1
|
Fernando D, Ahmed AU, Williams BRG. Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Front Oncol 2024; 14:1347694. [PMID: 38525424 PMCID: PMC10957575 DOI: 10.3389/fonc.2024.1347694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system's glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs.
Collapse
Affiliation(s)
- Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan R. G. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Wang Y, Li J, Cao Y, Chen W, Xing H, Guo X, Shi Y, Wang Y, Liang T, Ye L, Liu D, Yang T, Wang Y, Ma W. Characteristic analysis and identification of novel molecular biomarkers in elderly glioblastoma patients using the 2021 WHO Classification of Central Nervous System Tumors. Front Neurosci 2023; 17:1165823. [PMID: 37360159 PMCID: PMC10288210 DOI: 10.3389/fnins.2023.1165823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Elderly glioblastoma (GBM) patients is characterized by high incidence and poor prognosis. Currently, however, there is still a lack of adequate molecular characterization of elderly GBM patients. The fifth edition of the WHO Classification of Central Nervous System Tumors (WHO5) gives a new classification approach for GBM, and the molecular characteristics of elderly GBM patients need to be investigated under this new framework. Methods The clinical and radiological features of patients with different classifications and different ages were compared. Potential prognostic molecular markers in elderly GBM patients under the WHO5 classification were found using Univariate Cox regression and Kaplan-Meier survival analysis. Results A total of 226 patients were included in the study. The prognostic differences between younger and elderly GBM patients were more pronounced under the WHO5 classification. Neurological impairment was more common in elderly patients (p = 0.001), while intracranial hypertension (p = 0.034) and epilepsy (p = 0.038) were more common in younger patients. Elderly patients were more likely to have higher Ki-67(p = 0.013), and in elderly WHO5 GBM patients, KMT5B (p = 0.082), KRAS (p = 0.1) and PPM1D (p = 0.055) were each associated with overall survival (OS). Among them, KRAS and PPM1D were found to be prognostic features unique to WHO5 elderly GBM patients. Conclusion Our study demonstrates that WHO5 classification can better distinguish the prognosis of elderly and younger GBM. Furthermore, KRAS and PPM1D may be potential prognostic predictors in WHO5 elderly GBM patients. The specific mechanism of these two genes in elderly GBM remains to be further studied.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Ye
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| |
Collapse
|
3
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Towards Standardisation of a Diffuse Midline Glioma Patient-Derived Xenograft Mouse Model Based on Suspension Matrices for Preclinical Research. Biomedicines 2023; 11:biomedicines11020527. [PMID: 36831063 PMCID: PMC9952880 DOI: 10.3390/biomedicines11020527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Diffuse midline glioma (DMG) is an aggressive brain tumour with high mortality and limited clinical therapeutic options. Although in vitro research has shown the effectiveness of medication, successful translation to the clinic remains elusive. A literature search highlighted the high variability and lack of standardisation in protocols applied for establishing the commonly used HSJD-DIPG-007 patient-derived xenograft (PDX) model, based on animal host, injection location, number of cells inoculated, volume, and suspension matrices. This study evaluated the HSJD-DIPG-007 PDX model with respect to its ability to mimic human disease progression for therapeutic testing in vivo. The mice received intracranial injections of HSJD-DIPG-007 cells suspended in either PBS or Matrigel. Survival, tumour growth, and metastases were assessed to evaluate differences in the suspension matrix used. After cell implantation, no severe side effects were observed. Additionally, no differences were detected in terms of survival or tumour growth between the two suspension groups. We observed delayed metastases in the Matrigel group, with a significant difference compared to mice with PBS-suspended cells. In conclusion, using Matrigel as a suspension matrix is a reliable method for establishing a DMG PDX mouse model, with delayed metastases formation and is a step forward to obtaining a standardised in vivo PDX model.
Collapse
|
5
|
Shan S, Chen J, Sun Y, Wang Y, Xia B, Tan H, Pan C, Gu G, Zhong J, Qing G, Zhang Y, Wang J, Wang Y, Wang Y, Zuo P, Xu C, Li F, Guo W, Xu L, Chen M, Fan Y, Zhang L, Liang X. Functionalized Macrophage Exosomes with Panobinostat and PPM1D-siRNA for Diffuse Intrinsic Pontine Gliomas Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200353. [PMID: 35585670 PMCID: PMC9313473 DOI: 10.1002/advs.202200353] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Indexed: 05/05/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare and fatal pediatric brain tumor. Mutation of p53-induced protein phosphatase 1 (PPM1D) in DIPG cells promotes tumor cell proliferation, and inhibition of PPM1D expression in DIPG cells with PPM1D mutation effectively reduces the proliferation activity of tumor cells. Panobinostat effectively kills DIPG tumor cells, but its systemic toxicity and low blood-brain barrier (BBB) permeability limits its application. In this paper, a nano drug delivery system based on functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for targeted therapy of DIPG with PPM1D mutation is prepared. The nano drug delivery system has higher drug delivery efficiency and better therapeutic effect than free drugs. In vivo and in vitro experimental results show that the nano drug delivery system can deliver panobinostat and siRNA across the BBB and achieve a targeted killing effect of DIPG tumor cells, resulting in the prolonged survival of orthotopic DIPG mice. This study provides new ideas for the delivery of small molecule drugs and gene drugs for DIPG therapy.
Collapse
Affiliation(s)
- Shaobo Shan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical Engineering & School of Engineering Medicine & Shenzhen Institute of Beihang UniversityBeihang UniversityBeijing100083P. R. China
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical Engineering & School of Engineering Medicine & Shenzhen Institute of Beihang UniversityBeihang UniversityBeijing100083P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Yu Sun
- Pediatric Epilepsy CenterPeking University First HospitalNo.1 Xi'an Men Street, Xicheng DistrictBeijing100034P. R. China
| | - Yongchao Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Hong Tan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Changcun Pan
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Guocan Gu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Jie Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Yufei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Yi Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Pengcheng Zuo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Cheng Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyCollege of Biomedical Engineering & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260P. R. China
| | - Lijun Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical Engineering & School of Engineering Medicine & Shenzhen Institute of Beihang UniversityBeihang UniversityBeijing100083P. R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical Engineering & School of Engineering Medicine & Shenzhen Institute of Beihang UniversityBeihang UniversityBeijing100083P. R. China
| | - Liwei Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical Engineering & School of Engineering Medicine & Shenzhen Institute of Beihang UniversityBeihang UniversityBeijing100083P. R. China
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100050P. R. China
- China National Clinical Research Center for Neurological Diseases (NCRC‐ND)Beijing100070P. R. China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| |
Collapse
|
6
|
McSwain LF, Parwani KK, Shahab SW, Hambardzumyan D, MacDonald TJ, Spangle JM, Kenney AM. Medulloblastoma and the DNA Damage Response. Front Oncol 2022; 12:903830. [PMID: 35747808 PMCID: PMC9209741 DOI: 10.3389/fonc.2022.903830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups – Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.
Collapse
Affiliation(s)
- Leon F. McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Shubin W. Shahab
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- *Correspondence: Anna Marie Kenney,
| |
Collapse
|
7
|
Khadka P, Reitman ZJ, Lu S, Buchan G, Gionet G, Dubois F, Carvalho DM, Shih J, Zhang S, Greenwald NF, Zack T, Shapira O, Pelton K, Hartley R, Bear H, Georgis Y, Jarmale S, Melanson R, Bonanno K, Schoolcraft K, Miller PG, Condurat AL, Gonzalez EM, Qian K, Morin E, Langhnoja J, Lupien LE, Rendo V, Digiacomo J, Wang D, Zhou K, Kumbhani R, Guerra Garcia ME, Sinai CE, Becker S, Schneider R, Vogelzang J, Krug K, Goodale A, Abid T, Kalani Z, Piccioni F, Beroukhim R, Persky NS, Root DE, Carcaboso AM, Ebert BL, Fuller C, Babur O, Kieran MW, Jones C, Keshishian H, Ligon KL, Carr SA, Phoenix TN, Bandopadhayay P. PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nat Commun 2022; 13:604. [PMID: 35105861 PMCID: PMC8807747 DOI: 10.1038/s41467-022-28198-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.
Collapse
Affiliation(s)
- Prasidda Khadka
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Biological and Biomedical Sciences PhD Program, Harvard University, Cambridge, MA, 02138, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University, Durham, NC, 27710, USA
| | - Sophie Lu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Graham Buchan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Gabrielle Gionet
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Frank Dubois
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Diana M Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Juliann Shih
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shu Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Noah F Greenwald
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Travis Zack
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ofer Shapira
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kristine Pelton
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Rachel Hartley
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Heather Bear
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Yohanna Georgis
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Spandana Jarmale
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Randy Melanson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin Bonanno
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kathleen Schoolcraft
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Peter G Miller
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexandra L Condurat
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Elizabeth M Gonzalez
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Kenin Qian
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Eric Morin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Jaldeep Langhnoja
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Leslie E Lupien
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Veronica Rendo
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jeromy Digiacomo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Dayle Wang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Kevin Zhou
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Rushil Kumbhani
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | | | - Claire E Sinai
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sarah Becker
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Rachel Schneider
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jayne Vogelzang
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tanaz Abid
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zohra Kalani
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Rameen Beroukhim
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nicole S Persky
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Angel M Carcaboso
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950, Spain
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Christine Fuller
- Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Ozgun Babur
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Bristol Myers Squibb, Boston, Devens, MA, 01434, USA
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | | | - Keith L Ligon
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA.
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA.
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Ni S, Chen R, Hu K. Experimental murine models of brainstem gliomas. Drug Discov Today 2021; 27:1218-1235. [PMID: 34954326 DOI: 10.1016/j.drudis.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
As an intractable central nervous system (CNS) tumor, brainstem gliomas (BGs) are one of the leading causes of pediatric death by brain tumors. Owing to the risk of surgical resection and the little improvement in survival time after radiotherapy and chemotherapy, there is an urgent need to find reliable model systems to better understand the regional pathogenesis of the brainstem and improve treatment strategies. In this review, we outline the evolution of BG murine models, and discuss both their advantages and limitations in drug discovery.
Collapse
Affiliation(s)
- Shuting Ni
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene 2021; 41:461-475. [PMID: 34759345 PMCID: PMC8782719 DOI: 10.1038/s41388-021-02102-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Diffuse midline glioma (DMG) is a deadly pediatric and adolescent central nervous system (CNS) tumor localized along the midline structures of the brain atop the spinal cord. With a median overall survival (OS) of just 9–11-months, DMG is characterized by global hypomethylation of histone H3 at lysine 27 (H3K27me3), driven by recurring somatic mutations in H3 genes including, HIST1H3B/C (H3.1K27M) or H3F3A (H3.3K27M), or through overexpression of EZHIP in patients harboring wildtype H3. The recent World Health Organization’s 5th Classification of CNS Tumors now designates DMG as, ‘H3 K27-altered’, suggesting that global H3K27me3 hypomethylation is a ubiquitous feature of DMG and drives devastating transcriptional programs for which there are no treatments. H3-alterations co-segregate with various other somatic driver mutations, highlighting the high-level of intertumoral heterogeneity of DMG. Furthermore, DMG is also characterized by very high-level intratumoral diversity with tumors harboring multiple subclones within each primary tumor. Each subclone contains their own combinations of driver and passenger lesions that continually evolve, making precision-based medicine challenging to successful execute. Whilst the intertumoral heterogeneity of DMG has been extensively investigated, this is yet to translate to an increase in patient survival. Conversely, our understanding of the non-genomic factors that drive the rapid growth and fatal nature of DMG, including endogenous and exogenous microenvironmental influences, neurological cues, and the posttranscriptional and posttranslational architecture of DMG remains enigmatic or at best, immature. However, these factors are likely to play a significant role in the complex biological sequelae that drives the disease. Here we summarize the heterogeneity of DMG and emphasize how analysis of the posttranslational architecture may improve treatment paradigms. We describe factors that contribute to treatment response and disease progression, as well as highlight the potential for pharmaco-proteogenomics (i.e., the integration of genomics, proteomics and pharmacology) in the management of this uniformly fatal cancer.
Collapse
|
10
|
Xu C, Liu H, Pirozzi CJ, Chen LH, Greer PK, Diplas BH, Zhang L, Waitkus MS, He Y, Yan H. TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist. Acta Neuropathol Commun 2021; 9:178. [PMID: 34732238 PMCID: PMC8565061 DOI: 10.1186/s40478-021-01270-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are high-grade tumors of the brainstem that often occur in children, with a median overall survival of less than one year. Given the fact that DIPGs are resistant to chemotherapy and are not amenable to surgical resection, it is imperative to develop new therapeutic strategies for this deadly disease. The p53 pathway is dysregulated by TP53 (~ 60%) or PPM1D gain-of-function mutations (~ 30%) in DIPG cases. PPM1D gain-of-function mutations suppress p53 activity and result in DIPG tumorigenesis. While MDM2 is a major negative regulator of p53, the efficacy of MDM2 inhibitor has not been tested in DIPG preclinical models. In this study, we performed a comprehensive validation of MDM2 inhibitor RG7388 in patient-derived DIPG cell lines established from both TP53 wild-type/PPM1D-mutant and TP53 mutant/PPM1D wild-type tumors, as well in TP53 knockout isogenic DIPG cell line models. RG7388 selectively inhibited the proliferation of the TP53 wild-type/PPM1D mutant DIPG cell lines in a dose- and time-dependent manner. The anti-proliferative effects were p53-dependent. RNA-Seq data showed that differential gene expression induced by RG7388 treatment was enriched in the p53 pathways. RG7388 reactivated the p53 pathway and induced apoptosis as well as G1 arrest. In vivo, RG7388 was able to reach the brainstem and exerted therapeutic efficacy in an orthotopic DIPG xenograft model. Hence, this study demonstrates the pre-clinical efficacy potential of RG7388 in the TP53 wild-type/PPM1D mutant DIPG subgroup and may provide critical insight on the design of future clinical trials applying this drug in DIPG patients.
Collapse
|
11
|
Entz-Werlé N, Poidevin L, Nazarov PV, Poch O, Lhermitte B, Chenard MP, Burckel H, Guérin E, Fuchs Q, Castel D, Noel G, Choulier L, Dontenwill M, Van Dyck E. A DNA Repair and Cell Cycle Gene Expression Signature in Pediatric High-Grade Gliomas: Prognostic and Therapeutic Value. Cancers (Basel) 2021; 13:cancers13092252. [PMID: 34067180 PMCID: PMC8125831 DOI: 10.3390/cancers13092252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, displaying frequent resistance to standard therapies. Profiling DNA repair and cell cycle gene expression has recently been proposed as a strategy to classify adult glioblastomas. To improve our understanding of the DNA damage response pathways that operate in pHGGs and the vulnerabilities that these pathways might expose, we sought to identify and characterize a specific DNA repair and cell-cycle gene expression signature of pHGGs. METHODS Transcriptomic analyses were performed to identify a DNA repair and cell-cycle gene expression signature able to discriminate pHGGs (n = 6) from low-grade gliomas (n = 10). This signature was compared to related signatures already established. We used the pHGG signature to explore already transcriptomic datasets of DIPGs and sus-tentorial pHGGs. Finally, we examined the expression of key proteins of the pHGG signature in 21 pHGG diagnostic samples and nine paired relapses. Functional inhibition of one DNA repair factor was carried out in four patients who derived H3.3 K27M mutant cell lines. RESULTS We identified a 28-gene expression signature of DNA repair and cell cycle that clustered pHGGs cohorts, in particular sus-tentorial locations, in two groups. Differential protein expression levels of PARP1 and XRCC1 were associated to TP53 mutations and TOP2A amplification and linked significantly to the more radioresistant pHGGs displaying the worst outcome. Using patient-derived cell lines, we showed that the PARP-1/XRCC1 expression balance might be correlated with resistance to PARP1 inhibition. CONCLUSION We provide evidence that PARP1 overexpression, associated to XRCC1 expression, TP53 mutations, and TOP2A amplification, is a new theranostic and potential therapeutic target.
Collapse
Affiliation(s)
- Natacha Entz-Werlé
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France; (Q.F.); (L.C.); (M.D.)
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
- Correspondence: (N.E.-W.); (E.V.D.); Tel.: +33-3-88-12-83-96 (N.E.-W.); +352-26970-239 (E.V.D.)
| | - Laetitia Poidevin
- ICube-UMR7357, CSTB, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France; (L.P.); (O.P.)
| | - Petr V. Nazarov
- Multiomics Data Science Research Group, Quantitative Biology Unit, Department of Oncology and Bioinformatics Platform, Luxembourg Institute of Health, L-1445 Luxembourg, Luxembourg;
| | - Olivier Poch
- ICube-UMR7357, CSTB, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France; (L.P.); (O.P.)
| | - Benoit Lhermitte
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (B.L.); (M.P.C.)
| | - Marie Pierre Chenard
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (B.L.); (M.P.C.)
- Centre de Ressources Biologiques, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobioly Laboratory, ICANS (Institut de Cancérologie Strasbourg Europe), University of Strasbourg, Unicancer, 67200 Strasbourg, France; (H.B.); (G.N.)
| | - Eric Guérin
- Oncobiology Platform, Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Quentin Fuchs
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France; (Q.F.); (L.C.); (M.D.)
| | - David Castel
- Team Genomics & Oncogenesis of Pediatric Brain Tumors, Inserm U981, Gustave Roussy Institute, 94805 Villejuif, France;
| | - Georges Noel
- Paul Strauss Comprehensive Cancer Center, Radiobioly Laboratory, ICANS (Institut de Cancérologie Strasbourg Europe), University of Strasbourg, Unicancer, 67200 Strasbourg, France; (H.B.); (G.N.)
| | - Laurence Choulier
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France; (Q.F.); (L.C.); (M.D.)
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France; (Q.F.); (L.C.); (M.D.)
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Correspondence: (N.E.-W.); (E.V.D.); Tel.: +33-3-88-12-83-96 (N.E.-W.); +352-26970-239 (E.V.D.)
| |
Collapse
|
12
|
Metselaar DS, du Chatinier A, Stuiver I, Kaspers GJL, Hulleman E. Radiosensitization in Pediatric High-Grade Glioma: Targets, Resistance and Developments. Front Oncol 2021; 11:662209. [PMID: 33869066 PMCID: PMC8047603 DOI: 10.3389/fonc.2021.662209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death in children. These epigenetically dysregulated tumors often harbor mutations in genes encoding histone 3, which contributes to a stem cell-like, therapy-resistant phenotype. Furthermore, pHGG are characterized by a diffuse growth pattern, which, together with their delicate location, makes complete surgical resection often impossible. Radiation therapy (RT) is part of the standard therapy against pHGG and generally the only modality, apart from surgery, to provide symptom relief and a delay in tumor progression. However, as a single treatment modality, RT still offers no chance for a cure. As with most therapeutic approaches, irradiated cancer cells often acquire resistance mechanisms that permit survival or stimulate regrowth after treatment, thereby limiting the efficacy of RT. Various preclinical studies have investigated radiosensitizers in pHGG models, without leading to an improved clinical outcome for these patients. However, our recently improved molecular understanding of pHGG generates new opportunities to (re-)evaluate radiosensitizers in these malignancies. Furthermore, the use of radio-enhancing agents has several benefits in pHGG compared to other cancers, which will be discussed here. This review provides an overview and a critical evaluation of the radiosensitization strategies that have been studied to date in pHGG, thereby providing a framework for improving radiosensitivity of these rapidly fatal brain tumors.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Iris Stuiver
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
13
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
14
|
Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers (Basel) 2020; 12:cancers12102813. [PMID: 33007840 PMCID: PMC7600397 DOI: 10.3390/cancers12102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant gliomas (MG) are among the most prevalent and lethal primary intrinsic brain tumors. Although radiotherapy (RT) is the most effective nonsurgical therapy, recurrence is universal. Dysregulated DNA damage response pathway (DDR) signaling, rampant genomic instability, and radio-resistance are among the hallmarks of MGs, with current therapies only offering palliation. A subgroup of pediatric high-grade gliomas (pHGG) is characterized by H3K27M mutation, which drives global loss of di- and trimethylation of histone H3K27. Here, we review the most recent literature and discuss the key studies dissecting the molecular biology of H3K27M-mutated gliomas in children. We speculate that the aberrant activation and/or deactivation of some of the key components of DDR may be synthetically lethal to H3K27M mutation and thus can open novel avenues for effective therapeutic interventions for patients suffering from this deadly disease.
Collapse
|
15
|
Graham MS, Mellinghoff IK. Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. Int J Mol Sci 2020; 21:E7193. [PMID: 33003625 PMCID: PMC7582376 DOI: 10.3390/ijms21197193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is the leading cause of cancer death in children. Despite histologic similarities, it has recently become apparent that this disease is molecularly distinct from its adult counterpart. Specific hallmark oncogenic histone mutations within pediatric malignant gliomas divide these tumors into subgroups with different neuroanatomic and chronologic predilections. In this review, we will summarize the characteristic molecular alterations of pediatric high-grade gliomas, with a focus on how preclinical models of these alterations have furthered our understanding of their oncogenicity as well as their potential impact on developing targeted therapies for this devastating disease.
Collapse
Affiliation(s)
- Maya S. Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ingo K. Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
16
|
Li B, Hu J, He D, Chen Q, Liu S, Zhu X, Yu M. PPM1D Knockdown Suppresses Cell Proliferation, Promotes Cell Apoptosis, and Activates p38 MAPK/p53 Signaling Pathway in Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820942312. [PMID: 32691668 PMCID: PMC7375723 DOI: 10.1177/1533033820942312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study was to explore the effect of protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown on proliferation and apoptosis as well as p38 MAPK/p53 signaling pathway in acute myeloid leukemia. METHODS The expression of protein phosphatase, Mg2+/Mn2+ dependent 1D was detected in acute myeloid leukemia cell lines including SKM-1, KG-1, AML-193, and THP-1 cells, and normal bone marrow mononuclear cells isolated from healthy donors. The knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D was conducted by transfecting small interfering RNA into AML-193 cells and KG-1 cells. RESULTS The relative messenger RNA/protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were higher in SKM-1, KG-1, AML-193, and THP-1 cells compared with control cells (normal bone marrow mononuclear cells). After transfecting protein phosphatase, Mg2+/Mn2+ dependent 1D small interfering RNA into AML-193 cells and KG-1 cells, both messenger RNA and protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were significantly reduced, indicating the successful transfection. Most importantly, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D suppressed cell proliferation and promoted cell apoptosis in AML-193 cells and KG-1 cells. In addition, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D enhanced the expressions of p-p38 and p53 in AML-193 cells and KG-1 cells. The above observation suggested that protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown suppressed cell proliferation, promoted cell apoptosis, and activated p38 MAPK/p53 signaling pathway in acute myeloid leukemia cells. CONCLUSION Protein phosphatase, Mg2+/Mn2+ dependent 1D is implicated in acute myeloid leukemia carcinogenesis, which illuminates its potential role as a treatment target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Bin Li
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Jie Hu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Di He
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Suna Liu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Xiaoling Zhu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Meijia Yu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
17
|
Xia W, Zhu J, Tang Y, Wang X, Wei X, Zheng X, Hou M, Li S. PD-L1 Inhibitor Regulates the miR-33a-5p/PTEN Signaling Pathway and Can Be Targeted to Sensitize Glioblastomas to Radiation. Front Oncol 2020; 10:821. [PMID: 32537433 PMCID: PMC7266984 DOI: 10.3389/fonc.2020.00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Ionizing radiation (IR) is a standard treatment for GBM patients and results in DNA damage. However, the clinical efficacy of IR is limited due to therapeutic resistance. The programmed death ligand 1 (PD-L1) blockade has a shown the potential to increase the efficacy of radiotherapy by inhibiting DNA damage and repair responses. The miR-33a-5p is an essential microRNA that promotes GBM growth and self-renewal. In this study, we investigated whether a PD-L1 inhibitor (a small molecule inhibitor) exerted radio-sensitive effects to impart an anti-tumor function in GBM cells by modulating miR-33a-5p. U87 MG cells and U251 cells were pretreated with PD-L1 inhibitor. The PD-L1 inhibitor-induced radio-sensitivity in these cells was assessed by assaying cellular apoptosis, clonogenic survival assays, and migration. TargetScan and luciferase assay showed that miR-33a-5p targeted the phosphatase and tensin homolog (PTEN) 3′ untranslated region. The expression level of PTEN was measured by western blotting, and was also silenced using small interfering RNAs. The levels of DNA damage following radiation was measured by the presence of γ-H2AX foci, cell cycle, and the mRNA of the DNA damage-related genes, BRCA1, NBS1, RAD50, and MRE11. Our results demonstrated that the PD-L1 inhibitor significantly decreased the expression of the target gene, miR-33a-5p. In addition, pretreatment of U87 MG and U251 cells with the PD-L1 inhibitor increased radio-sensitivity, as indicated by increased apoptosis, while decreased survival and migration of GBM cells. Mir-33a-5p overexpression or silencing PTEN in U87 MG and U251 cells significantly attenuated PD-L1 radiosensitive effect. Additionally, PD-L1 inhibitor treatment suppressed the expression of the DNA damage response-related genes, BRCA1, NBS1, RAD50, and MRE11. Our results demonstrated a novel role for the PD-L1 inhibitor in inducing radio- sensitivity in GBM cells, where inhibiting miR-33a-5p, leading to PTEN activated, and inducing DNA damage was crucial for antitumor immunotherapies to treat GBM.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuan Zheng
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
19
|
Wang Z, Xu C, Diplas BH, Moure CJ, Chen CPJ, Chen LH, Du C, Zhu H, Greer PK, Zhang L, He Y, Waitkus MS, Yan H. Targeting Mutant PPM1D Sensitizes Diffuse Intrinsic Pontine Glioma Cells to the PARP Inhibitor Olaparib. Mol Cancer Res 2020; 18:968-980. [PMID: 32229503 DOI: 10.1158/1541-7786.mcr-19-0507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invariably fatal brain tumor occurring predominantly in children. Up to 90% of pediatric DIPGs harbor a somatic heterozygous mutation resulting in the replacement of lysine 27 with methionine (K27M) in genes encoding histone H3.3 (H3F3A, 65%) or H3.1 (HIST1H3B, 25%). Several studies have also identified recurrent truncating mutations in the gene encoding protein phosphatase 1D, PPM1D, in 9%-23% of DIPGs. Here, we sought to investigate the therapeutic potential of targeting PPM1D, alone or in combination with inhibitors targeting specific components of DNA damage response pathways in patient-derived DIPG cell lines. We found that GSK2830371, an allosteric PPM1D inhibitor, suppressed the proliferation of PPM1D-mutant, but not PPM1D wild-type DIPG cells. We further observed that PPM1D inhibition sensitized PPM1D-mutant DIPG cells to PARP inhibitor (PARPi) treatment. Mechanistically, combined PPM1D and PARP inhibition show synergistic effects on suppressing a p53-dependent RAD51 expression and the formation of RAD51 nuclear foci, possibly leading to impaired homologous recombination (HR)-mediated DNA repair in PPM1D-mutant DIPG cells. Collectively, our findings reveal the potential role of the PPM1D-p53 signaling axis in the regulation of HR-mediated DNA repair and provide preclinical evidence demonstrating that combined inhibition of PPM1D and PARP1/2 may be a promising therapeutic combination for targeting PPM1D-mutant DIPG tumors. IMPLICATIONS: The findings support the use of PARPi in combination with PPM1D inhibition against PPM1D-mutant DIPGs.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Cheng Xu
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Bill H Diplas
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Chin-Pu Jason Chen
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Lee H Chen
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Changzheng Du
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Huishan Zhu
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Paula K Greer
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiping He
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Matthew S Waitkus
- Department of Pathology, Duke University, Durham, North Carolina. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- Department of Pathology, Duke University, Durham, North Carolina. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
20
|
Saliba J, Belsky N, Patel A, Thomas K, Carroll WL, Pierro J. From Favorable Histology to Relapse: The Clonal Evolution of a Wilms Tumor. Pediatr Dev Pathol 2020; 23:167-171. [PMID: 31526128 DOI: 10.1177/1093526619875919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Favorable histology (FH) Wilms tumor (WT) is one of the most curable of all human cancers, yet a small minority of patients fail treatment. The underlying biological pathways that lead to therapy resistance are unknown. We report a case of initially unresectable, FH WT which revealed limited necrosis and persistent blastemal predominant histology following neoadjuvant chemotherapy. Despite intensification of therapy and whole abdominal radiation, the patient relapsed and succumbed to her disease. In an effort to discover candidate drivers of drug resistance, whole exome sequencing and copy number analysis were performed on samples from all 3 tumor specimens. Sequencing results revealed outgrowth of clones with a dramatically different genetic landscape including dominant mutations that could explain therapy evasion, some of which have not been previously reported in WT. Our results implicate PPM1D, previously shown to be associated with drug resistance in other tumors, as the major driver of treatment failure.
Collapse
Affiliation(s)
- Jason Saliba
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Natasha Belsky
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Ami Patel
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Kristen Thomas
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - William L Carroll
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pediatric Hematology/Oncology, New York University School of Medicine, New York, New York
| | - Joanna Pierro
- Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pediatric Hematology/Oncology, New York University School of Medicine, New York, New York
| |
Collapse
|
21
|
Mendez FM, Núñez FJ, Garcia-Fabiani MB, Haase S, Carney S, Gauss JC, Becher OJ, Lowenstein PR, Castro MG. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol 2020; 22:195-206. [PMID: 32078691 PMCID: PMC7032633 DOI: 10.1093/neuonc/noz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.
Collapse
Affiliation(s)
- Flor M Mendez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria B Garcia-Fabiani
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Ann & Robert Lurie Children’s Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, Illinois
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|