World Neurosurg 2023; 176:e20-e31. [PMID: 36858293 DOI: 10.1016/j.wneu.2023.02.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND The number of elderly patients with low-grade glioma (LGG) is increasing, but their prognostic factors and surgical treatment are still controversial. This paper aims to investigate the prognostic factors of overall survival and cancer-specific survival in elderly patients with LGG and analyze the optimal surgical treatment strategy. METHODS Patients in the study were obtained from the Surveillance, Epidemiology, and End Results database and patients were randomized into a training and a test set (7:3). Clinical variables were analyzed by univariate and multivariate Cox regression analysis to screen for significant prognostic factors, and nomograms visualized the prognosis. In addition, survival analysis of elderly patients regarding different surgical management was also analyzed by Kaplan-Meier curves. RESULTS Six prognostic factors were screened by univariate and multivariate Cox regression analysis on the training set: tumor site, laterality, histological type, the extent of surgery, radiotherapy, and chemotherapy, and all factors were visualized by nomogram. And we evaluated the accuracy of the nomogram model using consistency index, calibration plots, receiver operator characteristic curves, and decision curve analysis, showing that the nomogram has strong accuracy and applicability. We also found that gross total resection improved overall survival and cancer-specific survival in patients with LGG aged ≥65 years relative to those who did not undergo surgery (P < 0.001). CONCLUSIONS Based on the Surveillance, Epidemiology, and End Results database, we created and validated prognostic nomograms for elderly patients with LGG, which can help clinicians to provide personalized treatment services and clinical decisions for their patients. More importantly, we found that older age alone should not preclude aggressive surgery for LGGs.
Collapse
Affiliation(s)
- Shuaishuai Wu
- Neurosurgery Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Changli Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Li
- Neurosurgery Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Augustine K Ballah
- Neurosurgery Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Lyu
- Clinical Research Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Xiangyu Wang
- Neurosurgery Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Merenzon MA, Bhatia S, Levy A, Eatz T, Morell AA, Daggubati LC, Luther E, Shah AH, Komotar RJ, Ivan ME. Frontal lobe low-grade tumors seizure outcome: a pooled analysis of clinical predictors. Clin Neurol Neurosurg 2023; 226:107600. [PMID: 36709666 DOI: 10.1016/j.clineuro.2023.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Seizures present in 50-90 % of cases with low-grade brain tumors. Frontal lobe epilepsy is associated with dismal seizure outcomes compared to temporal lobe epilepsy. Our objective is to conduct a systematic review, report our case series, and perform a pooled analysis of clinical predictors of seizure outcomes in frontal lobe low-grade brain tumors. METHODS Searches of five electronic databases from January 1990 to June 2022 were reviewed following PRISMA guidelines. Individual patient data was extracted from 22 articles that fit the inclusion criteria. A single-surgeon case series from our institution was also retrospectively reviewed and analyzed through a pooled cohort of 127 surgically treated patients with frontal lobe low-grade brain tumors. RESULTS The mean age at surgery was 30.8 years, with 50.4 % of patients diagnosed as oligodendrogliomas. The majority of patients (81.1 %) were seizure-free after surgery (Engel I). On the multivariate analysis, gross total resection (GTR) (OR = 8.77, 95 % CI: 1.99-47.91, p = 0.006) and awake resection (OR = 9.94, 95 % CI: 1.93-87.81, p = 0.015) were associated with seizure-free outcome. A Kaplan-Meier curve showed that the probability of seizure freedom fell to 92.6 % at 3 months, and to 85.5 % at 27.3 months after surgery. CONCLUSION Epilepsy from tumor origin demands a balance between oncological management and epilepsy cure. Our pooled analysis suggests that GTR and awake resections are positive predictive factors for an Engel I at more than 6 months follow-up. To validate these findings, a longer-term follow-up and larger cohorts are needed.
Collapse
Affiliation(s)
- Martín A Merenzon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Shovan Bhatia
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adam Levy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tiffany Eatz
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lekhaj C Daggubati
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Epilepsy-related white matter network changes in patients with frontal lobe glioma. J Neuroradiol 2023; 50:258-265. [PMID: 35346748 DOI: 10.1016/j.neurad.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Epilepsy is a common symptom in patients with frontal lobe glioma. Tumor-related epilepsy was recently considered a type of network disease. Glioma can severely influence the integrity of the white matter network. The association between white matter network changes and presurgical epilepsy remains unclear in glioma patients. This study aims to identify alterations to the subcortical brain networks caused by glioma and glioma-related epilepsy. METHODS Sixty-one patients with frontal lobe gliomas were enrolled and stratified into the epileptic and non-epileptic groups. Additionally, 14 healthy participants were enrolled after matching for age, sex, and education level. All participants underwent diffusion tensor imaging. Graph theoretical analysis was applied to reveal topological changes in their white matter networks. Regions affected by tumors were excluded from the analysis. RESULTS Global efficiency was significantly decreased (p = 0.008), while the shortest path length increased (p = 0.02) in the left and right non-epileptic groups compared to the controls. A total of five edges exhibited decreased fiber count in the non-epileptic group (p < 0.05, false discovery rate-corrected). The topological properties and connectional edges showed no significant differences when comparing the epileptic groups and the controls. Additionally, the degree centrality of several nodes connected to the alternated edges was also diminished. CONCLUSIONS Compared to the controls, the epilepsy groups showed raletively intact WM networks, while the non-epileptsy groups had damaged network with lower efficiency and longer path length. These findings indicated that the occurrence of glioma related epilepsy have association with white matter network intergrity.
Collapse
|
12
|
Li L, Zhang C, Wang Z, Wang Y, Guo Y, Qi C, You G, Zhang Z, Fan X, Jiang T. Development of an integrated predictive model for postoperative glioma-related epilepsy using gene-signature and clinical data. BMC Cancer 2023; 23:42. [PMID: 36631762 PMCID: PMC9835377 DOI: 10.1186/s12885-022-10385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This study aimed to develop an integrated model for predicting the occurrence of postoperative seizures in patients with diffuse high-grade gliomas (DHGGs) using clinical and RNA-seq data. METHODS Patients with DHGGs, who received prophylactic anti-epileptic drugs (AEDs) for three months following surgery, were enrolled into the study. The patients were assigned randomly into training (n = 166) and validation (n = 42) cohorts. Differentially expressed genes (DEGs) were identified based on preoperative glioma-related epilepsy (GRE) history. Least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to construct a predictive gene-signature for the occurrence of postoperative seizures. The final integrated prediction model was generated using the gene-signature and clinical data. Receiver operating characteristic analysis and calibration curve method were used to evaluate the accuracy of the gene-signature and prediction model using the training and validation cohorts. RESULTS A seven-gene signature for predicting the occurrence of postoperative seizures was developed using LASSO logistic regression analysis of 623 DEGs. The gene-signature showed satisfactory predictive capacity in the training cohort [area under the curve (AUC) = 0.842] and validation cohort (AUC = 0.751). The final integrated prediction model included age, temporal lobe involvement, preoperative GRE history, and gene-signature-derived risk score. The AUCs of the integrated prediction model were 0.878 and 0.845 for the training and validation cohorts, respectively. CONCLUSION We developed an integrated prediction model for the occurrence of postoperative seizures in patients with DHGG using clinical and RNA-Seq data. The findings of this study may contribute to the development of personalized management strategies for patients with DHGGs and improve our understanding of the mechanisms underlying GRE in these patients.
Collapse
Affiliation(s)
- Lianwang Li
- grid.411918.40000 0004 1798 6427Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Chuanbao Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Zheng Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yinyan Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yuhao Guo
- grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Chong Qi
- grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Gan You
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Zhong Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Xing Fan
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Tao Jiang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China ,grid.506261.60000 0001 0706 7839Research Units of Accurate Diagnosis and Treatment of Brain Tumors and Translational Medicine, Chinese Academy of Medical Sciences, Beijing, 100730 China
| |
Collapse
|
13
|
Xie M, Wang X, Duan Z, Luan G. Low-grade epilepsy-associated neuroepithelial tumors: Tumor spectrum and diagnosis based on genetic alterations. Front Neurosci 2023; 16:1071314. [PMID: 36699536 PMCID: PMC9868944 DOI: 10.3389/fnins.2022.1071314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Brain tumors can always result in seizures when involving the cortical neurons or their circuits, and they were found to be one of the most common etiologies of intractable focal seizures. The low-grade epilepsy-associated neuroepithelial tumors (LEAT), as a special group of brain tumors associated with seizures, share common clinicopathological features, such as seizure onsets at a young age, a predilection for involving the temporal lobe, and an almost benign course, including a rather slow growth pattern and thus a long-term history of seizures. Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) are the typical representatives of LEATs. Surgical treatments with complete resection of tumors and related epileptogenic zones are deemed the optimal way to achieve postoperative seizure control and lifetime recurrence-free survival in patients with LEATs. Although the term LEAT was originally introduced in 2003, debates on the tumor spectrum and the diagnosis or classification of LEAT entities are still confusing among epileptologists and neuropathologists. In this review, we would further discuss these questions, especially based on the updated classification of central nervous system tumors in the WHO fifth edition and the latest molecular genetic findings of tumor entities in LEAT entities.
Collapse
Affiliation(s)
- Mingguo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,Chinese Institute for Brain Research, Beijing, China,*Correspondence: Guoming Luan,
| |
Collapse
|
14
|
Zhang K, Liu D, Yang Z, Li X, Yang Z, He X. Resective surgery for patients with frontal lobe diffuse low-grade glioma-related epilepsy: predictors of seizure outcomes. Ther Adv Chronic Dis 2022; 13:20406223221141856. [PMID: 36545237 PMCID: PMC9761231 DOI: 10.1177/20406223221141856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diffuse low-grade gliomas (DLGGs) are prone to invade the frontal lobes, with seizures being the most common symptom. However, limited attention has been paid to surgical outcomes and their predictors in patients with frontal DLGG-related epilepsy. Objective This study aimed to analyze predictors of postoperative seizure outcomes in patients with frontal DLGG-related epilepsy. Design This is a single-center retrospective study. Methods This study retrospectively collected data of 115 patients with frontal DLGG-related epilepsy who underwent resective surgery between January 2014 and January 2021. Patients were categorized into favorable and unfavorable seizure outcome groups based on the International League Against Epilepsy (ILAE) classification. Univariate and multivariate analyses were used to identify potential predictors of seizure outcomes. Results The mean follow-up was 4.11 ± 2.06 years, and 77.4% (89 of 115) of patients were seizure-free. Permanent neurological deficits were observed in 7.0% (8 of 115) of patients. Univariate and multivariate analyses revealed that total tumor removal [odds ratio (OR), 0.31; 95% confidence interval (CI), 0.12-0.82; p = 0.018] and older age at seizure onset (OR, 0.96; 95% CI, 0.93-0.99; p = 0.042) were independent predictors of favorable seizure outcomes. Conclusion Surgical resection is an effective treatment for frontal DLGG-related epilepsy. Favorable seizure outcomes are more likely to be achieved in patients with complete tumor removal and those with older age at seizure onset.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital,
Central South University, Changsha, People’s Republic of China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital,
Central South University, Changsha, People’s Republic of China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital,
Central South University, Changsha, People’s Republic of China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital,
Central South University, Changsha, People’s Republic of China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital,
Central South University, Changsha, People’s Republic of China
| | | |
Collapse
|
15
|
He X, Zhang K, Liu D, Yang Z, Li X, Yang Z. Predictors of seizure outcomes in patients with diffuse low-grade glioma-related epilepsy after complete glioma removal. CNS Neurosci Ther 2022; 29:736-743. [PMID: 36514187 PMCID: PMC9873512 DOI: 10.1111/cns.14061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS We aimed to identify predictors of postoperative seizures in patients with diffuse low-grade glioma (DLGG)-related epilepsy after complete tumor resection in this study. METHODS We retrospectively collected data from individuals with DLGG-related epilepsy whose tumors were completely resected at Xiangya Hospital, Central South University between January 2014 and January 2020. The predictors of seizure outcomes were assessed by employing univariate analysis and a multivariate logistic regression model in a backward binary logistic regression model. RESULTS Among the 118 cases that met the inclusion criteria, 83.05% were seizure-free following an average follow-up of 4.27 ± 1.65 years, all of whom were classified as International League Against Epilepsy class I outcome. Univariate and multivariate analyses indicated that seizure duration of >6 years (odds ratio [OR], 6.62; 95% confidence interval [CI], 1.76-24.98; p = 0.005) and first clinical symptoms other than seizures (OR, 4.51; 95% CI, 1.43-14.23; p = 1.010) were both independent predictors of unfavorable seizure outcomes. CONCLUSION Our results imply that satisfactory seizure outcomes can be achieved in most patients with DLGG-related epilepsy after complete tumor resection. Patients with seizure duration of >6 years or first clinical symptoms other than seizures were more likely to experience postoperative seizure recurrence.
Collapse
Affiliation(s)
- Xinghui He
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kai Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
16
|
Xie M, Wang X, Qiao J, Zhou J, Guan Y, Liu C, Zhao M, Li T, Luan G. The long-term surgical outcomes of low-grade epilepsy-associated neuroepithelial tumors. Epilepsia Open 2022; 7:697-709. [PMID: 36081402 PMCID: PMC9712488 DOI: 10.1002/epi4.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the surgical outcomes and relevant prognostic factors in patients with low-grade epilepsy-associated neuroepithelial tumors (LEAT) and, especially, to develop a scoring system to predict postoperative seizure outcomes. METHODS The clinical data of patients who underwent epilepsy surgery for LEAT were retrospectively studied. The surgical outcomes of seizure and neurological statuses in patients were evaluated using Engel classification and modified Rankin Scale (mRS) scoring, respectively. A scoring system of seizure outcomes was constructed based on the weight of the β-coefficient estimate of each predictor in the final multivariate predicting model of seizure outcomes. RESULTS Of the 287 patients (106 female) enrolled, the median age was 19 years at surgery and 10 years at seizure onset, with a median duration of epilepsy of 60 months. Among 258 patients who were followed up for at least 12 months, 215 (83.3%) patients had a favorable seizure outcome (Engel class I) after surgery, and 43 (16.7%) patients had an unfavorable seizure outcome; longer duration of epilepsy, discordant magnetoencephalography (MEG) findings, and acute postoperative seizures were significantly included in the scoring system to predict unfavorable seizure outcomes, and in the scoring system, accumulated scoring of 0-19 scores was recorded, which were finally grouped into three risk levels: low risk (risk < 30%), medium risk (30% ≤ risk < 70%), and high risk (risk ≥ 70%). In addition, favorable neurological outcomes (mRS score 0-1) were recorded in 187 (72.5%) patients, while unfavorable neurological outcomes were recorded in 71 (27.5%) patients, which were significantly related to poor seizure control, older age at surgery, and longer duration of epilepsy and hospitalization time. SIGNIFICANCE The long-term surgical outcomes of LEAT after surgery were satisfactory. A scoring system for predicting unfavorable seizure outcomes with different risk levels was developed, which could partly guide clinical treatments of LEAT.
Collapse
Affiliation(s)
- Ming‐Guo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Xiong‐Fei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Jiao Qiao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Jian Zhou
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Yu‐Guang Guan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Chang‐Qing Liu
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Meng Zhao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Tian‐Fu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina,Department of Neurology, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Guo‐Ming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Xie MG, Qiao J, Wang X, Zhou J, Guan Y, Liu C, Zhao M, Li T, Luan G. The cognitive functions and seizure outcomes of patients with low-grade epilepsy-associated neuroepithelial tumors. J Neurooncol 2022; 160:1-12. [PMID: 36053451 DOI: 10.1007/s11060-022-04076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of the study was to evaluate the cognitive functions and seizure outcomes of patients with low-grade epilepsy-associated neuroepithelial tumors (LEATs). METHODS We retrospectively reviewed the clinical data of patients who underwent preoperative neuropsychological evaluations and subsequent epilepsy surgery for LEATs. The neuropsychological results of full-scaled intelligence quotient (FSIQ) and full-scaled memory quotient (FSMQ) were analyzed, as well as the postoperative seizure outcomes. RESULTS Of the 138 patients included in the study, 59 patients (40.4%) were female and 47 (36.6%) patients were children. Preoperatively, 138 patients received FSIQ assessments and 30 patients (21.7%) had an intellectual deficit (FSIQ < 80 scores); 124 patients received FSMQ assessments and 32 patients (25.8%) had a memory deficit (FSMQ < 80 scores). Younger age at seizure onset (OR 0.93; P = 0.035) and discordant ictal electroencephalography (EEG) findings (OR 5.26; P = 0.001) were found to predict intellectual deficits, while abnormal hippocampus (OR 2.36; P = 0.051) as well as discordant ictal EEG findings (OR 4.03; P = 0.007) tended to cause memory deficits. During postoperative follow-up, 123 patients (90.7%) were followed up at least 12 months, and among them, 105 patients (85.4%) got seizure-free (Engel class I), while 18 patients (14.6%) were not (Engel class II-IV); longer duration of epilepsy (OR 1.01; P < 0.001) and discordant interictal EEG findings (OR 5.91; P = 0.005) were found to be related to poor seizure outcomes in patients with LEATs. CONCLUSION Cognitive deficits commonly occur in patients with LEATs, especially in patients with early or childhood seizures. Early surgical intervention, however, could prevent most of patients from repeated seizure onsets and thus cognitive impairments.
Collapse
Affiliation(s)
- Ming-Guo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiao Qiao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Changqing Liu
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China. .,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Liang S, Fan X, Chen F, Liu Y, Qiu B, Zhang K, Qi S, Zhang G, Liu J, Zhang J, Wang J, Wang X, Song Z, Luan G, Yang X, Jiang R, Zhang H, Wang L, You Y, Shu K, Lu X, Gao G, Zhang B, Zhou J, Jin H, Han K, Li Y, Wei J, Yang K, You G, Ji H, Jiang Y, Wang Y, Lin Z, Li Y, Liu X, Hu J, Zhu J, Li W, Wang Y, Kang D, Feng H, Liu T, Chen X, Pan Y, Liu Z, Li G, Li Y, Ge M, Fu X, Wang Y, Zhou D, Li S, Jiang T, Hou L, Hong Z. Chinese guideline on the application of anti-seizure medications in the perioperative period of supratentorial craniocerebral surgery. Ther Adv Neurol Disord 2022; 15:17562864221114357. [PMID: 35992894 PMCID: PMC9386849 DOI: 10.1177/17562864221114357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are a common symptom of craniocerebral diseases, and epilepsy is one of the comorbidities of craniocerebral diseases. However, how to rationally use anti-seizure medications (ASMs) in the perioperative period of craniocerebral surgery to control or avoid seizures and reduce their associated harm is a problem. The China Association Against Epilepsy (CAAE) united with the Trauma Group of the Chinese Neurosurgery Society, Glioma Professional Committee of the Chinese Anti-Cancer Association, Neuro-Oncology Branch of the Chinese Neuroscience Society, and Neurotraumatic Group of Chinese Trauma Society, and selected experts for consultancy regarding outcomes from evidence-based medicine in domestic and foreign literature. These experts referred to the existing research evidence, drug characteristics, Chinese FDA-approved indications, and expert experience, and finished the current guideline on the application of ASMs during the perioperative period of craniocerebral surgery, aiming to guide relevant clinical practice. This guideline consists of six sections: application scope of guideline, concepts of craniocerebral surgery-related seizures and epilepsy, postoperative application of ASMs in patients without seizures before surgery, application of ASMs in patients with seizures associated with lesions before surgery, emergency treatment of postoperative seizures, and 16 recommendations.
Collapse
Affiliation(s)
- Shuli Liang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Yonghong Liu
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Binghui Qiu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Qi
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Zhang
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Jinfang Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Jianguo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziyang Song
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Guoming Luan
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xuejun Yang
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Rongcai Jiang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongping You
- Jiangsu Provincial People's Hospital, Nanjing, China
| | - Kai Shu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Lu
- The Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Guoyi Gao
- Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jian Zhou
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hai Jin
- General Hospital of Northern Theater Command, Shenyang, China
| | - Kaiwei Han
- Shanghai Changzheng Hospital, Shanghai Neurosurgical Institute, Shanghai, China
| | - Yiming Li
- Shanghai Changzheng Hospital, Shanghai Neurosurgical Institute, Shanghai, China
| | - Junji Wei
- Peking Union Medical College Hospital, Beijing, China
| | - Kun Yang
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Gan You
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongming Ji
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yuwu Jiang
- Peking University First Hospital, Beijing, China
| | - Yi Wang
- Children's Hospital of Fudan University, Shanghai, China
| | - Zhiguo Lin
- First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou, China
| | - Xuewu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Epilepsy, Shandong University, Jinan, China
| | - Jie Hu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Junming Zhu
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Wenling Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongxin Wang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dezhi Kang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hua Feng
- The Southwest Hospital, Army Medical University, Chongqing, China
| | - Tinghong Liu
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Xin Chen
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yawen Pan
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhixiong Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Gang Li
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunqian Li
- The First Hospital of Jilin University, Changchun, China
| | - Ming Ge
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Key Laboratory of Major Disease in Children, Ministry of Education, Beijing, China
| | - Xianming Fu
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Yuping Wang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Zhou
- West China Hospital, Sichuan University, Chengdu, China
| | - Shichuo Li
- China Association Against Epilepsy, No. 135 Xizhimen Wai Avenue, Beijing 100044, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing 10070, China
| | - Lijun Hou
- Shanghai Changzheng Hospital, Shanghai Neurosurgical Institute, No. 415, Fengyan Road, Huangpu District, Shanghai 200003, China
| | - Zhen Hong
- Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jing'an District, Shanghai 200044, China
| |
Collapse
|
19
|
Seizures in patients with IDH-mutated lower grade gliomas. J Neurooncol 2022; 160:403-411. [PMID: 36258151 PMCID: PMC9722876 DOI: 10.1007/s11060-022-04158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Most patients with Lower Grade Gliomas (LGG) present with epileptic seizures. Since the advent of molecular diagnostics, more homogenous sub-entities have emerged, including the isocitrate dehydrogenase-mutated (IDH-mutated) astrocytomas and 1p19q-codeleted oligodendrogliomas. We aimed to describe the occurrence of seizures in patients with molecularly defined LGG pre- and postoperatively and to analyze factors affecting seizure status postoperatively. METHODS A population-based cohort of 130 adult patients with IDH-mutated WHO grade 2 or 3 astrocytomas and oligodendrogliomas was assessed pertaining to seizure burden before and after surgery. RESULTS Fifty-four (79.4%) patients with astrocytoma and 45 (72.6%) patients with oligodendroglioma had a history of seizures before surgery. At 12 months postoperatively, 51/67 (76.1%) patients with astrocytoma and 47/62 (75.8%) patients with oligodendrogliomas were seizure free. In a multivariable logistic regression analysis, lower extent of resection (EOR) (OR 0.98; 95% CI 0.97-1.00, p = 0.01) and insular tumor location (OR 5.02; 95% CI 1.01-24.87, p = 0.048) were associated with presence of seizures within 1 year postoperatively in the entire LGG cohort. In sub-entities, EOR was in a similar manner associated with seizures postoperatively in astrocytomas (OR 0.98; 95% CI 0.96-0.99, p < 0.01) but not in oligodendrogliomas (p = 0.34). CONCLUSION Our results are well in line with data published for non-molecularly defined LGG with a large proportion of patients being seizure free at 1 year postoperative. Better seizure outcome was observed with increased EOR in astrocytomas, but this association was absent in oligodendrogliomas.
Collapse
|
20
|
Mazzucchi E, Vollono C, Pauletto G, Lettieri C, Budai R, Gigli GL, Sabatino G, La Rocca G, Skrap M, Ius T. The persistence of seizures after tumor resection negatively affects survival in low-grade glioma patients: a clinical retrospective study. J Neurol 2021; 269:2627-2633. [PMID: 34693462 DOI: 10.1007/s00415-021-10845-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Seizures are the most common clinical manifestation of low-grade glioma (LGG). Many papers hypothesized an influence of epilepsy on glioma progression. To our knowledge, no clinical study demonstrated a direct relationship between persistence of epileptic seizures after surgery and overall survival (OS) in LGG patients. The present study aims at investigating the correlation between post-operative seizure outcome and survival in tumor-related epilepsy (TRE) patients. METHODS We performed a retrospective analysis of adult patients affected by TRE who underwent surgery for resection of LGG in a single high-volume neurosurgical center. Seizure outcome was assessed 1 year after surgery and categorized according to Engel classification. Clinical, molecular and radiological features were evaluated in univariate and multivariate analyses to investigate the correlation with OS. RESULTS A total of 146 patients met the inclusion criteria. Histopathological diagnosis was Diffuse Astrocytoma isocitrate dehydrogenase (IDH) wild type in 16 patients (11%), Diffuse astrocytoma IDH mutated in 89 patients (61%) and oligodendroglioma IDH mutated, 1p 19q codeleted in 41 patients (28%). 1 year after surgery, 103 (70.6%) patients were in Engel class 1. Median duration of follow-up period was 69.5 months. Median OS was 79.3 (72.2-86.4) months in the whole population, while it was 86.8 (78.4-95.2), 63.9 (45.7-82), 63.7 (45.2-82.2) and 47.5 (18.3-76.6) months for patients in Engel class 1, 2, 3 and 4, respectively. In a univariate analysis, Engel class evaluated 1 year after surgery significantly influenced OS (p < 0.01). Multivariate analysis showed that OS was independently associated with extent of resection (p = 0.02), molecular class (p < 0.01) and Engel class (p = 0.04). CONCLUSIONS Seizure control 1 year after surgery significantly predicted survival of patients affected by LGG-related epilepsy in a large monocentric retrospective series. Future studies are needed to confirm these results and to assess if an epilepsy-surgical therapeutic approach may improve OS.
Collapse
Affiliation(s)
- Edoardo Mazzucchi
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy.,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Catello Vollono
- Institute of Neurology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Christian Lettieri
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Budai
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.,Clinical Neurology, Department of Medicine, University of Udine, Udine, Italy
| | - Giovanni Sabatino
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy. .,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy.
| | - Giuseppe La Rocca
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy.,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
21
|
Li L, Fang S, Li G, Zhang K, Huang R, Wang Y, Zhang C, Li Y, Zhang W, Zhang Z, Jin Q, Zhou D, Fan X, Jiang T. Glioma-related epilepsy in patients with diffuse high-grade glioma after the 2016 WHO update: seizure characteristics, risk factors, and clinical outcomes. J Neurosurg 2021; 136:67-75. [PMID: 34243149 DOI: 10.3171/2020.12.jns203351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the epidemiological characteristics, associated risk factors, and prognostic value of glioma-related epilepsy in patients with diffuse high-grade gliomas (DHGGs) that were diagnosed after the 2016 updated WHO classification was released. METHODS Data from 449 patients with DHGGs were retrospectively collected. Definitive diagnosis was reaffirmed according to the 2016 WHO classification. Seizure outcome was assessed using the Engel classification at 12 months after surgery. Univariate and multivariate analyses were performed to identify risk factors associated with preoperative and postoperative glioma-related epilepsy. Lastly, the prognostic value of glioma-related epilepsy was evaluated by Kaplan-Meier and Cox analysis. RESULTS The incidence of glioma-related epilepsy decreased gradually as the malignancy of the tumor increased. Age < 45 years (OR 2.601, p < 0.001), normal neurological function (OR 3.024, p < 0.001), and lower WHO grade (OR 2.028, p = 0.010) were independently associated with preoperative glioma-related epilepsy, while preoperative glioma-related epilepsy (OR 7.554, p < 0.001), temporal lobe involvement (OR 1.954, p = 0.033), non-gross-total resection (OR 2.286, p = 0.012), and lower WHO grade (OR 2.130, p = 0.021) were identified as independent predictors of poor seizure outcome. Furthermore, postoperative glioma-related epilepsy, rather than preoperative glioma-related epilepsy, was demonstrated as an independent prognostic factor for overall survival (OR 0.610, p = 0.010). CONCLUSIONS The updated WHO classification seems conducive to reveal the distribution of glioma-related epilepsy in DHGG patients. For DHGG patients with high-risk predictors of poor seizure control, timely antiepileptic interventions could be beneficial. Moreover, glioma-related epilepsy (especially postoperative glioma-related epilepsy) is associated with favorable overall survival.
Collapse
Affiliation(s)
- Lianwang Li
- 1Beijing Neurosurgical Institute, Capital Medical University
| | - Shengyu Fang
- 1Beijing Neurosurgical Institute, Capital Medical University
| | - Guanzhang Li
- 1Beijing Neurosurgical Institute, Capital Medical University
| | - Kenan Zhang
- 1Beijing Neurosurgical Institute, Capital Medical University
| | - Ruoyu Huang
- 1Beijing Neurosurgical Institute, Capital Medical University
| | - Yinyan Wang
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Chuanbao Zhang
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Yiming Li
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Wei Zhang
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Zhong Zhang
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Qiang Jin
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Dabiao Zhou
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Xing Fan
- 1Beijing Neurosurgical Institute, Capital Medical University.,2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and
| | - Tao Jiang
- 1Beijing Neurosurgical Institute, Capital Medical University.,2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; and.,3Research Units of Accurate Diagnosis and Treatment of Brain Tumors and Translational Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Li L, Li G, Fang S, Zhang K, Huang R, Wang Y, Zhang C, Li Y, Zhang W, Zhang Z, Jin Q, Zhou D, Fan X, Jiang T. New-Onset Postoperative Seizures in Patients With Diffuse Gliomas: A Risk Assessment Analysis. Front Neurol 2021; 12:682535. [PMID: 34220689 PMCID: PMC8250134 DOI: 10.3389/fneur.2021.682535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Glioma-related epilepsy (GRE) is the most common presenting sign of patients with diffuse glioma. According to clinical experience, new-onset postoperative seizures can be observed even in patients without preoperative GRE. The current study mainly aimed to explore the risk factors of new-onset postoperative seizures in those patients. In addition, the prognostic value of new-onset postoperative seizures was also discussed. Methods: Data of 313 patients without GRE were retrospectively reviewed. Chi-square test or Fisher's exact test were first performed to compare categorical variables between patients with new-onset postoperative seizures and those without. Subsequently, binary logistic regression analysis was conduct to further assess risk factors of new-onset postoperative seizures. Kaplan-Meier and Cox analysis were used to investigate the prognostic value of new-onset postoperative seizures for progression-free survival (PFS) and overall survival (OS). Results: Patients with low-grade tumors (p = 0.006), isocitrate dehydrogenase 1 (IDH1) mutation (p = 0.040) or low Ki-67 expression (p = 0.005) showed a higher incidence of new-onset postoperative seizures. IDH1 mutation was identified as the only independent predictor for new-onset postoperative seizures (OR, 2.075; 95% CI, 1.051–4.098; p = 0.035). Additionally, new-onset postoperative seizure occurrence was demonstrated as an independent predicter of prolonged OS (OR, 0.574; 95% CI, 0.335–0.983; p = 0.043), while younger age, gross total resection, low-grade and IDH1 mutation were independently correlated with prolonged OS and PFS. Conclusions: IDH1 mutation is an independent predictor for new-onset postoperative seizures in patients without preoperative GRE. Moreover, new-onset postoperative seizures can independently predict prolonged OS in those patients. The results of the current study can contribute to improving the individualized management of diffuse glioma.
Collapse
Affiliation(s)
- Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kenan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Units of Accurate Diagnosis and Treatment of Brain Tumors and Translational Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
He C, Hu L, Chen C, Zheng Z, Jin B, Ding Y, Wang S, Ding MP, Zhu J, Wang S. Clinical characteristics of low-grade tumor-related epilepsy and its predictors for surgical outcome. Ann Clin Transl Neurol 2021; 8:1446-1455. [PMID: 34057825 PMCID: PMC8283179 DOI: 10.1002/acn3.51387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022] Open
Abstract
Objectives Low‐grade tumors are the most common neoplasms inducing focal epilepsy; however, the short‐ and medium‐term efficacy of surgery in epilepsy patients with low‐grade tumors remains underappreciated. This study aims to summarize the clinical characteristics of epilepsy patients with low‐grade tumors and to identify factors associated with postsurgical seizure‐free outcomes. Methods We retrospectively reviewed consecutive patients with low‐grade tumors who underwent subsequent epilepsy surgery in our epilepsy center, between 2012 and 2018 with a minimum follow‐up of 1 year. Using Engel’s classification and Kaplan–Meier survival analysis, we assessed postoperative seizure freedom over time. Demographical, electroclinical, and other presurgical evaluations were then evaluated for association with postoperative seizure outcome. Results The cohort included a total of 132 patients: 79 males and 53 females. Among them, 110 (83.33%) were seizure‐free through their last follow‐up. The Engel class I outcomes were 90.15%, 87.76%, 85.53%, 82.46%, and 73.17% at the end of the 1st, 2nd, 3rd, 4th, and 5th postoperative years, respectively. Multivariate logistic analysis revealed that longer epilepsy duration (p < 0.001, OR 1.091, 95% CI 1.040–1.144) and incomplete resection (p = 0.009, OR 3.673, 95% CI 1.393–9.684) were independently associated with seizure recurrence through the last follow‐up. Conclusions Surgical treatment for seizure control in patients with low‐grade tumors provides excellent short‐ and median‐term outcomes.
Collapse
Affiliation(s)
- Chenmin He
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingli Hu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Zheng
- Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Jin
- Department of Neurology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yao Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei-Ping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|
25
|
Fang S, Wang Y, Jiang T. Epilepsy enhance global efficiency of language networks in right temporal lobe gliomas. CNS Neurosci Ther 2021; 27:363-371. [PMID: 33464718 PMCID: PMC7871790 DOI: 10.1111/cns.13595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS We analyzed the resting state functional magnetic resonance images to investigate the alterations of neural networks in patients with glioma-related epilepsy (GRE). METHODS Fifty-six patients with right temporal lower-grade glioma were divided into GRE (n = 28) and non-GRE groups. Twenty-eight healthy subjects were recruited after matching age, sex, and education level. Sensorimotor, visual, language, and left executive control networks were applied to generate functional connectivity matrices, and their topological properties were investigated. RESULTS No significant alterations in functional connectivity were found. The least significant discovery test revealed differences only in the language network. The shortest path length, clustering coefficient, local efficiency, and vulnerability were greater in the non-GRE group than in the other groups. The nodal efficiencies of two nodes (mirror areas to Broca and Wernicke) were weaker in the non-GRE group than in the other groups. The node of degree centrality (Broca), nodal local efficiency (Wernicke), and nodal clustering coefficient (temporal polar) were greater in the non-GRE group than in the healthy group. CONCLUSION Different tumor locations alter different neural networks. Temporal lobe gliomas in the right hemisphere altered the language network. Glioma itself and GRE altered the network in opposing ways in patients with right temporal glioma.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
26
|
Chen J, Li Y, Han X, Pan Y, Qian X. An autophagic gene-based signature to predict the survival of patients with low-grade gliomas. Cancer Med 2021; 10:1848-1859. [PMID: 33591634 PMCID: PMC7940225 DOI: 10.1002/cam4.3748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/12/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Since autophagy remains an important topic of investigation, the RNA‐sequence profiles of autophagy‐related genes (ARGs) can provide insights into predicting low‐grade gliomas (LGG) prognosis. Methods The RNA‐seq profiles of autophagic genes and prognosis data of LGG were integrated from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression model were carried out to identify the differentially expressed prognostic autophagy‐related genes. Then, the autophagic‐gene signature was formed and verified in TCGA test set and external CGGA cohorts. Time‐dependent receiver operating characteristic (ROC) was examined to test the accuracy of this signature feature. A nomogram was conducted to meet the needs of clinicians. Sankey diagrams were performed to visualize the relationship between the multigene signatures and clinic‐pathological features. Results Twenty‐four ARGs were finally identified most relevant to LGG prognosis. According to the specific prediction index formula, the patients were classified into low‐risk or high‐risk groups. Prognostic accuracy was proved by time‐dependent ROC analysis, with AUC 0.9, 0.93, and 0.876 at the survival time of 2‐, 3‐, and 5‐year, respectively, which was superior to the AUC of the isocitrate dehydrogenase (IDH) mutation. The result was confirmed while validated in the TCGA test set and external validation CGGA cohort. A nomogram was constructed to meet individual needs. With a visualization approach, Sankey diagrams show the relationship of the histological type, IDH status, and predict index. In TCGA and CGGA cohorts, both low‐risk groups displayed better survival rate in LGG while histological type and IDH status did not show consistency results. Conclusions 24‐ARGs may play crucial roles in the progression of LGG, and LGG patients were effectively divided into low‐risk and high‐risk groups according to prognostic prediction. Overall, our study will provide novel strategies for clinical applications.
Collapse
Affiliation(s)
- Jian Chen
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yuntian Li
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xinghua Han
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yueyin Pan
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaojun Qian
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
27
|
You G, Sha Z, Jiang T. Clinical Diagnosis and Perioperative Management of Glioma-Related Epilepsy. Front Oncol 2021; 10:550353. [PMID: 33520690 PMCID: PMC7841407 DOI: 10.3389/fonc.2020.550353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Gliomas account for more than half of all adult primary brain tumors. Epilepsy is the most common initial clinical presentation in gliomas. Glioma related epilepsy (GRE) is defined as symptomatic epileptic seizures secondary to gliomas, occurring in nearly 50% in high-grade glioma (HGG) patients and up to 90% in patients with low-grade glioma (LGG). Uncontrolled seizures, which have major impact on patients’ quality of life, are caused by multiple factors. Although the anti-seizure medications (ASMs), chemotherapy and radiation therapy are also beneficial for seizure treatment, the overall seizure control for GRE continue to be unsatisfactory. Due to the close relationship between GRE and glioma, surgical resection is often the treatment of choice not only for the tumor treatment, but also for the seizure control. Despite aggressive surgical treatment, there are about 30% of patients continue to have poor seizure control postoperatively. Furthermore, the diagnostic criteria for GRE is not well established. In this review, we propose an algorithm for the diagnosis and perioperative management for GRE.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyi Sha
- Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Jo J, Nevel K, Sutyla R, Smolkin M, Lopes MB, Schiff D. Predictors of early, recurrent, and intractable seizures in low-grade glioma. Neurooncol Pract 2020; 8:40-47. [PMID: 33664968 DOI: 10.1093/nop/npaa054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Seizures are common among patients with low-grade glioma (LGG) and can significantly affect morbidity. We sought to determine the association between the clinical and molecular factors with seizure incidence and refractoriness in LGG patients. Methods We conducted a retrospective review at the University of Virginia in patients with LGG (World Health Organization, WHO Grade II) evaluated between 2002 and 2015. Descriptive statistics were calculated for variables of interest, and the Kaplan-Meier method was used to estimate survival curves, which were compared with the log-rank test. Results A total of 291 patients were included; 254 had molecular testing performed for presence of an isocitrate dehydrogenase (IDH) mutation and/or 1p/19q codeletion. Sixty-eight percent of patients developed seizures prior to LGG diagnosis; 41% of all patients had intractable seizures. Using WHO 2016 integrated classification, there was no significant difference in seizure frequency during preoperative and postoperative periods or in developing intractable seizures, though a trend toward increased preoperative seizure incidence among patients with the IDH mutation was identified (P = .09). Male sex was significantly associated with higher seizure incidence during preoperative (P < .001) and postoperative periods (P < .001); men were also more likely to develop intractable seizures (P = .01). Conclusions Seizures are common among patients with LGG. Differences in preoperative or postoperative and intractable seizure rates by WHO 2016 classification were not detected. Our data showed a trend toward higher seizure incidence preoperatively in patients with IDH-mutant LGG. We describe a unique association between male sex and seizure incidence and intractability that warrants further study.
Collapse
Affiliation(s)
- Jasmin Jo
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Kathryn Nevel
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Ryan Sutyla
- School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark Smolkin
- Department of Public Health Sciences, Division of Biostatistics, University of Virginia, Charlottesville, Virginia
| | - M Beatriz Lopes
- Department of Pathology, Division of Neuropathology, University of Virginia, Charlottesville, Virginia
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
29
|
Prognostic Nomograms for Primary High-Grade Glioma Patients in Adult: A Retrospective Study Based on the SEER Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1346340. [PMID: 32775408 PMCID: PMC7397389 DOI: 10.1155/2020/1346340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Purpose In our study, we aimed to screen the risk factors that affect overall survival (OS) and cancer-specific survival (CSS) in adult glioma patients and to develop and evaluate nomograms. Methods Primary high-grade gliomas patients being retrieved from the surveillance, epidemiology and end results (SEER) database, between 2004 and 2015, then they randomly assigned to a training group and a validation group. Univariate and multivariate Cox analysis models were used to choose the variables significantly correlated with the prognosis of high-grade glioma patients. And these variables were used to construct the nomograms. Next, concordance index (C-index), calibration plot and receiver operating characteristics (ROCs) curve were used to evaluate the accuracy of the nomogram model. In addition, the decision curve analysis (DCA) was used to analyze the benefit of nomogram and prognostic indicators commonly used in clinical practice. Results A total of 6395 confirmed glioma patients were selected from the SEER database, divided into training set (n =3166) and validation set (n =3229). Age at diagnosis, tumor grade, tumor size, histological type, surgical type, radiotherapy and chemotherapy were screened out by Cox analysis model. For OS nomogram, the C-index of the training set was 0.741 (95% CI: 0.751-0.731), and the validation set was 0.738 (95% CI: 0.748-0.728). For CSS nomogram, the C-index of the training set was 0.739 (95% CI: 0.749-0.729), and the validation set was 0.738 (95% CI: 0.748-0.728). The net benefit and net reduction in inverventions of nomograms in the decision curve analysis (DCA) was higher than histological type. Conclusions We developed nomograms to predict 3- and 5-year OS rates and 3- and 5-year CSS rates in adult high-grade glioma patients. Both the training set and the validation set showed good calibration and validation, indicating the clinical applicability of the nomogram and good predictive results.
Collapse
|
30
|
Fang S, Zhou C, Fan X, Jiang T, Wang Y. Epilepsy-Related Brain Network Alterations in Patients With Temporal Lobe Glioma in the Left Hemisphere. Front Neurol 2020; 11:684. [PMID: 32765403 PMCID: PMC7380082 DOI: 10.3389/fneur.2020.00684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Seizures are a common symptom in patients with temporal lobe gliomas and may result in brain network alterations. However, brain network changes caused by glioma-related epilepsy (GRE) remain poorly understood. Objective: In this study, we applied graph theory analysis to delineate topological networks with resting-state functional magnetic resonance images (rs-fMRI) and investigated characteristics of functional networks in patients with GRE. Methods: Thirty patients with low-grade gliomas in the left temporal lobe were enrolled and classified into GRE (n = 15) and non-GRE groups. Twenty healthy participants matched for age, sex, and education level were enrolled. All participants had rs-fMRI data. Sensorimotor, visual, default mode, auditory, and right executive control networks were used to construct connection matrices. Topological properties of those sub-networks were investigated. Results: Compared to that in the GRE group, four edges with higher functional connectivity were noted in the non-GRE group. Moreover, 21 edges with higher functional connectivity were identified in the non-GRE group compared to the healthy group. All significant alterations in functional edges belong to the visual network. Increased global efficiency and decreased shortest path lengths were noted in the non-GRE group compared to the GRE and healthy groups. Compared with that in the healthy group, nodal efficiency of three nodes was higher in the GRE and non-GRE groups and the degree centrality of six nodes was altered in the non-GRE group. Conclusion: Temporal lobe gliomas in the left hemisphere and GRE altered visual networks in an opposing manner. These findings provide a novel insight into brain network alterations induced by GRE.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Wang Y, Wei W, Liu Z, Liang Y, Liu X, Li Y, Tang Z, Jiang T, Tian J. Predicting the Type of Tumor-Related Epilepsy in Patients With Low-Grade Gliomas: A Radiomics Study. Front Oncol 2020; 10:235. [PMID: 32231995 PMCID: PMC7082349 DOI: 10.3389/fonc.2020.00235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Purpose: The majority of patients with low-grade gliomas (LGGs) experience tumor-related epilepsy during the disease course. Our study aimed to build a radiomic prediction model for LGG-related epilepsy type based on magnetic resonance imaging (MRI) data. Methods: A total of 205 cases with LGG-related epilepsy were enrolled in the retrospective study and divided into training and validation cohorts (1:1) according to their surgery time. Seven hundred thirty-four radiomic features were extracted from T2-weighted imaging, including six location features. Pearson correlation coefficient, univariate area under curve (AUC) analysis, and least absolute shrinkage and selection operator regression were adopted to select the most relevant features for the epilepsy type to build a radiomic signature. Furthermore, a novel radiomic nomogram was developed for clinical application using the radiomic signature and clinical variables from all patients. Results: Four MRI-based features were selected from the 734 radiomic features, including one location feature. Good discriminative performances were achieved in both training (AUC = 0.859, 95% CI = 0.787–0.932) and validation cohorts (AUC = 0.839, 95% CI = 0.761–0.917) for the type of epilepsy. The accuracies were 80.4 and 80.6%, respectively. The radiomic nomogram also allowed for a high degree of discrimination. All models presented favorable calibration curves and decision curve analyses. Conclusion: Our results suggested that the MRI-based radiomic analysis may predict the type of LGG-related epilepsy to enable individualized therapy for patients with LGG-related epilepsy.
Collapse
Affiliation(s)
- Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China.,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yuchao Liang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yiming Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhenchao Tang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China.,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Elf K, Ronne-Engström E, Semnic R, Rostami-Berglund E, Sundblom J, Zetterling M. Continuous EEG monitoring after brain tumor surgery. Acta Neurochir (Wien) 2019; 161:1835-1843. [PMID: 31278599 PMCID: PMC6704081 DOI: 10.1007/s00701-019-03982-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 01/20/2023]
Abstract
Background Prolonged seizures generate cerebral hypoxia and increased intracranial pressure, resulting in an increased risk of neurological deterioration, increased long-term morbidity, and shorter survival. Seizures should be recognized early and treated promptly. The aim of the study was to investigate the occurrence of postoperative seizures in patients undergoing craniotomy for primary brain tumors and to determine if non-convulsive seizures could explain some of the postoperative neurological deterioration that may occur after surgery. Methods A single-center prospective study of 100 patients with suspected glioma. Participants were studied with EEG and video recording for at least 24 h after surgery. Results Seven patients (7%) displayed seizure activity on EEG recording within 24 h after surgery and another two patients (2%) developed late seizures. One of the patients with early seizures also developed late seizures. In five patients (5%), there were non-convulsive seizures. Four of these patients had a combination of clinically overt and non-convulsive seizures and in one patient, all seizures were non-convulsive. The non-convulsive seizures accounted for the majority of total seizure time in those patients. Non-convulsive seizures could not explain six cases of unexpected postoperative neurological deterioration. Postoperative ischemic lesions were more common in patients with early postoperative seizures. Conclusions Early seizures, including non-convulsive, occurred in 7% of our patients. Within this group, non-convulsive seizure activity had longer durations than clinically overt seizures, but only 1% of patients had exclusively non-convulsive seizures. Seizures were not associated with unexpected neurological deterioration. Electronic supplementary material The online version of this article (10.1007/s00701-019-03982-6) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Liang S, Fan X, Zhao M, Shan X, Li W, Ding P, You G, Hong Z, Yang X, Luan G, Ma W, Yang H, You Y, Yang T, Li L, Liao W, Wang L, Wu X, Yu X, Zhang J, Mao Q, Wang Y, Li W, Wang X, Jiang C, Liu X, Qi S, Liu X, Qu Y, Xu J, Wang W, Song Z, Wu J, Liu Z, Chen L, Lin Y, Zhou J, Liu X, Zhang W, Li S, Jiang T. Clinical practice guidelines for the diagnosis and treatment of adult diffuse glioma-related epilepsy. Cancer Med 2019; 8:4527-4535. [PMID: 31240876 PMCID: PMC6712518 DOI: 10.1002/cam4.2362] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/05/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioma-related epilepsy (GRE) is defined as symptomatic epileptic seizures secondary to gliomas, it brings both heavy financial and psychosocial burdens to patients with diffuse glioma and significantly decreases their quality of life. To date, there have been no clinical guidelines that provide recommendations for the optimal diagnostic and therapeutic procedures for GRE patients. METHODS In March 2017, the Joint Task Force for GRE of China Association Against Epilepsy and Society for Neuro-Oncology of China launched the guideline committee for the diagnosis and treatment of GRE. The guideline committee conducted a comprehensive review of relevant domestic and international literatures that were evaluated and graded based on the Oxford Centre for Evidence-Based Medicine Levels of Evidence, and then held three consensus meetings to discuss relevant recommendations. The recommendations were eventually given according to those relevant literatures, together with the experiences in the diagnosis and treatment of over 3000 GRE cases from 24 tertiary level hospitals that specialize in clinical research of epilepsy, glioma, and GRE in China. RESULTS The manuscript presented the current standard recommendations for the diagnostic and therapeutic procedures of GRE. CONCLUSIONS The current work will provide a framework and assurance for the diagnosis and treatment strategy of GRE to reduce complications and costs caused by unnecessary treatment. Additionally, it can serve as a reference for all professionals involved in the management of patients with GRE.
Collapse
Affiliation(s)
- Shuli Liang
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China.,Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Xia Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| | - Wenling Li
- Department of Neurosurgery, Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ping Ding
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Hong
- Department of Neurology, Shanghai Huashan Hospital, Fudan University, Shaihai, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoming Luan
- Department of Neurosurgery, Beijing Sanbo Hospital, Capital Medical University, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yongpin You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianming Yang
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liang Li
- Department of Neurosurgery, First Affiliated Hospital, Beijing University, Beijing, China
| | - Weiping Liao
- Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Wu
- Department of Neurology, First Affiliated Hospital, Beijing University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Mao
- Department of Neurosurgery, Huaxi Hospital, Sichuan University, Chengdu, China
| | - Yuping Wang
- Department of Neurology, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Wang
- Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Liu
- Pediatric Department, First Affiliated Hospital, Beijing University, Beijing, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Nanfang Medical University, Guangzhou, China
| | - Xingzhou Liu
- Epilepsy Center, Shanghai Deji Hospital, Shanghai, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiwen Xu
- Department of Functional Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Wang
- Department of Neurosurgery, Guangzhou Military General Hospital, Guangzhou, China
| | - Zhi Song
- Department of Neurology, Xiangya Third Hospital, Center South University, Changsha, China
| | - Jinsong Wu
- Department of Neurosurgery, Shanghai Huashan Hospital, Fudan University, Shanghai, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Zhou
- Department of Neurosurgery, Beijing Sanbo Hospital, Capital Medical University, Beijing, China
| | - Xianzeng Liu
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| | - Shichuo Li
- China Association Against Epilepsy (CAAE), Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| |
Collapse
|