1
|
Sulaj E, Sandell FL, Schwaigerlehner L, Marzban G, Dohm JC, Kunert R. Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level. Proteomes 2025; 13:9. [PMID: 39982319 PMCID: PMC11843875 DOI: 10.3390/proteomes13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. Methods: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. Results: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). Conclusions: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.
Collapse
Affiliation(s)
- Eldi Sulaj
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Felix L. Sandell
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Linda Schwaigerlehner
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Gorji Marzban
- Department of Biotechnology and Food Science, Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Juliane C. Dohm
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Renate Kunert
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| |
Collapse
|
2
|
Wang Z, Wang Y, Yan Q, Cai C, Feng Y, Huang Q, Li T, Yuan S, Huang J, Luo ZH, Zhou J. FPR1 signaling aberrantly regulates S100A8/A9 production by CD14 +FCN1 hi macrophages and aggravates pulmonary pathology in severe COVID-19. Commun Biol 2024; 7:1321. [PMID: 39402337 PMCID: PMC11473795 DOI: 10.1038/s42003-024-07025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Excessive alarmins S100A8/A9 escalate the inflammation and even exacerbate immune-driven thrombosis and multi-organ damage. However, the regulatory mechanisms of S100A8/A9 expression in infectious diseases remain unclear. In this study, high-dimensional transcriptomic data analyses revealed a high proportion of CD14+FCN1hi macrophages within the pulmonary niche post-severe SARS-CoV-2 infection. By constructing the S100-coexpression gene list and supervised module scoring, we found that CD14+FCN1hi macrophages presented the highest scores of alarmin S100, and possibly served as the trigger and amplifier of inflammation in severe COVID-19. These CD14+FCN1hi cells lacked the positive regulatory activity of transcription factor PPARγ, and lost their differentiation ability towards mature macrophages. Ex vivo experiments further validated that the epithelial cells with high ORF-3a expression promoted the expression and secretion of S100A8/A9 through ANXA1/SAA1-FPR1 signaling. S100A8/A9 heterodimers, as well as the co-localization of S100A8/A9 with microtubules, were both diminished by the FPR1 inhibitor. Phospho-kinase protein array indicated that STAT3 promoted transcription, and PLC-γ and ERK1/2 pathways were involved in the hetero-dimerization and unconventional secretion of S100A8/A9. Our study highlights the pivotal role of FPR1 signaling in the excessive production of S100A8/A9 and provides a promising target for the prevention and control of severe COVID-19 and post-acute COVID-19 sequelae.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qing Yan
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Changlin Cai
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Feng
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qinghan Huang
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Ting Li
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shenzhen Yuan
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Luo
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Jingjiao Zhou
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Singh S, Parthasarathi KTS, Bhat MY, Gopal C, Sharma J, Pandey A. Profiling Kinase Activities for Precision Oncology in Diffuse Gastric Cancer. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:76-89. [PMID: 38271566 DOI: 10.1089/omi.2023.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality globally. This is due to the fact that majority of the cases of GC are diagnosed at an advanced stage when the treatment options are limited and prognosis is poor. The diffuse subtype of gastric cancer (DGC) under Lauren's classification is more aggressive and usually occurs in younger patients than the intestinal subtype. The concept of personalized medicine is leading to the identification of multiple biomarkers in a large variety of cancers using different combinations of omics technologies. Proteomic changes including post-translational modifications are crucial in oncogenesis. We analyzed the phosphoproteome of DGC by using paired fresh frozen tumor and adjacent normal tissue from five patients diagnosed with DGC. We found proteins involved in the epithelial-to-mesenchymal transition (EMT), c-MYC pathway, and semaphorin pathways to be differentially phosphorylated in DGC tissues. We identified three kinases, namely, bromodomain adjacent to the zinc finger domain 1B (BAZ1B), WNK lysine-deficient protein kinase 1 (WNK1), and myosin light-chain kinase (MLCK) to be hyperphosphorylated, and one kinase, AP2-associated protein kinase 1 (AAK1), to be hypophosphorylated. LMNA hyperphosphorylation at serine 392 (S392) was demonstrated in DGC using immunohistochemistry. Importantly, we have detected heparin-binding growth factor (HDGF), heat shock protein 90 (HSP90), and FTH1 as potential therapeutic targets in DGC, as drugs targeting these proteins are currently under investigation in clinical trials. Although these new findings need to be replicated in larger study samples, they advance our understanding of signaling alterations in DGC, which could lead to potentially novel actionable targets in GC.
Collapse
Affiliation(s)
- Smrita Singh
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
| | - K T Shreya Parthasarathi
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwapeetham University, Kollam, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Jyoti Sharma
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Bhutada I, Khambati F, Cheng SY, Tiek DM, Duckett D, Lawrence H, Vogelbaum MA, Mo Q, Chellappan SP, Padmanabhan J. CDK7 and CDK9 inhibition interferes with transcription, translation, and stemness, and induces cytotoxicity in GBM irrespective of temozolomide sensitivity. Neuro Oncol 2024; 26:70-84. [PMID: 37551745 PMCID: PMC10768977 DOI: 10.1093/neuonc/noad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.
Collapse
Affiliation(s)
- Isha Bhutada
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fatema Khambati
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Deanna M Tiek
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harshani Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neuro-Oncology Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Gobin C, Inkabi S, Lattimore CC, Gu T, Menefee JN, Rodriguez M, Kates H, Fields C, Bian T, Silver N, Xing C, Yates C, Renne R, Xie M, Fredenburg KM. Investigating miR-9 as a mediator in laryngeal cancer health disparities. Front Oncol 2023; 13:1096882. [PMID: 37081981 PMCID: PMC10112398 DOI: 10.3389/fonc.2023.1096882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Background For several decades, Black patients have carried a higher burden of laryngeal cancer among all races. Even when accounting for sociodemographics, a disparity remains. Differentially expressed microRNAs have been linked to racially disparate clinical outcomes in breast and prostate cancers, yet an association in laryngeal cancer has not been addressed. In this study, we present our computational analysis of differentially expressed miRNAs in Black compared with White laryngeal cancer and further validate microRNA-9-5p (miR-9-5p) as a potential mediator of cancer phenotype and chemoresistance. Methods Bioinformatic analysis of 111 (92 Whites, 19 Black) laryngeal squamous cell carcinoma (LSCC) specimens from the TCGA revealed miRNAs were significantly differentially expressed in Black compared with White LSCC. We focused on miR-9-5 p which had a significant 4-fold lower expression in Black compared with White LSCC (p<0.05). After transient transfection with either miR-9 mimic or inhibitor in cell lines derived from Black (UM-SCC-12) or White LSCC patients (UM-SCC-10A), cellular migration and cell proliferation was assessed. Alterations in cisplatin sensitivity was evaluated in transient transfected cells via IC50 analysis. qPCR was performed on transfected cells to evaluate miR-9 targets and chemoresistance predictors, ABCC1 and MAP1B. Results Northern blot analysis revealed mature miR-9-5p was inherently lower in cell line UM-SCC-12 compared with UM-SCC-10A. UM -SCC-12 had baseline increase in cellular migration (p < 0.01), proliferation (p < 0.0001) and chemosensitivity (p < 0.01) compared to UM-SCC-10A. Increasing miR-9 in UM-SCC-12 cells resulted in decreased cellular migration (p < 0.05), decreased proliferation (p < 0.0001) and increased sensitivity to cisplatin (p < 0.001). Reducing miR-9 in UM-SCC-10A cells resulted in increased cellular migration (p < 0.05), increased proliferation (p < 0.05) and decreased sensitivity to cisplatin (p < 0.01). A significant inverse relationship in ABCC1 and MAP1B gene expression was observed when miR-9 levels were transiently elevated or reduced in either UM-SCC-12 or UM-SCC-10A cell lines, respectively, suggesting modulation by miR-9. Conclusion Collectively, these studies introduce differential miRNA expression in LSCC cancer health disparities and propose a role for low miR-9-5p as a mediator in LSCC tumorigenesis and chemoresistance.
Collapse
Affiliation(s)
- Christina Gobin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Samuel Inkabi
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO, United States
| | - Chayil C. Lattimore
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research Bioinformatics Core Facility, University of Florida, Gainesville, FL, United States
| | - James N. Menefee
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Mayrangela Rodriguez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Heather Kates
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Christopher Fields
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Natalie Silver
- Head and Neck Institute/Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Clayton Yates
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Kristianna M. Fredenburg
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Wang Z, Huang Z, Cao X, Zhang F, Cai J, Tang P, Yang C, Li S, Yu D, Yan Y, Shen B. A prognostic model based on necroptosis-related genes for prognosis and therapy in bladder cancer. BMC Urol 2023; 23:10. [PMID: 36709279 PMCID: PMC9883845 DOI: 10.1186/s12894-023-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 01/30/2023] Open
Abstract
Bladder cancer, one of the most prevalent malignant cancers, has high rate of recurrence and metastasis. Owing to genomic instability and high-level heterogeneity of bladder cancer, chemotherapy and immunotherapy drugs sensitivity and lack of prognostic markers, the prognosis of bladder cancer is unclear. Necroptosis is a programmed modality of necrotic cell death in a caspase-independent form. Despite the fact that necroptosis plays a critical role in tumor growth, cancer metastasis, and cancer patient prognosis, necroptosis-related gene sets have rarely been studied in bladder cancer. As a result, the development of new necroptosis-related prognostic indicators for bladder cancer patients is critical. Herein, we assessed the necroptosis landscape of bladder cancer patients from The Cancer Genome Atlas database and classified them into two unique necroptosis-related patterns, using the consensus clustering. Then, using five prognosis-related genes, we constructed a prognostic model (risk score), which contained 5 genes (ANXA1, DOK7, FKBP10, MAP1B and SPOCD1). And a nomogram model was also developed to offer the clinic with a more useful prognostic indicator. We found that risk score was significantly associated with clinicopathological characteristics, TIME, and tumor mutation burden in patients with bladder cancer. Moreover, risk score was a valid guide for immunotherapy, chemotherapy, and targeted drugs. In our study, DOK7 was chosen to further verify our prognosis model, and functional assays indicated that knockdown the expression of DOK7 could prompt bladder cancer proliferation and migration. Our work demonstrated the potential role of prognostic model based on necroptosis genes in the prognosis, immune landscape and response efficacy of immunotherapy of bladder cancer.
Collapse
Affiliation(s)
- Zeyi Wang
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080 China
| | - Zhengnan Huang
- grid.24516.340000000123704535Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| | - Xiangqian Cao
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Fang Zhang
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Jinming Cai
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Pengfei Tang
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080 China
| | - Chenkai Yang
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Shengzhou Li
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Dong Yu
- grid.73113.370000 0004 0369 1660Department of Precision Medicine, Center of Translation Medicine, Naval Medical University, Shanghai, 200082 China
| | - Yilin Yan
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Bing Shen
- grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| |
Collapse
|
8
|
Das A, Bhattacharya B, Roy S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis 2022; 9:868-888. [PMID: 35685456 PMCID: PMC9170611 DOI: 10.1016/j.gendis.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer is one of those leading diseases worldwide, which takes millions of lives every year. Researchers are continuously looking for specific approaches to eradicate the deadly disease, ensuring minimal adverse effects along with more therapeutic significance. Targeting of different aberrantly regulated signaling pathways, involved in cancer, is surely one of the revolutionary chemotherapeutic approach. In this instance, GSK3 and PI3K signaling cascades are considered as important role player for both the oncogenic activation and inactivation which further leads to cancer proliferation and metastasis. In this review, we have discussed the potential role of GSK3 and PI3K signaling in cancer, and we further established the crosstalk between PI3K and GSK3 signaling, through showcasing their cross activation, cross inhibition and convergence pathways in association with cancer. We also exhibited the effect of GSK3 on the efficacy of PI3K inhibitors to overcome the drug resistance and preventing the cell proliferation, metastasis in a combinatorial way with GSK3 inhibitors for a better treatment strategy in clinical settings.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| |
Collapse
|
9
|
Pi Y, Fang C, Su Z. Protein phosphorylation: A potential target in glioma development. IBRAIN 2022; 8:176-189. [PMID: 37786890 PMCID: PMC10529010 DOI: 10.1002/ibra.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 10/04/2023]
Abstract
Glioma is one of the most common primary brain tumors, and mortality due to this disease is second only to cardiovascular and cerebrovascular diseases. In traditional surgery, it is difficult to eradicate glioma; often recurrence increases its malignant degree, leading to a large number of patients killed by this disease. It is one of the most important subjects to study its pathogenesis and explore effective treatment methods. Research on glioma mechanisms mainly focuses on the effect of DNA methylation in epigenetics. Although there are many studies on protein phosphorylation, there is no overall regulatory mechanism. Protein phosphorylation regulates a variety of cell functions, such as cell growth, division and differentiation, and apoptosis. As a consequence, protein phosphorylation plays a leading part in various activities of glioma, and can also be used as a target to regulate the development of glioma. This review is aimed at studying the effect of protein phosphorylation on glioma, understanding the pathological mechanism, and an in-depth analysis of it. The following is a discussion on glioma growth, migration and invasion, resistance and death in phosphorylation, and the possibility of treating glioma by phosphorylation.
Collapse
Affiliation(s)
- Yu Pi
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Chang‐Le Fang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Zhang‐Yu Su
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
10
|
Alammar H, Nassani R, Alshehri MM, Aljohani AA, Alrfaei BM. Deficiency in the Treatment Description of mTOR Inhibitor Resistance in Medulloblastoma, a Systematic Review. Int J Mol Sci 2021; 23:ijms23010464. [PMID: 35008889 PMCID: PMC8745694 DOI: 10.3390/ijms23010464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Medulloblastoma is a common fatal pediatric brain tumor. More treatment options are required to prolong survival and decrease disability. mTOR proteins play an essential role in the disease pathogenesis, and are an essential target for therapy. Three generations of mTOR inhibitors have been developed and are clinically used for immunosuppression and chemotherapy for multiple cancers. Only a few mTOR inhibitors have been investigated for the treatment of medulloblastoma and other pediatric tumors. The first-generation mTOR, sirolimus, temsirolimus, and everolimus, went through phase I clinical trials. The second-generation mTOR, AZD8055 and sapanisertib, suppressed medulloblastoma cell growth; however, limited studies have investigated possible resistance pathways. No clinical trials have been found to treat medulloblastoma using third-generation mTOR inhibitors. This systematic review highlights the mechanisms of resistance of mTOR inhibitors in medulloblastoma and includes IDO1, T cells, Mnk2, and eIF4E, as they prolong malignant cell survival. The findings promote the importance of combination therapy in medulloblastoma due to its highly resistant nature.
Collapse
Affiliation(s)
- Hajar Alammar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (H.A.); (A.A.A.)
| | - Rayan Nassani
- King Abdullah International Medical Research Center, Department of Cellular Therapy and Cancer Research, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (R.N.); (M.M.A.)
| | - Mana M. Alshehri
- King Abdullah International Medical Research Center, Department of Cellular Therapy and Cancer Research, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (R.N.); (M.M.A.)
| | - Alaa A. Aljohani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (H.A.); (A.A.A.)
| | - Bahauddeen M. Alrfaei
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (H.A.); (A.A.A.)
- King Abdullah International Medical Research Center, Department of Cellular Therapy and Cancer Research, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (R.N.); (M.M.A.)
- Correspondence:
| |
Collapse
|
11
|
Ayanlaja AA, Hong X, Cheng B, Zhou H, Kanwore K, Alphayo-Kambey P, Zhang L, Tang C, Adeyanju MM, Gao D. Susceptibility of cytoskeletal-associated proteins for tumor progression. Cell Mol Life Sci 2021; 79:13. [PMID: 34964908 PMCID: PMC11072373 DOI: 10.1007/s00018-021-04101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD, 21287, USA
| | - Xiaoliang Hong
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Cheng
- The Affiliated Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han Zhou
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Piniel Alphayo-Kambey
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chuanxi Tang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Dianshuai Gao
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
Hu M, Fang J, Wang H, Zhou S. Proteome and Phosphoproteome Analyses Reveal the Kinase Regulatory Network Involved in Glycogen Synthesis Kinase 3β. Front Genet 2021; 12:657140. [PMID: 33897769 PMCID: PMC8059835 DOI: 10.3389/fgene.2021.657140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy is the most common chronic kidney disease in the world and the main cause of end-stage renal disease (ESRD). The structural integrity of podocytes is fundamental to the normal function of the glomerulus, and the role of glycogen synthase kinase 3β (GSK-3β) in podocytes is complicated. A thorough understanding of GSK-3β is crucial to understand the mechanism of diabetic nephropathy. To analyze the roles of GSK-3β in podocytes, GSK-3β knockdown lentivirus by clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein (Cas)9 was applied to establish stable cell lines. Mass spectrometry was utilized to search for differentially expressed proteins. Consequently, we found 34 proteins with higher levels and 115 proteins with lower levels in GSk-3β knockdown cells than in control cells and identified 581 phosphosites with higher phosphorylation levels and 288 phosphosites with lower phosphorylation levels. We performed functional enrichment analysis of these proteins and phosphorylated proteins based on public databases. Enrichment analysis revealed that GSK-3β participates in the spliceosome, Hippo signaling pathway, actin binding, structural molecule activity, and other pathways. Then, we used motif analysis of phosphate sites to determine 89 conserved motifs based on 1,068 phosphoserine (pS) sites and 15 conserved motifs in view of 104 phosphothreonine (pT) sites. Additionally, protein–protein interaction network analysis was carried out using the STRING database. Cytoscape’s add-on Molecular Complex Detection (MCODE) was used to analyze key and core protein groups. In quantitative differential protein analysis, four MCODEs were obtained, and 22 MCODEs were obtained in the analysis of the phosphoproteome of differentially expressed proteins. Finally, we analyzed the kinase regulatory network in podocytes after GSK-3β knockdown and identified 299 protein kinases and 3,460 significantly changed phosphorylation modification sites on 1,574 proteins. These results will be valuable for further research on GSK-3β.
Collapse
Affiliation(s)
- Mingyang Hu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Zhengzhou University School of Medical Sciences, Zhengzhou, China
| | - Jiuyuan Fang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huijuan Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Zhengzhou University School of Medical Sciences, Zhengzhou, China
| | - Sijie Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Ge LP, Jin X, Yang YS, Liu XY, Shao ZM, Di GH, Jiang YZ. Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor. Oncogene 2021; 40:2323-2334. [PMID: 33654196 DOI: 10.1038/s41388-021-01655-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 02/03/2023]
Abstract
Progression of triple-negative breast cancer (TNBC) constitutes a major unresolved clinical challenge, and effective targeted therapies are lacking. Because microtubule dynamics play pivotal roles in breast cancer metastasis, we performed RNA sequencing on 245 samples from TNBC patients to characterize the landscape of microtubule-associated proteins (MAPs). Here, our transcriptome analyses revealed that low expression of one MAP, tektin4, indicated poor patient outcomes. Tektin4 loss led to a marked increase in TNBC migration, invasion, and metastasis and a decrease in microtubule stability. Mechanistically, we identified a novel microtubule-associated complex containing tektin4 and histone deacetylase 6 (HDAC6). Tektin4 loss increased the interaction between HDAC6 and α-tubulin, thus decreasing microtubule stability through HDAC6-mediated tubulin deacetylation. Significantly, we found that tektin4 loss sensitized TNBC cells, xenograft models, and patient-derived organoid models to the HDAC6-selective inhibitor ACY1215. Furthermore, tektin4 expression levels were positively correlated with microtubule stability levels in clinical samples. Together, our findings uncover a metastasis suppressor function of tektin4 and support clinical development of HDAC6 inhibition as a new therapeutic strategy for tektin4-deficient TNBC patients.
Collapse
Affiliation(s)
- Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Yun-Song Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| |
Collapse
|
14
|
Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, Ulasov I, Dong JJ, Hatiboglu MA. Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. Int J Mol Sci 2021; 22:ijms22031318. [PMID: 33525678 PMCID: PMC7865981 DOI: 10.3390/ijms22031318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a “double-edged sword”, and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy’s involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Moniba Rahim
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India;
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Elif Burce Elbasan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: (J.-J.D.); (M.A.H.)
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
- Correspondence: (J.-J.D.); (M.A.H.)
| |
Collapse
|
15
|
Rapamycin-Induced Autophagy Promotes the Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells in the Temporomandibular Joint in Response to IL-1 β. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4035306. [PMID: 33145347 PMCID: PMC7599423 DOI: 10.1155/2020/4035306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Cartilage defects in temporomandibular disorders (TMD) lead to chronic pain and seldom heal. Synovium-derived mesenchymal stem cells (SMSCs) exhibit superior chondrogenesis and have become promising seed cells for cartilage tissue engineering. However, local inflammatory conditions that affect the repair of articular cartilage by SMSCs present a challenge, and the specific mechanism through which the function remains unclear. Thus, it is important to explore the chondrogenesis of SMSCs under inflammatory conditions of TMD such that they can be used more effectively in clinical treatment. In this study, we obtained SMSCs from TMD patients with severe cartilage injuries. In response to stimulation with IL-1β, which is well known as one of the most prevalent cytokines in TMD, MMP13 expression increased, while that of SOX9, aggrecan, and collagen II decreased during chondrogenic differentiation. At the same time, IL-1β upregulated the expression of mTOR and decreased the ratio of LC3-II/LC3-I and the formation of autophagosomes. Further study revealed that rapamycin pretreatment promoted the migration of SMSCs and the expression of chondrogenesis-related markers in the presence of IL-1β by inducing autophagy. 3-Benzyl-5-((2-nitrophenoxy)methyl)-dihydrofuran-2(3H)-one (3BDO), a new activator of mTOR, inhibited autophagy and increased the expression of p-GSK3βser9 and β-catenin, simulating the effect of IL-1β stimulation. Furthermore, rapamycin reduced the expression of mTOR, whereas the promotion of LC3-II/LC3-I was blocked by the GSK3β inhibitor TWS119. Taken together, these results indicate that rapamycin enhances the chondrogenesis of SMSCs by inducing autophagy, and GSK3β may be an important regulator in the process of rapamycin-induced autophagy. Thus, inducing autophagy may be a useful approach in the chondrogenic differentiation of SMSCs in the inflammatory microenvironment and may represent a novel TMD treatment.
Collapse
|
16
|
Schreck KC, Allen AN, Wang J, Pratilas CA. Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neurooncol Adv 2020; 2:vdaa138. [PMID: 33235998 PMCID: PMC7668446 DOI: 10.1093/noajnl/vdaa138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background RAS effector signaling pathways such as PI3K/mTOR and ERK are frequently dysregulated in glioblastoma. While small molecule targeted therapies against these pathways have appeared promising in preclinical studies, they have been disappointing in clinical trials due to toxicity and de novo and adaptive resistance. To identify predictors of glioblastoma sensitivity to dual pathway inhibition with mTORC1/2 and MEK inhibitors, we tested these agents, alone and in combination, in a cohort of genomically characterized glioblastoma cell lines. Methods Seven genomically characterized, patient-derived glioblastoma neurosphere cell lines were evaluated for their sensitivity to the dual mTORC1/2 kinase inhibitor sapanisertib (MLN0128, TAK-228) alone or in combination with the MEK1/2 inhibitor trametinib (GSK1120212), using assessment of proliferation and evaluation of the downstream signaling consequences of these inhibitors. Results Sapanisertib inhibited cell growth in neurosphere lines, but induced apoptosis only in a subset of lines, and did not completely inhibit downstream mTOR signaling via ribosomal protein S6 (RPS6). Growth sensitivity to MEK inhibitor monotherapy was observed in a subset of lines defined by loss of NF1, was predicted by an ERK-dependent expression signature, and was associated with effective phospho-RPS6 inhibition. In these lines, combined MEK/mTOR treatment further inhibited growth and induced apoptosis. Combined MEK and mTOR inhibition also led to modest antiproliferative effects in lines with intact NF1 and insensitivity to MEK inhibitor monotherapy. Conclusions These data demonstrate that combined MEK/mTOR inhibition is synergistic in glioblastoma cell lines and may be more potent in NF1-deficient glioblastoma.
Collapse
Affiliation(s)
- Karisa C Schreck
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy N Allen
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA.,Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiawan Wang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA.,Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Banerjee J, Allaway RJ, Taroni JN, Baker A, Zhang X, Moon CI, Pratilas CA, Blakeley JO, Guinney J, Hirbe A, Greene CS, Gosline SJC. Integrative Analysis Identifies Candidate Tumor Microenvironment and Intracellular Signaling Pathways that Define Tumor Heterogeneity in NF1. Genes (Basel) 2020; 11:E226. [PMID: 32098059 PMCID: PMC7073563 DOI: 10.3390/genes11020226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a monogenic syndrome that gives rise to numerous symptoms including cognitive impairment, skeletal abnormalities, and growth of benign nerve sheath tumors. Nearly all NF1 patients develop cutaneous neurofibromas (cNFs), which occur on the skin surface, whereas 40-60% of patients develop plexiform neurofibromas (pNFs), which are deeply embedded in the peripheral nerves. Patients with pNFs have a ~10% lifetime chance of these tumors becoming malignant peripheral nerve sheath tumors (MPNSTs). These tumors have a severe prognosis and few treatment options other than surgery. Given the lack of therapeutic options available to patients with these tumors, identification of druggable pathways or other key molecular features could aid ongoing therapeutic discovery studies. In this work, we used statistical and machine learning methods to analyze 77 NF1 tumors with genomic data to characterize key signaling pathways that distinguish these tumors and identify candidates for drug development. We identified subsets of latent gene expression variables that may be important in the identification and etiology of cNFs, pNFs, other neurofibromas, and MPNSTs. Furthermore, we characterized the association between these latent variables and genetic variants, immune deconvolution predictions, and protein activity predictions.
Collapse
Affiliation(s)
- Jineta Banerjee
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Robert J Allaway
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Jaclyn N Taroni
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA 19102, USA
| | - Aaron Baker
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Xiaochun Zhang
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Chang In Moon
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jaishri O Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neurology, Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Angela Hirbe
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA 19102, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara JC Gosline
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| |
Collapse
|
18
|
Zimmerman MA, Wilkison S, Qi Q, Chen G, Li PA. Mitochondrial dysfunction contributes to Rapamycin-induced apoptosis of Human Glioblastoma Cells - A synergistic effect with Temozolomide. Int J Med Sci 2020; 17:2831-2843. [PMID: 33162811 PMCID: PMC7645350 DOI: 10.7150/ijms.40159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is upregulated in a high percentage of glioblastomas. While a well-known mTOR inhibitor, rapamycin, has been shown to reduce glioblastoma survival, the role of mitochondria in achieving this therapeutic effect is less well known. Here, we examined mitochondrial dysfunction mechanisms that occur with the suppression of mTOR signaling. We found that, along with increased apoptosis, and a reduction in transformative potential, rapamycin treatment significantly affected mitochondrial health. Specifically, increased production of reactive oxygen species (ROS), depolarization of the mitochondrial membrane potential (MMP), and altered mitochondrial dynamics were observed. Furthermore, we verified the therapeutic potential of rapamycin-induced mitochondrial dysfunction through co-treatment with temzolomide (TMZ), the current standard of care for glioblastoma. Together these results demonstrate that the mitochondria remain a promising target for therapeutic intervention against human glioblastoma and that TMZ and rapamycin have a synergistic effect in suppressing glioblastoma viability, enhancing ROS production, and depolarizing MMP.
Collapse
Affiliation(s)
- Mary A Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Biology, University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI, 54601, USA
| | - Samantha Wilkison
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Guisheng Chen
- Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA
| |
Collapse
|
19
|
Evangelisti C, Chiarini F, Paganelli F, Marmiroli S, Martelli AM. Crosstalks of GSK3 signaling with the mTOR network and effects on targeted therapy of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118635. [PMID: 31884070 DOI: 10.1016/j.bbamcr.2019.118635] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The introduction of therapeutics targeting specific tumor-promoting oncogenic or non-oncogenic signaling pathways has revolutionized cancer treatment. Mechanistic (previously mammalian) target of rapamycin (mTOR), a highly conserved Ser/Thr kinase, is a central hub of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR network, one of the most frequently deregulated signaling pathways in cancer, that makes it an attractive target for therapy. Numerous mTOR inhibitors have progressed to clinical trials and two of them have been officially approved as anticancer therapeutics. However, mTOR-targeting drugs have met with a very limited success in cancer patients. Frequently, the primary impediment to a successful targeted therapy in cancer is drug-resistance, either from the very beginning of the therapy (innate resistance) or after an initial response and upon repeated drug treatment (evasive or acquired resistance). Drug-resistance leads to treatment failure and relapse/progression of the disease. Resistance to mTOR inhibitors depends, among other reasons, on activation/deactivation of several signaling pathways, included those regulated by glycogen synthase kinase-3 (GSK3), a protein that targets a vast number of substrates in its repertoire, thereby orchestrating many processes that include cell proliferation and survival, metabolism, differentiation, and stemness. A detailed knowledge of the rewiring of signaling pathways triggered by exposure to mTOR inhibitors is critical to our understanding of the consequences such perturbations cause in tumors, including the emergence of drug-resistant cells. Here, we provide the reader with an updated overview of intricate circuitries that connect mTOR and GSK3 and we relate them to the efficacy (or lack of efficacy) of mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolical, and Neurological Sciences, University of Modena and Reggio Emilia, 41124 Modena, MO, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
20
|
Regulation of GSK3 cellular location by FRAT modulates mTORC1-dependent cell growth and sensitivity to rapamycin. Proc Natl Acad Sci U S A 2019; 116:19523-19529. [PMID: 31492813 DOI: 10.1073/pnas.1902397116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mTORC1 pathway regulates cell growth and proliferation by properly coupling critical processes such as gene expression, protein translation, and metabolism to the availability of growth factors and hormones, nutrients, cellular energetics, oxygen status, and cell stress. Although multiple cytoplasmic substrates of mTORC1 have been identified, how mTORC1 signals within the nucleus remains incompletely understood. Here, we report a mechanism by which mTORC1 modulates the phosphorylation of multiple nuclear events. We observed a significant nuclear enrichment of GSK3 when mTORC1 was suppressed, which promotes phosphorylation of several proteins such as GTF2F1 and FOXK1. Importantly, nuclear localization of GSK3 is sufficient to suppress cell proliferation. Additionally, expression of a nuclear exporter of GSK3, FRAT, restricts the nuclear localization of GSK3, represses nuclear protein phosphorylation, and prevents rapamycin-induced cytostasis. Finally, we observe a correlation between rapamycin resistance and FRAT expression in multiple-cancer cell lines. Resistance to Food and Drug Administration (FDA)-approved rapamycin analogs (rapalogs) is observed in many tumor settings, but the underling mechanisms remain incompletely understood. Given that FRAT expression levels are frequently elevated in various cancers, our observations provide a potential biomarker and strategy for overcoming rapamycin resistance.
Collapse
|
21
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
22
|
Mabe NW, Fox DB, Lupo R, Decker AE, Phelps SN, Thompson JW, Alvarez JV. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J Clin Invest 2018; 128:4413-4428. [PMID: 30148456 PMCID: PMC6159989 DOI: 10.1172/jci99481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor relapse is the leading cause of death in breast cancer, largely due to the fact that recurrent tumors are frequently resistant to chemotherapy. We previously reported that downregulation of the proapoptotic protein Par-4 promotes tumor recurrence in genetically engineered mouse models of breast cancer recurrence. In the present study, we examined the mechanism and functional significance of Par-4 downregulation in recurrent tumors. We found that epithelial-to-mesenchymal transition (EMT) promotes epigenetic silencing of Par-4 in recurrent tumors. Par-4 silencing proceeded through binding of the EMT transcription factor Twist to the Par-4 promoter, where Twist induced a unique bivalent chromatin domain. This bivalent configuration conferred plasticity at the Par-4 promoter, and Par-4 silencing could be reversed with pharmacologic inhibitors of Ezh2 and HDAC1/2. Using an epigenome editing approach to reexpress Par-4 by specifically reversing the histone modifications found in recurrent tumors, we found that Par-4 reexpression sensitized recurrent tumors to chemotherapy in vitro and in vivo. Upon reexpression, Par-4 bound to the protein phosphatase PP1, caused widespread changes in phosphorylation of cytoskeletal proteins, and cooperated with microtubule-targeting drugs to induce mitotic defects. These results identify Twist-induced epigenetic silencing of Par-4 as a targetable axis that promotes chemoresistance in recurrent breast cancer.
Collapse
Affiliation(s)
| | | | - Ryan Lupo
- Department of Pharmacology and Cancer Biology, and
| | | | | | - J. Will Thompson
- Department of Pharmacology and Cancer Biology, and
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|