1
|
Bertucci A, Dufour O, Appay R, Harlay V, Ducray F, Bronnimann C, Djelad A, Cohen‐Jonathan Moyal E, Campone M, Langlois O, Ducloie M, Vauleon E, Younan N, Desenclos C, Ramirez C, Touat M, Idbaih A, Bequet C, Figarella‐Branger D, Dehais C, Chinot O, Tabouret E. Characteristics, outcome, and prognostic factors of young patients with central nervous system World Health Organization grade 3 oligodendrogliomas IDH-mutant and 1p/19q codeleted: A French POLA network study. Cancer 2025; 131:e35814. [PMID: 40159303 PMCID: PMC11955080 DOI: 10.1002/cncr.35814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Brain tumors represent one of the main causes of cancer-related mortality in young patients. Among them, oligodendrogliomas (OG) are adult-type diffuse gliomas with the best prognosis. Nevertheless, characterization of these tumors in the young population remains poorly documented. Our objective was to characterize the population of young adults under 40 years of age with grade 3 OG in the POLA cohort. METHODS Clinical data prospectively collected for all patients registered with grade 3 OG between April 2009 and August 2021 were extracted from the national POLA database. This study compared the patient subgroup <40 years of age to the one >40 years of age. RESULTS The authors included 111 patients <40 years old and 363 patients ≥40 years old. Treatment received did not differ significantly between the two subgroups. Temporal location was more frequent in older patients (p = .009). Patients <40 years old presented more often seizure as initial symptom (p = .003). They had less frequent chromosome 9p loss (p < .001) and less CDKN2A homozygous deletion (p = .024). Median progression-free survival (PFS) was 123 months (range, 86-not reached [NR]) versus 88 months (range, 67-117) (p = .082) and median overall survival (OS) was not reached (range, 147-NR) versus 163 months (range, 137-NR) (p < .001) in younger and older subgroups, respectively. In multivariate analysis, complete or subtotal resection (p = .014) and seizure at diagnosis (p = .032) were associated with better OS. CONCLUSION Young patients with grade 3 OG have distinct clinical presentation, molecular features, and outcomes compared to the older patients.
Collapse
Affiliation(s)
- Alexandre Bertucci
- Aix‐Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME TeamMarseilleFrance
- APHMCHU Timone, Service de NeurooncologieMarseilleFrance
| | - Ondine Dufour
- APHMCHU Timone, Service de NeurooncologieMarseilleFrance
| | - Romain Appay
- Aix‐Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME TeamMarseilleFrance
- APHMCHU Timone, Service d’AnatomopathologieMarseilleFrance
| | - Vincent Harlay
- APHMCHU Timone, Service de NeurooncologieMarseilleFrance
| | - François Ducray
- Hospices Civils de Lyon, Hôpital Neurologique, Neuro‐oncology Department, Department of Cancer Cell Plasticity, Cancer Research Center of LyonClaude Bernard UniversityLyonFrance
| | | | | | | | - Mario Campone
- Medical Oncology DepartmentCentre René GauducheauSaint‐HerblainFrance
| | | | | | - Elodie Vauleon
- Centre Eugène Marquis, Medical OncologyINSERMUniversity of RennesRennesFrance
| | | | | | - Carole Ramirez
- Neurology DepartmentHôpital Nord, CHU Saint‐ÉtienneSaint‐Priest en JarezFrance
| | - Mehdi Touat
- Sorbonne UniversitéInsermCNRSUMR S 1127Institut du CerveauICMAP‐HPHôpitaux Universitaires La Pitié Salpêtrière‐Charles FoixService de Neuro‐oncologieParisFrance
| | - Ahmed Idbaih
- Sorbonne UniversitéInsermCNRSUMR S 1127Institut du CerveauICMAP‐HPHôpitaux Universitaires La Pitié Salpêtrière‐Charles FoixService de Neuro‐oncologieParisFrance
| | - Céline Bequet
- APHMCHU Timone, Service de NeurooncologieMarseilleFrance
- Aix‐Marseille UnivRéseau Préclinique et Translationnel de Recherche en Neuro‐oncologiePlateforme PETRA"TECH" ou Plateforme PE"TRANSLA"MarseilleFrance
| | - Dominique Figarella‐Branger
- Aix‐Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME TeamMarseilleFrance
- Aix‐Marseille UnivRéseau Préclinique et Translationnel de Recherche en Neuro‐oncologiePlateforme PETRA"TECH" ou Plateforme PE"TRANSLA"MarseilleFrance
| | - Caroline Dehais
- Sorbonne UniversitéInsermCNRSUMR S 1127Institut du CerveauICMAP‐HPHôpitaux Universitaires La Pitié Salpêtrière‐Charles FoixService de Neuro‐oncologieParisFrance
| | - Olivier Chinot
- Aix‐Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME TeamMarseilleFrance
- APHMCHU Timone, Service de NeurooncologieMarseilleFrance
| | - Emeline Tabouret
- Aix‐Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME TeamMarseilleFrance
- APHMCHU Timone, Service de NeurooncologieMarseilleFrance
- Aix‐Marseille UnivRéseau Préclinique et Translationnel de Recherche en Neuro‐oncologiePlateforme PETRA"TECH" ou Plateforme PE"TRANSLA"MarseilleFrance
| | | |
Collapse
|
2
|
Onishi S, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Khairunnisa NI, Go Y, Takeshima Y, Horie N. Prognostic value of immunohistochemical staining for H3K27me3 and EZH2 in astrocytoma, IDH-mutant. J Neurooncol 2025; 172:185-194. [PMID: 39636550 PMCID: PMC11832638 DOI: 10.1007/s11060-024-04897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND H3 histone 27 lysine (H3K27) trimethylation (H3K27me3), which is catalyzed by enhancer of zeste homolog 2 (EZH2), regulates gene expression through epigenetic mechanisms. H3K27me3 is used as a diagnostic marker for diffuse midline glioma and as a surrogate marker to distinguish posterior fossa ependymoma A and B. However, the clinical significance of the EZH2-H3K27me3 axis in astrocytoma, IDH-mutant has not been reported, prompting this investigation. METHODS Thirty-three patients with astrocytoma, IDH-mutant treated at our institute were included in this study. Immunohistochemistry (IHC) targeting H3K27me3, H3K27M, EZH2, EZH inhibitory protein, IDH1-R132H, p53, ATRX, Ki-67, and MTAP was performed. Kaplan-Meier analysis and Cox regression analysis were performed to analyze the correlations of overall survival (OS) and progression-free survival (PFS) with various factors, including age, World Health Organization (WHO) grade, the extent of resection, and immunohistochemical results. RESULTS The mean patient age was 40.6 ± 11.0 years. IHC for H3K27me3 was positive in 19 patients and negative in 14 patients. The WHO grade and Ki-67 index were significantly higher in the H3K27me3-positive group (p = 0.004 and p = 0.024, respectively). OS and PFS were significantly shorter in the H3K27me3-positive group (p = 0.002 and p = 0.026, respectively). Furthermore, the H3K27me3 and EZH2 double-positive group was associated with a higher WHO grade and higher Ki-67 index (p = 0.001 and p = 0.024, respectively). In the analysis of patients with WHO grade 2/3, double positivity for H3K27me3 and EZH2 was linked to significantly shorter OS and PFS (p = 0.0053 and p = 0.0048, respectively). CONCLUSION Positivity for H3K27me3, especially double positivity for H3K27me3 and EZH2, could be a poor prognostic factor for astrocytoma, IDH-mutant. These results suggest the utility of H3K27me3 and EZH2 as candidate markers for estimating the malignancy of astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Novita Ikbar Khairunnisa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
3
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Bartoszewska-Kubiak A, Serafin Z. Diffusion imaging in gliomas: how ADC values forecast glioma genetics. Pol J Radiol 2025; 90:e103-e113. [PMID: 40196311 PMCID: PMC11973703 DOI: 10.5114/pjr/200967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose This study investigates the relationship between diffusion-weighted imaging (DWI) and mean apparent diffusion coefficient (ADC) values in predicting the genetic and molecular features of gliomas. The goal is to enhance non-invasive diagnostic methods and support personalised treatment strategies by clarifying the association between imaging biomarkers and tumour genotypes. Material and methods A total of 91 glioma patients treated between August 2023 and March 2024 were included in the analysis. All patients underwent preoperative magnetic resonance imaging (MRI), including DWI, and had available histopathological and genetic test results. Clinical data, tumour characteristics, and genetic markers such as IDH1 mutation, MGMT promoter methylation, EGFR amplification, TERT pathogenic variant, and CDKN2A deletion were collected. Statistical analysis was performed to identify correlations between ADC values, MRI perfusion parameters, and genetic characteristics. Results Significant associations were found between lower ADC values and aggressive tumour features, including IDH1-wildtype, MGMT unmethylated status, TERT pathogenic variant, and EGFR amplification. Additionally, distinct ADC patterns were observed in gliomas with CDKN2A, TP53, and PTEN gene deletions. These findings were further supported by contrast enhancement and other MRI parameters, indicating their role in tumour characterisation. Conclusions DWI and ADC measurements demonstrate strong potential as non-invasive tools for predicting glioma genetics. These imaging biomarkers can aid in tumour characterisation and provide valuable insights for guiding personalised treatment strategies.
Collapse
Affiliation(s)
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland
- Department of Neurosurgery, 10 Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10 Military Clinical Hospital and Polyclinic, Bydgoszcz, Poland
| | - Alicja Bartoszewska-Kubiak
- Laboratory of Clinical Genetics and Molecular Pathology, Department of Medical Analytics, 10 Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Zbigniew Serafin
- Faculty of Medicine, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
4
|
Ozeki Y, Honda-Kitahara M, Yanagisawa S, Takahashi M, Ohno M, Miyakita Y, Kikuchi M, Nakano T, Hosoya T, Sugino H, Satomi K, Yoshida A, Igaki H, Kubo Y, Ichimura K, Suzuki H, Masutomi K, Kondo A, Narita Y. Early progressive disease within 2 years in isocitrate dehydrogenase (IDH)-mutant astrocytoma may indicate radiation necrosis. Jpn J Clin Oncol 2025; 55:106-112. [PMID: 39660448 DOI: 10.1093/jjco/hyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Isocitrate dehydrogenase-mutant astrocytoma without cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion typically follows a slow clinical course. However, some cases show early progression on magnetic resonance imaging, and these characteristics remain under-reported. This study aimed to elucidate the characteristics of isocitrate dehydrogenase-mutant astrocytoma showing early progression on magnetic resonance imaging. METHODS This retrospective study included 52 cases of primary astrocytoma, isocitrate dehydrogenase-mutant, Central Nervous System (CNS) 5 World Health Organization grade 2-3 according to the World Health Organization 2021 classification. Patients underwent surgery followed by radiation therapy and/or chemotherapy at our institution from 2006 to 2019. Progression-free survival and overall survival were analyzed. RESULTS There were 24 and 28 grade 2 and grade 3 astrocytomas, respectively. The median patient age was 38 years. Forty-three patients underwent radiotherapy. Progression was diagnosed by magnetic resonance imaging in 22 patients with initial radiotherapy. Thirteen of the 22 patients underwent surgery, and seven of the 13 patients received surgery within 24 months of the initial radiotherapy. Histopathologically, radiation necrosis was confirmed in four of these seven patients (57.1%). The true progression-free survival rate, excluding radiation necrosis, at 2 years after surgery was 91.3% for grade 2 astrocytoma and 88.5% for grade 3 astrocytoma. The 5-year overall survival rate was 85.7% for grade 2 tumours and 76.4% for grade 3 tumours. CONCLUSIONS Radiation necrosis should be considered in cases showing early progression of isocitrate dehydrogenase-mutant astrocytoma, and a second surgery should be performed to confirm true recurrence or radiation necrosis. Astrocytomas with telomerase reverse-transcriptase promoter mutations may relapse relatively early and should be followed up with caution.
Collapse
Affiliation(s)
- Yukie Ozeki
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Neurosurgery, Saitama Cancer Center, Saitama, Japan
| | - Mai Honda-Kitahara
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Miu Kikuchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomohiro Hosoya
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Kubo
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Rincon-Torroella J, Rakovec M, Kalluri AL, Jiang K, Weber-Levine C, Parker M, Raj D, Materi J, Sepehri S, Ferres A, Schreck KC, Aldecoa I, Lucas CHG, Sair HI, Redmond KJ, Holdhoff M, Weingart J, Brem H, Sánchez JJG, Ye X, Bettegowda C. Impact of upfront adjuvant chemoradiation on survival in patients with molecularly defined oligodendroglioma: the benefits of PCV over TMZ. J Neurooncol 2025; 171:35-45. [PMID: 39382617 DOI: 10.1007/s11060-024-04829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Oligodendroglioma is an adult-type diffuse glioma defined by 1p/19q codeletion and IDH1/2 mutation. Treatment includes surgery followed by observation alone in select low-grade tumors, or combination radiation and chemotherapy with procarbazine, lomustine, and vincristine (PCV) or temozolomide (TMZ). While prospective studies investigating treatments for molecularly defined oligodendrogliomas are ongoing, this retrospective study analyzes the relationship between adjuvant regimens and progression-free survival (PFS). METHODS Adults with IDH-mutant, 1p/19q codeleted oligodendroglioma (WHO grade 2 or 3) who underwent surgery between 2005 and 2021 were identified. Clinical data, disease characteristics, treatment, and outcomes were collected. RESULTS A total of 207 patients with grade 2 and 70 with grade 3 oligodendrogliomas were identified. Median (IQR) follow-up was 57 (87) months. Patients with grade 3 tumors who received adjuvant radiation and PCV had longer median PFS (> 110 months) than patients who received radiation and TMZ (52 months, p = 0.008) or no adjuvant chemoradiation (83 months, p = 0.03), which was not seen in grade 2 tumors (p = 0.8). In multivariate analysis, patients who received PCV chemotherapy (Relative Risk [95% CI] = 0.24[0.05-1.08] and radiotherapy (0.46[0.21-1.02]) trended towards longer PFS, independently of grade. CONCLUSION Adjuvant radiation and PCV are associated with improved PFS over radiation with TMZ in patients with grade 3 molecularly defined oligodendrogliomas, and all-grade patients treated with PCV trended towards decreased risk of recurrence and progression. These results highlight the importance of ongoing clinical trials investigating these treatments.
Collapse
Affiliation(s)
- Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona, Barcelona, Spain
- Programa de Doctorat de Medicina i Recerca Translacional, Universitat de Barcelona, Barcelona, Spain
| | - Maureen Rakovec
- Department of Neurosurgery, University of Maryland Medical Medical Center, Baltimore, USA
| | - Anita L Kalluri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Megan Parker
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Josh Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Sadra Sepehri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Abel Ferres
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Karisa C Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobank Hospital Clinic Barcelona-FCRB/ IDIBAPS, Barcelona, Spain
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haris I Sair
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Josep J González Sánchez
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building, Room 118, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Wetzel EA, Nohman AI, Hsieh AL, Reuss D, Unterberg AW, Eyüpoglu IY, Hua L, Youssef G, Wen PY, Cahill DP, Jungk C, Juratli TA, Miller JJ. A multi-center, clinical analysis of IDH-mutant gliomas, WHO Grade 4: implications for prognosis and clinical trial design. J Neurooncol 2025; 171:373-381. [PMID: 39432026 PMCID: PMC11695381 DOI: 10.1007/s11060-024-04852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Mutations in the Isocitrate Dehydrogenase (IDH) genes, IDH1 or IDH2, define a group of adult diffuse gliomas associated with a younger age at diagnosis and better prognosis than IDH wild-type glioblastoma. Within IDH mutant gliomas, a small fraction of astrocytic tumors present with grade 4 histologic features and poor prognosis. In molecular studies, homozygous deletion of CDKN2A/B is independently predictive of poor prognosis and short survival. As a consequence, 2021 WHO classification now also recognizes this molecular feature, CDKN2A/B deletion, as sufficient for classifying an astrocytoma as IDH-mutant, WHO Grade 4, regardless of histological grading. Here, we investigate outcomes of patients with WHO Grade 4 IDH-mutant astrocytoma both with and without CDKN2A/B deletion, to compare these groups and evaluate clinical and radiographic factors that contribute to survival. METHODS We retrospectively identified 79 patients with IDH-mutant astrocytoma with CDKN2A/B deletion detected at initial diagnosis across five international institutions as well as a comparison group of 51 patients with IDH-mutant, astrocytoma, histologically Grade 4 without detectable CDKN2A/B deletion. We assembled clinical and radiographic features for all patients. RESULTS We find that CDKN2A/B deletion was associated with significantly worse overall survival (OS; p = 0.0004) and progression-free survival (PFS; p = 0.0026), with median OS of 5.0 years and PFS of 3.0 years, compared to 10.1 and 5.0 years for tumors with a grade 4 designation based only on histologic criteria. Multivariate analysis confirmed CDKN2A/B deletion as a strong negative prognosticator for both OS (HR = 3.51, p < 0.0001) and PFS (HR = 2.35, p = 0.00095). In addition, in tumors with CDKN2A/B deletion, preoperative contrast enhancement is a significant predictor of worse OS (HR 2.19, 95% CI 1.22-3.93, p = 0.0090) and PFS (HR = 1.74, 95% CI = 1.02-2.97, p = 0.0420). CONCLUSIONS These findings underscore the severe prognostic impact of CDKN2A/B deletion in IDH-mutant astrocytomas and highlight the need for further refinement of tumor prognostic categorization. Our results provide a key benchmark of baseline patient outcomes for therapeutic trials, underscoring the importance of CDKN2A/B status assessment, in addition to histologic grading, in clinical trial design and therapeutic decision-making for IDH-mutant astrocytoma patients.
Collapse
Affiliation(s)
- Ethan A Wetzel
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin I Nohman
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Annie L Hsieh
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Ilker Y Eyüpoglu
- Faculty of Medicine, Department of Neurosurgery, TU Dresden, Dresden, Germany
| | - Lingyang Hua
- Hospital of Huashan, Fudan University, Shanghai, China
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Department of Neurosurgery, TU Dresden, Dresden, Germany
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Chen L, Rizk E, Sherief M, Chang M, Lucas CH, Bettegowda C, Croog V, Mukherjee D, Rincon-Torroella J, Kamson DO, Huang P, Holdhoff M, Schreck K. Molecular characterization of gliosarcoma reveals prognostic biomarkers and clinical parallels with glioblastoma. J Neurooncol 2025; 171:403-411. [PMID: 39476147 PMCID: PMC11695672 DOI: 10.1007/s11060-024-04859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Gliosarcoma is a rare histopathological variant of glioblastoma, but it is unclear whether distinct clinical or molecular features distinguish it from other glioblastomas. The purpose of this study was to characterize common genomic alterations of gliosarcoma, compare them to that of glioblastoma, and correlate them with prognosis. METHODS This was a single-institution, retrospective cohort study of patients seen between 11/1/2017 to 1/28/2024. Clinical and genomic data were obtained from the medical record. Results were validated using data from AACR Project GENIE (v15.1-public). RESULTS We identified 87 gliosarcoma patients in the institutional cohort. Compared to a contemporary cohort of 492 glioblastoma, there was no difference in overall survival, though progression free survival was inferior for patients with gliosarcoma (p = 0.01). Several of the most-commonly altered genes in gliosarcoma were more frequently altered than in glioblastoma (NF1, PTEN, TP53), while others were less frequently altered than in glioblastoma (EGFR). CDKN2A/CDKN2B/MTAP alterations were associated with inferior survival on univariate Cox (HR = 5.4, p = 0.023). When pooled with 93 patients from the GENIE cohort, CDKN2A/B (HR = 1.75, p = 0.039), RB1 (HR = 0.51, p = 0.016), LRP1B (p = 0.050, HR = 2.0), and TSC2 (HR = 0.31, p = 0.048) alterations or loss were significantly associated with survival. These effects remained when controlled for age, sex, and cohort of origin with multivariate Cox. CONCLUSION Gliosarcoma has a similar overall survival but worse response to treatment and different mutational profile than glioblastoma. CDKN2A/B loss and LRP1B alterations were associated with inferior prognosis, while RB1 or TSC2 alterations were associated with improved outcomes. These findings may have implications for clinical management and therapeutic selection in this patient population.
Collapse
Affiliation(s)
- Lucy Chen
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Emanuelle Rizk
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Mohamed Sherief
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Michael Chang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Calixto-Hope Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria Croog
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - David Olayinka Kamson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Viragh Rm, 9179, Baltimore, MD, 21287, USA
| | - Peng Huang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Karisa Schreck
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Viragh Rm, 9179, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Rodriguez Almaraz E, Guerra GA, Al-Adli NN, Young JS, Dada A, Quintana D, Taylor JW, Oberheim Bush NA, Clarke JL, Butowski NA, de Groot J, Pekmezci M, Perry A, Bollen AW, Scheffler AW, Glidden DV, Phillips JJ, Costello JF, Chang EF, Hervey-Jumper S, Berger MS, Francis SS, Chang SM, Solomon DA. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival. Neurooncol Adv 2025; 7:vdaf024. [PMID: 40051658 PMCID: PMC11883348 DOI: 10.1093/noajnl/vdaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Isocitrate dehydrogenase (IDH)-mutant astrocytomas represent the most frequent primary intraparenchymal brain tumor in young adults, which typically arise as low-grade neoplasms that often progress and transform to higher grade despite current therapeutic approaches. However, the genetic alterations underlying high-grade transformation and disease progression of IDH-mutant astrocytomas remain inadequately defined. Methods Genomic profiling was performed on 205 IDH-mutant astrocytomas from 172 patients from both initial treatment-naive and recurrent post-treatment tumor specimens. Molecular findings were integrated with clinical outcomes and pathologic features to define the associations of novel genetic alterations in the RAS-MAPK signaling pathway. Results Likely oncogenic alterations within the RAS-MAPK mitogenic signaling pathway were identified in 13% of IDH-mutant astrocytomas, which involved the KRAS, NRAS, BRAF, NF1, SPRED1, and LZTR1 genes. These included focal amplifications and known activating mutations in oncogenic components (e.g. KRAS, BRAF), as well as deletions and truncating mutations in negative regulatory components (e.g. NF1, SPRED1). These RAS-MAPK pathway alterations were enriched in recurrent tumors and occurred nearly always in high-grade tumors, often co-occurring with CDKN2A homozygous deletion. Patients whose IDH-mutant astrocytomas harbored these oncogenic RAS-MAPK pathway alterations had inferior survival compared to those with RAS-MAPK wild-type tumors. Conclusions These findings highlight novel genetic perturbations in the RAS-MAPK pathway as a likely mechanism contributing to the high-grade transformation and treatment resistance of IDH-mutant astrocytomas that may be a potential therapeutic target for affected patients and used for future risk stratification.
Collapse
Affiliation(s)
- Eduardo Rodriguez Almaraz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Geno A Guerra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nadeem N Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Daniel Quintana
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - John de Groot
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Aaron W Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Nakasu S, Deguchi S, Nakasu Y. Frequency and Prognostic Impact of CDKN2A/B Alteration in Oligodendrogliomas: Systematic Review and Meta-analysis. Neurol Med Chir (Tokyo) 2024; 64:442-450. [PMID: 39443123 PMCID: PMC11729257 DOI: 10.2176/jns-nmc.2024-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024] Open
Abstract
Isocitrate dehydrogenase (IDH) -mutant astrocytomas with homozygous deletion of cyclin-dependent kinase 2A/B (CDKN2A/B-HomoD) are categorized to grade 4 in the new World Health Organization (WHO) classification. However, the clinical implications of CDKN2A/B-HomoD in oligodendrogliomas remain unclear. This study systematically reviewed and meta-analyzed the literature on molecularly defined oligodendrogliomas (mOlig) to find the frequency and prognostic significance of CDKN2A/B gene alterations. Overall survival was worse in patients with CDKN2A/B-HomoD [pooled hazard ratio (pHR) 2.44; 95% confidential interval (CI), 1.59-3.76; P < 0.0001; 7 studies, 1,012 patients] than in those without CDKN2A/B-HomoD. Although the frequency (95% CI) was very low in grade 2 tumors (0.31%; 0.02-0.4) than in grade 3 tumors (9.4%; 6.2-14.0; I2 = 52.0%), pHR of multivariate analyses with covariates of WHO grade and age was still significant (P = 0.017). In contrast, the method in CDKN2A/B evaluation was a significant factor for the heterogeneity in frequency. The pooled frequency of CDKN2A/B-HomoD in grade 3 mOlig by fluorescence in situ hybridization (FISH) (20.3%) was higher than that by other methods (7.3%; P < 0.0006), probably due to the lower threshold for CDKN2A/B-HomoD in FISH studies that was used in this analysis. The frequency (95% CI) of other alterations of the CDKN2A/B gene, i.e., mutation, hemizygous deletion, and promoter methylation, was estimated as 1.48% (0.6-3.5), 15.9% (9.8-24.7), and 20.6% (13.7-29.8), respectively. The clinical significance of these alterations remains unclear due to the immaturity of the investigations.
Collapse
Affiliation(s)
| | - Shoichi Deguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
- Division of Neurosurgery, Shizuoka Cancer Center
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science
- Division of Neurosurgery, Shizuoka Cancer Center
| |
Collapse
|
10
|
Elguindy MM, Young JS, Ho WS, Lu RO. Co-evolution of glioma and immune microenvironment. J Immunother Cancer 2024; 12:e009175. [PMID: 39631850 PMCID: PMC11624716 DOI: 10.1136/jitc-2024-009175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Glioma evolution is governed by a multitude of dynamic interactions between tumor cells and heterogenous neighboring, non-cancerous cells. This complex ecosystem, termed the tumor microenvironment (TME), includes diverse immune cell types that have gained increasing attention for their critical and paradoxical roles in tumor control and tumorigenesis. Recent work has revealed that the cellular composition and functional state of immune cells in the TME can evolve extensively depending on the tumor stage and intrinsic features of surrounding glioma cells. Concurrently, adaptations to the glioma cellular phenotype, including activation of various cellular states, occur in the context of these immune cell alterations. In this review, we summarize important features of the immune TME that play key roles during each stage of glioma progression, from initiation to immune escape, invasion and recurrence. Understanding the complex interplay between tumor and immune cells is critical for the development of effective immunotherapies for glioma treatment.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Winson S Ho
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Rongze O Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Katzendobler S, Niedermeyer S, Blobner J, Trumm C, Harter PN, von Baumgarten L, Stoecklein VM, Tonn JC, Weller M, Thon N, Weller J. Determinants of long-term survival in patients with IDH-mutant gliomas. J Neurooncol 2024; 170:655-664. [PMID: 39316316 PMCID: PMC11614945 DOI: 10.1007/s11060-024-04826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Survival times of patients with IDH-mutant gliomas are variable and can extend to decades. Many studies provide progression-free rather than overall survival times and prognostic factors remain ill-defined. Here we explored characteristics of short- and long-term survivors within a cohort of patients with extended follow-up. METHODS This single-center, case-control study included 86 patients diagnosed between 1998 and 2023 who either died within 6 years after diagnosis or survived at least 15 years. Patient characteristics and prognostic factors were stratified by short- (< 6 years) versus long-term (≥ 15 years) survival. RESULTS Forty-seven patients (55%) diagnosed with astrocytoma and 39 patients (45%) with oligodendroglioma were included retrospectively. Median follow-up of the survivors was 16.6 years (range 15-28.9). Thirty-four deaths (40%) had been reported at database closure. Long-term survival was associated with CNS WHO grade 2 (p < 0.01), smaller tumor volumes (p = 0.01), lack of contrast enhancement (p < 0.01), wait-and-scan strategies (p < 0.01) and female sex (p = 0.04). In multivariate analyses for oligodendroglioma, larger T2 tumor volumes were associated with shorter survival (HR 1.02; 95% CI 1.01-1.05; p = 0.04). In patients with astrocytoma, lack of contrast enhancement (HR 0.38; 95% CI 0.15-0.94; p = 0.04) and wait-and-scan strategies (HR 5.75; 95% CI 1.66-26.61; p = 0.01) were associated with longer survival. CONCLUSION Large T2 tumor volume and contrast enhancement may be important risk factors for shorter survival, while age might be of lesser importance. Wait-and-scan strategies may yield excellent long-term survival in some patients with astrocytoma.
Collapse
Affiliation(s)
- Sophie Katzendobler
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sebastian Niedermeyer
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Jens Blobner
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christoph Trumm
- Department of Neuroradiology, LMU University Hospital, LMU Munich, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Veit M Stoecklein
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Jonathan Weller
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
12
|
Nakhate V, Lasica AB, Wen PY. The Role of Mutant IDH Inhibitors in the Treatment of Glioma. Curr Neurol Neurosci Rep 2024; 24:631-643. [PMID: 39302605 DOI: 10.1007/s11910-024-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW The identification of isocitrate dehydrogenase (IDH) mutations has led to a transformation in our understanding of gliomas and has paved the way to a new era of targeted therapy. In this article, we review the classification of IDH-mutant glioma, standard of care treatment options, clinical evidence for mutant IDH (mIDH) inhibitors, and practical implications of the recent landmark INDIGO trial. RECENT FINDINGS In the phase 3 randomized placebo-controlled INDIGO trial, mIDH1/2 inhibitor vorasidenib increased progression-free survival among non-enhancing grade 2 IDH-mutant gliomas following surgery. This marks the first positive randomized trial of targeted therapy in IDH-mutant glioma, and led to the US Food and Drug Administration's approval of vorasidenib in August 2024 for grade 2 IDH-mutant glioma. Vorasidenib is a well-tolerated treatment that can benefit a subset of patients with IDH-mutant glioma. Targeting mIDH also remains a promising strategy for select groups of patients excluded from the INDIGO trial. Ongoing and future studies, including with new agents and with combination therapy approaches, may expand the benefit and unlock the potential of mIDH inhibitors.
Collapse
Affiliation(s)
- Vihang Nakhate
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA.
| | - Aleksandra B Lasica
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Noack D, Wach J, Barrantes-Freer A, Nicolay NH, Güresir E, Seidel C. Homozygous CDKN2A/B deletions in low- and high-grade glioma: a meta-analysis of individual patient data and predictive values of p16 immunohistochemistry testing. Acta Neuropathol Commun 2024; 12:180. [PMID: 39593128 PMCID: PMC11590270 DOI: 10.1186/s40478-024-01889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
CDKN2A/B deletions are prognostically relevant in low- and high-grade gliomas. Data on this is derived from heterogeneous series, an accurate estimation of survival risk from homozygous CDKN2A/B deletion is missing. Besides genetic testing, p16-immunohistochemistry (IHC) as a less cost intensive means for indirect detection of CDKN2A/B alterations is possible but not validated in larger datasets. The present meta-analysis aimed to (1) reconstruct individual patient data (IPD) and estimate overall survival (OS) stratified by CDKN2A/B status from all literature and to (2) determine accuracy of p16 testing for CDKNA2/B detection from published studies. For survival analysis according to CDKN2A/B status 460 records were screened, four articles with 714 participants were included. In IDH-wildtype (IDH-wt) gliomas, 57.07% harbored the deletion compared to 9.76% in IDH-mutant (IDH-mut) gliomas. Median OS of patients with IDH-wt gliomas and homozygous CDKN2A/B deletion was 13.0 months compared to 18.0 months with non-deleted CDKN2A/B (p = 0.014, Log-Rank). With homozygous deletion of CDKN2A/B the risk of death was increased by 1.5 (95%-CI 1.1-2.1). Median OS in patients with IDH-mut gliomas without CDKN2A/B deletion was 92.0 months compared to 40.0 months with CDKN2A/B deletion (p < 0.001, Log-Rank). CDKN2A/B deletions were associated with a significantly shorter OS (HR = 3.2; 95%-CI 2.2-5.5). For p16 IHC analysis, 10 eligible studies with 1087 examined samples were included. The cut-off for retention differed between the studies. In 588/662 p16 retained cases CDKN2A/B deletions was not detected, implying a negative predictive value (NPV) of p16 staining of 88.8%. Conversely, 279/425 p16 absent cases showed a CDKN2A/B deletion resulting in a positive predictive value (PPV) of 65.6%. Sensitivity of p16 staining for CDKN2A/B detection was 79.0%, specificity 80.1%. Highest diagnostic accuracy of p16 IHC was reached with a cut-off of > 5% and within IDH-mut glioma.
Collapse
Affiliation(s)
- Darius Noack
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig Institute of Neuropathology, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany.
| |
Collapse
|
14
|
Nuechterlein N, Cimino S, Shelbourn A, Ha V, Arora S, Rajan S, Shapiro LG, Holland EC, Aldape K, McGranahan T, Gilbert MR, Cimino PJ. HOXD12 defines an age-related aggressive subtype of oligodendroglioma. Acta Neuropathol 2024; 148:41. [PMID: 39259414 PMCID: PMC11390787 DOI: 10.1007/s00401-024-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted has highly variable outcomes that are strongly influenced by patient age. The distribution of oligodendroglioma age is non-Gaussian and reportedly bimodal, which motivated our investigation of age-associated molecular alterations that may drive poorer outcomes. We found that elevated HOXD12 expression was associated with both older patient age and shorter survival in the TCGA (FDR < 0.01, FDR = 1e-5) and the CGGA (p = 0.03, p < 1e-3). HOXD12 gene body hypermethylation was associated with older age, higher WHO grade, and shorter survival in the TCGA (p < 1e-6, p < 0.001, p < 1e-3) and with older age and higher WHO grade in Capper et al. (p < 0.002, p = 0.014). In the TCGA, HOXD12 gene body hypermethylation and elevated expression were independently prognostic of NOTCH1 and PIK3CA mutations, loss of 15q, MYC activation, and standard histopathological features. Single-nucleus RNA and ATAC sequencing data showed that HOXD12 activity was elevated in neoplastic tissue, particularly within cycling and OPC-like cells, and was associated with a stem-like phenotype. A pan-HOX DNA methylation analysis revealed an age and survival-associated HOX-high signature that was tightly associated with HOXD12 gene body methylation. Overall, HOXD12 expression and gene body hypermethylation were associated with an older, atypically aggressive subtype of oligodendroglioma.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sadie Cimino
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Vinny Ha
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tresa McGranahan
- Division of Hematology and Oncology, Scripps Cancer Center, La Jolla, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Ozono I, Onishi S, Yonezawa U, Taguchi A, Khairunnisa NI, Amatya VJ, Yamasaki F, Takeshima Y, Horie N. Super T2-FLAIR mismatch sign: a prognostic imaging biomarker for non-enhancing astrocytoma, IDH-mutant. J Neurooncol 2024; 169:571-579. [PMID: 38995493 PMCID: PMC11341624 DOI: 10.1007/s11060-024-04758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE The T2-FLAIR mismatch sign is a highly specific diagnostic imaging biomarker for astrocytoma, IDH-mutant. However, a definitive prognostic imaging biomarker has yet to be identified. This study investigated imaging prognostic markers, specifically analyzing T2-weighted and FLAIR images of this tumor. METHODS We retrospectively analyzed 31 cases of non-enhancing astrocytoma, IDH-mutant treated at our institution, and 30 cases from The Cancer Genome Atlas (TCGA)/The Cancer Imaging Archive (TCIA). We defined "super T2-FLAIR mismatch sign" as having a significantly strong low signal comparable to cerebrospinal fluid at non-cystic lesions rather than just a pale FLAIR low-signal tumor lesion as in conventional T2-FLAIR mismatch sign. Cysts were defined as having a round or oval shape and were excluded from the criteria for the super T2-FLAIR mismatch sign. We evaluated the presence or absence of the T2-FLAIR mismatch sign and super T2-FLAIR mismatch sign using preoperative MRI and analyzed the progression-free survival (PFS) and overall survival (OS) by log-rank test. RESULTS The T2-FLAIR mismatch sign was present in 17 cases (55%) in our institution and 9 cases (30%) within the TCGA-LGG dataset without any correlation with PFS or OS. However, the super T2-FLAIR mismatch sign was detected in 8 cases (26%) at our institution and 13 cases (43%) in the TCGA-LGG dataset. At our institution, patients displaying the super T2-FLAIR mismatch sign showed significantly extended PFS (122.7 vs. 35.9 months, p = 0.0491) and OS (not reached vs. 116.7 months, p = 0.0232). Similarly, in the TCGA-LGG dataset, those with the super T2-FLAIR mismatch sign exhibited notably longer OS (not reached vs. 44.0 months, p = 0.0177). CONCLUSION The super T2-FLAIR mismatch is a promising prognostic imaging biomarker for non-enhancing astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Novita Ikbar Khairunnisa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
16
|
Onishi S, Kojima M, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Go Y, Takeshima Y, Hiyama E, Horie N. T2-FLAIR mismatch sign, an imaging biomarker for CDKN2A-intact in non-enhancing astrocytoma, IDH-mutant. Neurosurg Rev 2024; 47:412. [PMID: 39117984 PMCID: PMC11310237 DOI: 10.1007/s10143-024-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION The WHO classification of central nervous system tumors (5th edition) classified astrocytoma, IDH-mutant accompanied with CDKN2A/B homozygous deletion as WHO grade 4. Loss of immunohistochemical (IHC) staining for methylthioadenosine phosphorylase (MTAP) was developed as a surrogate marker for CDKN2A-HD. Identification of imaging biomarkers for CDKN2A status is of immense clinical relevance. In this study, we explored the association between radiological characteristics of non-enhancing astrocytoma, IDH-mutant to the CDKN2A/B status. METHODS Thirty-one cases of astrocytoma, IDH-mutant with MTAP results by IHC were included in this study. The status of CDKN2A was diagnosed by IHC staining for MTAP in all cases, which was further confirmed by comprehensive genomic analysis in 12 cases. The T2-FLAIR mismatch sign, cystic component, calcification, and intratumoral microbleeding were evaluated. The relationship between the radiological features and molecular pathological diagnosis was analyzed. RESULTS Twenty-six cases were identified as CDKN2A-intact while 5 cases were CDKN2A-HD. The presence of > 33% and > 50% T2-FLAIR mismatch was observed in 23 cases (74.2%) and 14 cases (45.2%), respectively, and was associated with CDKN2A-intact astrocytoma (p = 0.0001, 0.0482). None of the astrocytoma, IDH-mutant with CDKN2A-HD showed T2-FLAIR mismatch sign. Cystic component, calcification, and intratumoral microbleeding were not associated with CDKN2A status. CONCLUSION In patients with non-enhancing astrocytoma, IDH-mutant, the T2-FLAIR mismatch sign is a potential imaging biomarker for the CDKN2A-intact subtype. This imaging biomarker may enable preoperative prediction of CDKN2A status among astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Masato Kojima
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| |
Collapse
|
17
|
Mlika M, Mokni M, Mezni F, Rammeh S. Daily management of gliomas, glioneuronal, and neuronal tumors in the era of the 2021 WHO classification of nervous tumors. Front Neurol 2024; 15:1407572. [PMID: 39135755 PMCID: PMC11317277 DOI: 10.3389/fneur.2024.1407572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Mona Mlika
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Pathology, Trauma and Major Burn Center, Tunis, Tunisia
| | - Moncef Mokni
- Department of Pathology, Farhat Hached Hospital, Sousse, Tunisia
| | - Faouzi Mezni
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Soumeya Rammeh
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Pathology, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
18
|
Jia F, Kang Y, Wang Z. Case report: A 53-year-old woman with synchronous WHO classification II and IV gliomas. Front Oncol 2024; 14:1308497. [PMID: 38919539 PMCID: PMC11196406 DOI: 10.3389/fonc.2024.1308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Glioma is the most common primary intracranial neoplasm with a relatively poor prognosis. Case presentation Here, we present a unique case of a 53-year-old woman with two histopathologically distinct gliomas at the initial diagnosis. She presented with headaches and left limb weakness before admission, and magnetic resonance imaging (MRI) showed right frontal and basal ganglia area involvement combined with hemorrhage. The patient underwent a navigation-guided craniotomy for tumor removal. Pathological examination revealed the right frontal lobe lesion as a WHO grade II IDH-NOS astrocytoma, but the right parietal lobe lesion was a WHO grade IV IDH-mutant diffuse astrocytoma. Molecular detection of the parietal lesion revealed a point mutation at the R132 locus of the IDH1 gene, no mutation in the TERT promoter, amplification of the epidermal growth factor receptor, and a non-homozygous CDKN2A/B deletion. Discussion In-depth epigenomic analysis and molecular examination revealed that one patient had two different brain tumors, underscoring the importance of performing a comprehensive brain tumor workup. Conclusion This unique case confirms that adjacent astrocytomas may have different molecular pathogenesis and provides novel insights into the development of gliomas.
Collapse
Affiliation(s)
| | | | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
20
|
Nakashima T, Yamamoto R, Ohno M, Sugino H, Takahashi M, Funakoshi Y, Nambu S, Uneda A, Yanagisawa S, Uzuka T, Arakawa Y, Hanaya R, Ishida J, Yoshimoto K, Saito R, Narita Y, Suzuki H. Development of a rapid and comprehensive genomic profiling test supporting diagnosis and research for gliomas. Brain Tumor Pathol 2024; 41:50-60. [PMID: 38332448 DOI: 10.1007/s10014-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
A prompt and reliable molecular diagnosis for brain tumors has become crucial in precision medicine. While Comprehensive Genomic Profiling (CGP) has become feasible, there remains room for enhancement in brain tumor diagnosis due to the partial lack of essential genes and limitations in broad copy number analysis. In addition, the long turnaround time of commercially available CGPs poses an additional obstacle to the timely implementation of results in clinics. To address these challenges, we developed a CGP encompassing 113 genes, genome-wide copy number changes, and MGMT promoter methylation. Our CGP incorporates not only diagnostic genes but also supplementary genes valuable for research. Our CGP enables us to simultaneous identification of mutations, gene fusions, focal and broad copy number alterations, and MGMT promoter methylation status, with results delivered within a minimum of 4 days. Validation of our CGP, through comparisons with whole-genome sequencing, RNA sequencing, and pyrosequencing, has certified its accuracy and reliability. We applied our CGP for 23 consecutive cases of intracranial mass lesions, which demonstrated its efficacy in aiding diagnosis and prognostication. Our CGP offers a comprehensive and rapid molecular profiling for gliomas, which could potentially apply to clinical practices and research primarily in the field of brain tumors.
Collapse
Affiliation(s)
- Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shohei Nambu
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobaya-Shi, Mibu, Shimotsuga-Gun, Tochigi, 321-0293, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho Shogoin Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Joji Ishida
- Department of Neurosurgery, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka City, 812-8582, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
21
|
Bertero L, Mangherini L, Ricci AA, Cassoni P, Sahm F. Molecular neuropathology: an essential and evolving toolbox for the diagnosis and clinical management of central nervous system tumors. Virchows Arch 2024; 484:181-194. [PMID: 37658995 PMCID: PMC10948579 DOI: 10.1007/s00428-023-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Molecular profiling has transformed the diagnostic workflow of CNS tumors during the last years. The latest WHO classification of CNS tumors (5th edition), published in 2021, pushed forward the integration between histopathological features and molecular hallmarks to achieve reproducible and clinically relevant diagnoses. To address these demands, pathologists have to appropriately deal with multiple molecular assays mainly including DNA methylation profiling and DNA/RNA next generation sequencing. Tumor classification by DNA methylation profiling is now a critical tool for many diagnostic tasks in neuropathology including the assessment of complex cases, to evaluate novel tumor types and to perform tumor subgrouping in hetereogenous entities like medulloblastoma or ependymoma. DNA/RNA NGS allow the detection of multiple molecular alterations including single nucleotide variations, small insertions/deletions (InDel), and gene fusions. These molecular markers can provide key insights for diagnosis, for example, if a tumor-specific mutation is detected, but also for treatment since targeted therapies are progressively entering the clinical practice. In the present review, a brief, but comprehensive overview of these tools will be provided, discussing their technical specifications, diagnostic value, and potential limitations. Moreover, the importance of molecular profiling will be shown in a representative series of CNS neoplasms including both the most frequent tumor types and other selected entities for which molecular characterization plays a critical role.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
22
|
Ranade M, Epari S, Shetty O, Dhanavade S, Chavan S, Sahay A, Sahu A, Shetty P, Moiyadi A, Singh V, Dasgupta A, Chatterjee A, Kannan S, Gupta T. CDKN2A/B deletion in IDH-mutant astrocytomas: An evaluation by Fluorescence in-situ hybridization. J Neurooncol 2024:10.1007/s11060-024-04569-7. [PMID: 38265748 DOI: 10.1007/s11060-024-04569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION CDKN2A/B homozygous deletion is one of the defining features of grade 4 in IDH-mutant astrocytic tumours. AIM To evaluate CDKN2A/B-deletion in IDH-mutant astrocytic tumours and its clinicopathological impact. MATERIALS AND METHODS CDKN2A/B-deletion was evaluated by Fluorescence in-situ hybridisation (FISH) and interpreted by two recently accepted methods. RESULTS Eighty-three out of 94 cases (histologically-grade 2: 3, grade 3: 46, grade 4: 34) were interpretable on FISH. Concordant CDKN2A/B-deletion was observed in 71% (27/38) of lower-grade tumours (n = 49) and 90% (27/30) of histological grade 4 tumours (n = 34). Both the interpretation methods showed good agreement (Kappa = 0.75). CDKN2A/B-deletion showed an inverse correlation for < 10% MIB-1 labeling index (p = 0.01) while that by method-2 showed a significant correlation for grade 4 (p = 0.02). No significant correlation was observed for any other clinicopathological parameters. Twenty-four patients showed progression/recurrence (including deaths), and no significant difference in frequency of CDKN2A/B deletion was observed among cases with disease progression across different histological grades. CONCLUSIONS CDKN2A/B-deletion was observed across all the histological grades of IDH-mutant astrocytic tumours, expectedly more in the higher grade. FISH, as a method, can be used for the detection of CDKN2A/B homozygous deletion, when there is concordant interpretation.
Collapse
Affiliation(s)
- Manali Ranade
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India.
| | - Omshree Shetty
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sandeep Dhanavade
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Chavan
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Arpita Sahu
- Department of Radiology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vikash Singh
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sadhana Kannan
- Department of Biostatistics, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
23
|
Kinslow CJ, Siegelin MD, Iwamoto FM, Gallitto M, Neugut AI, Yu JB, Cheng SK, Wang TJC. MGMT promoter methylation in 1p19q-intact gliomas. J Neurooncol 2024; 166:73-78. [PMID: 38114801 DOI: 10.1007/s11060-023-04515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Standard-of-care for 1p19q-intact anaplastic gliomas is defined by the international randomized phase III CATNON trial, which found an overall survival (OS) benefit for adjuvant temozolomide (TMZ) when added to radiotherapy. Paradoxically, TMZ did not appear to benefit patients with IDH-wildtype gliomas, regardless of MGMT promoter status. The authors concluded that well-powered prospective study on the clinical efficacy of TMZ for patients with IDH-wildtype anaplastic gliomas (meeting criteria for glioblastoma) is warranted. Given that the prognostic and predictive role of MGMT status for grade 2-3 gliomas is unresolved, we determined the effect of MGMT status on OS in patients with 1p19q-intact gliomas in the National Cancer Database (NCDB). METHODS We queried the NCDB from 2018 to 2019 for patients with diffuse (grade 2) and anaplastic (grade 3) IDH-wildtype or -mutant astrocytomas who received chemotherapy with follow-up through 2022. The Kaplan-Meier method and Cox proportional hazards regressions models were used to determine the association of MGMT with OS. RESULTS We identified 1514 patients who were newly diagnosed with IDH-wildtype (n = 802, 33% methylated) or -mutant astrocytomas (n = 712, 48% methylated) and received chemotherapy during initial management. An unmethylated promoter was associated with poorer survival in patients with IDH-wildtype (3-year OS 34% [95%CI 29-39%] vs. 46% [95%CI 39-54%], p < .001, adjusted HR 1.53 [95%CI 1.24-1.89]) but not IDH-mutant astrocytomas (3-year OS 79% [95%CI 74-84%] vs. 80% [95%CI 75-86%], p =0 .81, HR 1.04 [95%CI 0.73-1.50]). CONCLUSIONS This ancillary analysis supports conclusions from the CATNON trial for adjuvant TMZ as standard-of-care for anaplastic astrocytomas (IDH-mutant and 1p19q-intact), irrespective of MGMT status. Determining the optimal strategy for diffuse gliomas that are IDH-wildtype will be particularly important. MGMT promoter methylation should be considered as a stratification factor in future clinical trials for these patients.
Collapse
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Markus D Siegelin
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Ave Rm. 1001, New York, NY, 10032, USA
| | - Fabio M Iwamoto
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 710 West 168th Street, New York, NY, 10032, USA
| | - Matthew Gallitto
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY, 10032, USA
| | - James B Yu
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Simon K Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
- Department of Radiation Oncology, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
| | - Tony J C Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Shi ZF, Li KKW, Chan DTM, Mao Y, Ng HK. Alternative lengthening of telomeres is seen in a proportion of oligodendrogliomas and is associated with a worse prognosis. Neurooncol Adv 2024; 6:vdae006. [PMID: 38371225 PMCID: PMC10873776 DOI: 10.1093/noajnl/vdae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Summary
Oligodendrogliomas are known to be mutated for TERTp, and in this report, we evaluated 112 IDH-mutant, 1p19q codeleted oligodendrogliomas for ALT by FISH, and FISH for copy number changes of CDKN2A, MYC, PDGFRA, EGFR, chromosomes +7/10 and TERT-rearrangement. Enigmatically, 35.7% of cases were ALT-positive in spite of the vast majority of them being TERTp-mutant. ALT was associated with a shorter PFS (p=0.009) and remained an independent prognosticator in multivariate analysis. ALT was also associated with MYC amplification. ALT-positive cases were further examined with targeted sequencing. No genes were found to be of prognostic significance in this group.
Collapse
Affiliation(s)
- Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Ho-Keung Ng
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
25
|
Al Shboul S, Boyle S, Singh A, Saleh T, Alrjoub M, Abu Al Karsaneh O, Mryyian A, Dawoud R, Gul S, Abu Baker S, Ball K, Hupp T, Brennan PM. FISH analysis reveals CDKN2A and IFNA14 co-deletion is heterogeneous and is a prominent feature of glioblastoma. Brain Tumor Pathol 2024; 41:4-17. [PMID: 38097874 DOI: 10.1007/s10014-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Deletion of CDKN2A occurs in 50% of glioblastomas (GBM), and IFNA locus deletion in 25%. These genes reside closely on chromosome 9. We investigated whether CDKN2A and IFNA were co-deleted within the same heterogeneous tumour and their prognostic implications. We assessed CDKN2A and IFNA14 deletions in 45 glioma samples using an in-house three-colour FISH probe. We examined the correlation between p16INK4a protein expression (via IHC) and CDKN2A deletion along with the impact of these genomic events on patient survival. FISH analyses demonstrated that grades II and III had either wildtype (wt) or amplified CDKN2A/IFNA14, whilst 44% of GBMs harboured homozygous deletions of both genes. Cores with CDKN2A homozygous deletion (n = 11) were negative for p16INK4a. Twenty p16INK4a positive samples lacked CDKN2A deletion with some of cells showing negative p16INK4a. There was heterogeneity in IFNA14/CDKN2A ploidy within each GBM. Survival analyses of primary GBMs suggested a positive association between increased p16INK4a and longer survival; this persisted when considering CDKN2A/IFNA14 status. Furthermore, wt (intact) CDKN2A/IFNA14 were found to be associated with longer survival in recurrent GBMs. Our data suggest that co-deletion of CDKN2A/IFNA14 in GBM negatively correlates with survival and CDKN2A-wt status correlated with longer survival, and with second surgery, itself a marker for improved patient outcomes.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moath Alrjoub
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Amel Mryyian
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Rand Dawoud
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Sinem Gul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK
| | - Shaden Abu Baker
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Kathryn Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK.
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Translational Neurosurgery, Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, Scotland, UK.
| |
Collapse
|
26
|
Tillmanns N, Lost J, Tabor J, Vasandani S, Vetsa S, Marianayagam N, Yalcin K, Erson-Omay EZ, von Reppert M, Jekel L, Merkaj S, Ramakrishnan D, Avesta A, de Oliveira Santo ID, Jin L, Huttner A, Bousabarah K, Ikuta I, Lin M, Aneja S, Turowski B, Aboian M, Moliterno J. Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas. Sci Rep 2023; 13:22942. [PMID: 38135704 PMCID: PMC10746716 DOI: 10.1038/s41598-023-48918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine patients undergoing GBM resection with CDKN2A status determined by whole-exome sequencing were included. GBMs on magnetic resonance images were automatically 3D segmented using deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs. 30%, p = 0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKN2A alteration (OR: 4.3; 95% CI 1.5-12.1; p < 0.001). We developed a novel integrated PACS informatics platform for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or subependymal invasion. These imaging features may allow noninvasive identification of CDKN2A allele status.
Collapse
Affiliation(s)
- Niklas Tillmanns
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - Jan Lost
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Joanna Tabor
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sagar Vasandani
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Shaurey Vetsa
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Kanat Yalcin
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Marc von Reppert
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Leon Jekel
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Sara Merkaj
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Divya Ramakrishnan
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Arman Avesta
- Department of Radiation Oncology, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Irene Dixe de Oliveira Santo
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
| | - Lan Jin
- R&D, Sema4, 333 Ludlow Street, North Tower, 8th Floor, Stamford, CT, 06902, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Ichiro Ikuta
- Department of Radiology, Mayo Clinic Arizona, 5711 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - MingDe Lin
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA
- Visage Imaging, Inc., 12625 High Bluff Dr, Suite 205, San Diego, CA, 92130, USA
| | - Sanjay Aneja
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Bernd Turowski
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - Mariam Aboian
- Brain Tumor Research Group, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, PO Box 208042, New Haven, CT, 06520, USA.
- , New Haven, USA.
| | | |
Collapse
|
27
|
Nabors B, Portnow J, Hattangadi-Gluth J, Horbinski C. NCCN CNS tumor guidelines update for 2023. Neuro Oncol 2023; 25:2114-2116. [PMID: 37706665 PMCID: PMC10708932 DOI: 10.1093/neuonc/noad169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- Burt Nabors
- Department of Neurology, Division of Neuro-oncology; Departments of Neurology and Neurosurgery, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jana Portnow
- Department of Medical Oncology and Research Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | | | - Craig Horbinski
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Hickman RA, Gedvilaite E, Ptashkin R, Reiner AS, Cimera R, Nandakumar S, Price A, Vanderbilt C, Fahy T, Young RJ, Miller AM, Mellinghoff IK, Rosenblum MK, Ladanyi M, Arcila ME, Zhang Y, Brannon AR, Bale TA. CDKN2A/B mutations and allele-specific alterations stratify survival outcomes in IDH-mutant astrocytomas. Acta Neuropathol 2023; 146:845-847. [PMID: 37831210 PMCID: PMC10628020 DOI: 10.1007/s00401-023-02639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Richard A Hickman
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Murtha Cancer Center Research Program, Uniformed Services of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA
| | - Erika Gedvilaite
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Subhiksha Nandakumar
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Adam Price
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tara Fahy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - A Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Nafe R, Porto L, Samp PF, You SJ, Hattingen E. Adult-type and Pediatric-type Diffuse Gliomas : What the Neuroradiologist Should Know. Clin Neuroradiol 2023; 33:611-624. [PMID: 36941392 PMCID: PMC10449995 DOI: 10.1007/s00062-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/22/2023]
Abstract
The classification of diffuse gliomas into the adult type and the pediatric type is the new basis for the diagnosis and clinical evaluation. The knowledge for the neuroradiologist should not remain limited to radiological aspects but should be based additionally on the current edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). This classification defines the 11 entities of diffuse gliomas, which are included in the 3 large groups of adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, and pediatric-type diffuse high-grade gliomas. This article provides a detailed overview of important molecular, morphological, and clinical aspects for all 11 entities, such as typical genetic alterations, age distribution, variability of the tumor localization, variability of histopathological and radiological findings within each entity, as well as currently available statistical information on prognosis and outcome. Important differential diagnoses are also discussed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Luciana Porto
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Patrick-Felix Samp
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Se-Jong You
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Elke Hattingen
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Chen W, Guo S, Wang Y, Shi Y, Guo X, Liu D, Li Y, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Wang Y, Ma W. Novel insight into histological and molecular astrocytoma, IDH-mutant, Grade 4 by the updated WHO classification of central nervous system tumors. Cancer Med 2023; 12:18666-18678. [PMID: 37667984 PMCID: PMC10557904 DOI: 10.1002/cam4.6476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The latest fifth edition of the World Health Organization (WHO) classification of the central nervous system (CNS) tumors (WHO CNS 5 classification) released in 2021 defined astrocytoma, IDH-mutant, Grade 4. However, the understanding of this subtype is still limited. We conducted this study to describe the features of astrocytoma, IDH-mutant, Grade 4 and explored the similarities and differences between histological and molecular subtypes. METHODS Patients who underwent surgery from January 2011 to January 2022, classified as astrocytoma, IDH-mutant, Grade 4 were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. RESULTS Altogether 33 patients with astrocytoma, IDH-mutant, Grade 4 were selected, including 20 with histological and 13 with molecular WHO Grade 4 astrocytoma. Tumor enhancement, intratumoral-necrosis like presentation, larger peritumoral edema, and more explicit tumor margins were frequently observed in histological WHO Grade 4 astrocytoma. Additionally, molecular WHO Grade 4 astrocytoma showed a tendency for relatively longer overall survival, while a statistical significance was not reached (47 vs. 25 months, p = 0.22). TP53, CDK6, and PIK3CA alteration was commonly observed, while PIK3R1 (p = 0.033), Notch1 (p = 0.027), and Mycn (p = 0.027) alterations may affect the overall survival of molecular WHO Grade 4 astrocytomas. CONCLUSIONS Our study scrutinized IDH-mutant, Grade 4 astrocytoma. Therefore, further classification should be considered as the prognosis varied between histological and molecular WHO Grade 4 astrocytomas. Notably, therapies aiming at PIK3R1, Notch 1, and Mycn may be beneficial.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
31
|
Kros JM, Rushing E, Uwimana AL, Hernández-Laín A, Michotte A, Al-Hussaini M, Bielle F, Mawrin C, Marucci G, Tesileanu CMS, Stupp R, Baumert B, van den Bent M, French PJ, Gorlia T. Mitotic count is prognostic in IDH mutant astrocytoma without homozygous deletion of CDKN2A/B. Results of consensus panel review of EORTC trial 26053 (CATNON) and EORTC trial 22033-26033. Neuro Oncol 2023; 25:1443-1449. [PMID: 36571817 PMCID: PMC10398806 DOI: 10.1093/neuonc/noac282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Gliomas with IDH1/2 mutations without 1p19q codeletion have been identified as the distinct diagnostic entity of IDH mutant astrocytoma (IDHmut astrocytoma). Homozygous deletion of Cyclin-dependent kinase 4 inhibitor A/B (CDKN2A/B) has recently been incorporated in the grading of these tumors. The question of whether histologic parameters still contribute to prognostic information on top of the molecular classification, remains unanswered. Here we evaluated consensus histologic parameters for providing additional prognostic value in IDHmut astrocytomas. METHODS An international panel of seven neuropathologists scored 13 well-defined histologic features in virtual microscopy images of 192 IDHmut astrocytomas from EORTC trial 22033-26033 (low-grade gliomas) and 263 from EORTC 26053 (CATNON) (1p19q non-codeleted anaplastic glioma). For 192 gliomas the CDKN2A/B status was known. Consensus (agreement ≥ 4/7 panelists) histologic features were tested together with homozygous deletion (HD) of CDKN2A/B for independent prognostic power. RESULTS Among consensus histologic parameters, the mitotic count (cut-off of 2 mitoses per 10 high power fields standardized to a field diameter of 0.55 mm and an area of 0.24 mm2) significantly influences PFS (P = .0098) and marginally the OS (P = .07). Mitotic count also significantly affects the PFS of tumors with HD CDKN2A/B, but not the OS, possibly due to limited follow-up data. CONCLUSION The mitotic index (cut-off 2 per 10 40× HPF) is of prognostic significance in IDHmut astrocytomas without HD CDKN2A/B. Therefore, the mitotic index may direct the therapeutic approach for patients with IDHmut astrocytomas with native CDKN2A/B status.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Laboratory for Tumor Immunopathology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Elisabeth Rushing
- Department of Neuropathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Aimé L Uwimana
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Aurelio Hernández-Laín
- Department of Pathology (Neuropathology), Hospital Universitario 12 de Octubre Research Institute, Madrid, Spain
| | - Alex Michotte
- Medische Oncologie, Oncologisch Centrum, Academisch Ziekenhuis Vrije Universiteit Brussel (AZ-VUB), Brussel, Belgium
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, Service de Neuropathologie, Paris, France
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - C Mircea S Tesileanu
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Roger Stupp
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brigitta Baumert
- Department of Radiation Oncology, MediClin Robert Janker Clinic and Clinical Cooperation Unit Neurooncology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Pim J French
- Neurooncology Unit, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Thierry Gorlia
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| |
Collapse
|
32
|
Tran S, Thomas A, Aliouat I, Karachi C, Lozano F, Mokhtari K, Dehais C, Feuvret L, Carpentier C, Giry M, Doukani A, Lerond J, Marie Y, Sanson M, Idbaih A, Carpentier A, Hoang-Xuan K, Touat M, Capelle L, Bielle F. A threshold for mitotic activity and post-surgical residual volume defines distinct prognostic groups for astrocytoma IDH-mutant. Neuropathol Appl Neurobiol 2023; 49:e12928. [PMID: 37503540 DOI: 10.1111/nan.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
AIMS The distinction between CNS WHO grade 2 and grade 3 is instrumental in choosing between observational follow-up and adjuvant treatment for resected astrocytomas IDH-mutant. However, the criteria of CNS WHO grade 2 vs 3 have not been updated since the pre-IDH era. METHODS Maximal mitotic activity in consecutive high-power fields corresponding to 3 mm2 was examined for 118 lower-grade astrocytomas IDH-mutant. The prognostic value for time-to-treatment (TTT) and overall survival (OS) of mitotic activity and other putative prognostic factors (including age, performance status, pre-surgical tumour volume, multilobar involvement, post-surgical residual tumour volume and midline involvement) was assessed for tumours with ATRX loss and the absence of CDKN2A homozygous deletion or CDK4 amplification, contrast enhancement, histological necrosis and microvascular proliferation. RESULTS Seventy-one per cent of the samples had <6 mitoses per 3 mm2 . Mitotic activity, residual volume and multilobar involvement were independent prognostic factors of TTT. The threshold of ≥6 mitoses per 3 mm2 identified patients with a shorter TTT (median 18.5 months). A residual volume ≥1 cm3 also identified patients with a shorter TTT (median 24.5 months). The group defined by <6 mitoses per 3 mm2 and a residual volume <1 cm3 had the longest TTT (median 73 months) and OS (100% survival at 7 years). These findings were confirmed in a validation cohort of 52 tumours. CONCLUSIONS Mitotic activity and post-surgical residual volume can be combined to evaluate the prognosis for patients with resected astrocytomas IDH-mutant. Patients with <6 mitoses per 3 mm2 and a residual volume <1 cm3 were the best candidates for observational follow-up.
Collapse
Affiliation(s)
- Suzanne Tran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
| | - Alice Thomas
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Ilyes Aliouat
- Department of Neurosurgery, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Fernando Lozano
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Karima Mokhtari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
| | - Caroline Dehais
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Loïc Feuvret
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Radiotherapy, Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Marine Giry
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Abiba Doukani
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique Pitié-Salpêtrière, P3S, Paris, France
| | - Julie Lerond
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, AP-HP, Paris, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Marc Sanson
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
- Sorbonne Université, AP-HP, Paris, France
- Department of Neuropathology, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Alexandre Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Khê Hoang-Xuan
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Mehdi Touat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neurology 2, Paris, France
| | - Laurent Capelle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Department of Neurosurgery, Paris, France
| | - Franck Bielle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, DMU Neurosciences, Department of Neuropathology, Paris, France
- Sorbonne Université, AP-HP, Paris, France
- Department of Neuropathology, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
33
|
Lasocki A, Buckland ME, Molinaro T, Xie J, Whittle JR, Wei H, Gaillard F. Correlating MRI features with additional genetic markers and patient survival in histological grade 2-3 IDH-mutant astrocytomas. Neuroradiology 2023; 65:1215-1223. [PMID: 37316586 PMCID: PMC10338396 DOI: 10.1007/s00234-023-03175-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.
Collapse
Affiliation(s)
- Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Grattan St, Melbourne, Melbourne, Victoria, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Tahlia Molinaro
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jing Xie
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - James R Whittle
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank Gaillard
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Wang JZ, Patil V, Liu J, Dogan H, Tabatabai G, Yefet LS, Behling F, Hoffman E, Bunda S, Yakubov R, Kaloti R, Brandner S, Gao A, Cohen-Gadol A, Barnholtz-Sloan J, Skardelly M, Tatagiba M, Raleigh DR, Sahm F, Boutros PC, Aldape K, Nassiri F, Zadeh G. Increased mRNA expression of CDKN2A is a transcriptomic marker of clinically aggressive meningiomas. Acta Neuropathol 2023; 146:145-162. [PMID: 37093270 PMCID: PMC10261216 DOI: 10.1007/s00401-023-02571-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Homozygous deletion of CDKN2A/B was recently incorporated into the World Health Organization classification for grade 3 meningiomas. While this marker is overall rare in meningiomas, its relationship to other CDKN2A alterations on a transcriptomic, epigenomic, and copy number level has not yet been determined. We therefore utilized multidimensional molecular data of 1577 meningioma samples from 6 independent cohorts enriched for clinically aggressive meningiomas to comprehensively interrogate the spectrum of CDKN2A alterations through DNA methylation, copy number variation, transcriptomics, and proteomics using an integrated molecular approach. Homozygous CDKN2A/B deletions were identified in only 7.1% of cases but were associated with significantly poorer outcomes compared to tumors without these deletions. Heterozygous CDKN2A/B deletions were identified in 2.6% of cases and had similarly poor outcomes as those with homozygous deletions. Among tumors with intact CDKN2A/B (without a homozygous or heterozygous deletion), we found a distinct difference in outcome based on mRNA expression of CDKN2A, with meningiomas that had elevated mRNA expression (CDKN2Ahigh) having a significantly shorter time to recurrence. The expression of CDKN2A was independently prognostic after accounting for copy number loss and consistently increased with WHO grade and more aggressive molecular and methylation groups irrespective of cohort. Despite the discordant and mutually exclusive status of the CDKN2A gene in these groups, both CDKN2Ahigh meningiomas and meningiomas with CDKN2A deletions were enriched for similar cell cycle pathways but at different checkpoints. High mRNA expression of CDKN2A was also associated with gene hypermethylation, Rb-deficiency, and lack of response to CDK inhibition. p16 immunohistochemistry could not reliably differentiate between meningiomas with and without CDKN2A deletions but appeared to correlate better with mRNA expression. These findings support the role of CDKN2A mRNA expression as a biomarker of clinically aggressive meningiomas with potential therapeutic implications.
Collapse
Affiliation(s)
- Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vikas Patil
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeff Liu
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Helin Dogan
- Department of Neuropathology, University Hospital Heidelberg (DKFZ), Heidelberg, Germany
| | - Ghazaleh Tabatabai
- Department of Neurosurgery, Center for Neuro-Oncology, Comprehensive Cancer Center, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Felix Behling
- Department of Neurosurgery, Center for Neuro-Oncology, Comprehensive Cancer Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Elgin Hoffman
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rebecca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sebastian Brandner
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew Gao
- Division of Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON, Canada
| | - Aaron Cohen-Gadol
- Department of Neurosurgery, Indiana University, Bloomington, IND, USA
| | - Jill Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, USA
| | - Marco Skardelly
- Department of Neurology and Interdisciplinary Neuro-Oncology, Center for Neuro-Oncology, Comprehensive Cancer Center, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Center for Neuro-Oncology, Comprehensive Cancer Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg (DKFZ), Heidelberg, Germany
| | - Paul C Boutros
- Department of Human Genetics, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
35
|
Rubiano EGO, Baldoncini M, Cómbita AL, Payán-Gómez C, Gómez-Amarillo DF, Hakim F, Figueredo LF, Forlizzi V, Rangel CC, Luzzi S, Campero A, Parra-Medina R. Understanding the molecular profiling of diffuse gliomas classification: A brief overview. Surg Neurol Int 2023; 14:225. [PMID: 37404501 PMCID: PMC10316154 DOI: 10.25259/sni_209_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/04/2023] [Indexed: 07/06/2023] Open
Abstract
Background Gliomas represent almost 30% of all primary brain tumors and account for 80% of malignant primary ones. In the last two decades, significant progress has been made in understanding gliomas' molecular origin and development. These advancements have demonstrated a remarkable improvement in classification systems based on mutational markers, which contribute paramount information in addition to traditional histology-based classification. Methods We performed a narrative review of the literature including each molecular marker described for adult diffuse gliomas used in the World Health Organization (WHO) central nervous system 5. Results The 2021 WHO classification of diffuse gliomas encompasses many molecular aspects considered in the latest proposed hallmarks of cancer. The outcome of patients with diffuse gliomas relies on their molecular behavior and consequently, to determine clinical outcomes for these patients, molecular profiling should be mandatory. At least, the following molecular markers are necessary for the current most accurate classification of these tumors: (1) isocitrate dehydrogenase (IDH) IDH-1 mutation, (2) 1p/19q codeletion, (3) cyclin-dependent kinase inhibitor 2A/B deletion, (4) telomerase reverse transcriptase promoter mutation, (5) α-thalassemia/ mental retardation syndrome X-linked loss, (6) epidermal growth factor receptor amplification, and (7) tumor protein P53 mutation. These molecular markers have allowed the differentiation of multiple variations of the same disease, including the differentiation of distinct molecular Grade 4 gliomas. This could imply different clinical outcomes and possibly impact targeted therapies in the years to come. Conclusion Physicians face different challenging scenarios according to the clinical features of patients with gliomas. In addition to the current advances in clinical decision-making, including radiological and surgical techniques, understanding the disease's molecular pathogenesis is paramount to improving the benefits of its clinical treatments. This review aims to describe straightforwardly the most remarkable aspects of the molecular pathogenesis of diffuse gliomas.
Collapse
Affiliation(s)
- Edgar G. Ordóñez Rubiano
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud, Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia
| | - Matías Baldoncini
- Department of Neurosurgery, San Fernando Hospital, San Fernando, Argentina
| | - Alba Lucía Cómbita
- Departament of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
- Translational Research Group in Oncology, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - César Payán-Gómez
- Academic direction, Universidad Nacional de Colombia - Sede de La Paz, La Paz, Colombia
| | - Diego F. Gómez-Amarillo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fé de Bogotá, Bogotá, Colombia
| | - Fernando Hakim
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fé de Bogotá, Bogotá, Colombia
| | | | - Valeria Forlizzi
- Department of Anatomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos Castillo Rangel
- Department of Neurosurgery, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Sabino Luzzi
- Department of Neurosurgery, University of Pavia, Polo Didattico “Cesare Brusotti”, Pavia, Italy
| | | | - Rafael Parra-Medina
- Research Institute, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia
- Department of Pathology, Instituto Nacional de Cancerología Bogotá, Bogotá, Colombia
| |
Collapse
|
36
|
Ye L, Gu L, Zheng Z, Zhang X, Xing H, Guo X, Chen W, Wang Y, Wang Y, Liang T, Wang H, Li Y, Jin S, Shi Y, Liu D, Yang T, Liu Q, Deng C, Wang Y, Ma W. An online survival predictor in glioma patients using machine learning based on WHO CNS5 data. Front Neurol 2023; 14:1179761. [PMID: 37273702 PMCID: PMC10237015 DOI: 10.3389/fneur.2023.1179761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Background The World Health Organization (WHO) CNS5 classification system highlights the significance of molecular biomarkers in providing meaningful prognostic and therapeutic information for gliomas. However, predicting individual patient survival remains challenging due to the lack of integrated quantitative assessment tools. In this study, we aimed to design a WHO CNS5-related risk signature to predict the overall survival (OS) rate of glioma patients using machine learning algorithms. Methods We extracted data from patients who underwent an operation for histopathologically confirmed glioma from our hospital database (2011-2022) and split them into a training and hold-out test set in a 7/3 ratio. We used biological markers related to WHO CNS5, clinical data (age, sex, and WHO grade), and prognosis follow-up information to identify prognostic factors and construct a predictive dynamic nomograph to predict the survival rate of glioma patients using 4 kinds machine learning algorithms (RF, SVM, XGB, and GLM). Results A total of 198 patients with complete WHO5 molecular data and follow-up information were included in the study. The median OS time of all patients was 29.77 [95% confidence interval (CI): 21.19-38.34] months. Age, FGFR2, IDH1, CDK4, CDK6, KIT, and CDKN2A were considered vital indicators related to the prognosis and OS time of glioma. To better predict the prognosis of glioma patients, we constructed a WHO5-related risk signature and nomogram. The AUC values of the ROC curves of the nomogram for predicting the 1, 3, and 5-year OS were 0.849, 0.835, and 0.821 in training set, and, 0.844, 0.943, and 0.959 in validation set. The calibration plot confirmed the reliability of the nomogram, and the c-index was 0.742 in training set and 0.775 in validation set. Additionally, our nomogram showed a superior net benefit across a broader scale of threshold probabilities in decision curve analysis. Therefore, we selected it as the backend for the online survival prediction tool (Glioma Survival Calculator, https://who5pumch.shinyapps.io/DynNomapp/), which can calculate the survival probability for a specific time of the patients. Conclusion An online prognosis predictor based on WHO5-related biomarkers was constructed. This therapeutically promising tool may increase the precision of forecast therapy outcomes and assess prognosis.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors (No. 2019RU011), Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congcong Deng
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| |
Collapse
|
37
|
Vij M, Cho BB, Yokoda RT, Rashidipour O, Umphlett M, Richardson TE, Tsankova NM. P16 immunohistochemistry is a sensitive and specific surrogate marker for CDKN2A homozygous deletion in gliomas. Acta Neuropathol Commun 2023; 11:73. [PMID: 37138345 PMCID: PMC10155323 DOI: 10.1186/s40478-023-01573-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
Molecular characterization of gliomas has uncovered genomic signatures with significant impact on tumor diagnosis and prognostication. CDKN2A is a tumor suppressor gene involved in cell cycle control. Homozygous deletion of the CDKN2A/B locus has been implicated in both gliomagenesis and tumor progression through dysregulated cell proliferation. In histologically lower grade gliomas, CDKN2A homozygous deletion is associated with more aggressive clinical course and is a molecular marker of grade 4 status in the 2021 WHO diagnostic system. Despite its prognostic utility, molecular analysis for CDKN2A deletion remains time consuming, expensive, and is not widely available. This study assessed whether semi-quantitative immunohistochemistry for expression of p16, the protein product of CDKN2A, can serve as a sensitive and a specific marker for CDKN2A homozygous deletion in gliomas. P16 expression was quantified by immunohistochemistry in 100 gliomas, representing both IDH-wildtype and IDH-mutant tumors of all grades, using two independent pathologists' scores and QuPath digital pathology analysis. Molecular CDKN2A status was determined using next-generation DNA sequencing, with homozygous CDKN2A deletion detected in 48% of the tumor cohort. Classifying CDKN2A status based on p16 tumor cell expression (0-100%) demonstrated robust performance over a wide range of thresholds, with receiver operating characteristic curve area of 0.993 and 0.997 (blinded and unblinded pathologist p16 scores, respectively) and 0.969 (QuPath p16 score). Importantly, in tumors with pathologist-scored p16 equal to or less than 5%, the specificity for predicting CDKN2A homozygous deletion was 100%; and in tumors with p16 greater than 20%, specificity for excluding CDKN2A homozygous deletion was also 100%. Conversely, tumors with p16 scores of 6-20% represented gray zone with imperfect correlation to CDKN2A status. The findings indicate that p16 immunohistochemistry is a reliable surrogate marker of CDKN2A homozygous deletion in gliomas, with recommended p16 cutoff scores of ≤ 5% for confirming and > 20% for excluding biallelic CDKN2A loss.
Collapse
Affiliation(s)
- Meenakshi Vij
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin B Cho
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Omid Rashidipour
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
38
|
Ferreyra Vega S, Olsson Bontell T, Kling T, Jakola AS, Carén H. Longitudinal DNA methylation analysis of adult-type IDH-mutant gliomas. Acta Neuropathol Commun 2023; 11:23. [PMID: 36739454 PMCID: PMC9899392 DOI: 10.1186/s40478-023-01520-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
Diffuse gliomas are the most prevalent malignant primary brain tumors in adults and remain incurable despite standard therapy. Tumor recurrence is currently inevitable, which contributes to a persistent high morbidity and mortality in these patients. In this study, we examined the genome-wide DNA methylation profiles of primary and recurrent adult-type IDH-mutant gliomas to elucidate DNA methylation changes associated with tumor progression (with or without malignant transformation). We analyzed DNA methylation profiles of 37 primary IDH-mutant gliomas and 42 paired recurrences using the DNA methylation EPIC beadChip array. DNA methylation-based classification reflected the tumor progression over time. We observed a methylation subtype switch in a proportion of IDH-mutant astrocytomas; the primary tumors were subclassified as low-grade astrocytomas, which progressed to high-grade astrocytomas in the recurrent tumors. The CNS WHO grade 4 IDH-mutant astrocytomas did not always resemble methylation subclasses of higher grades. The number of differentially methylated CpG sites increased over time, and astrocytomas accumulated more differentially methylated CpG sites than oligodendrogliomas during tumor progression. Few differentially methylated CpG sites were shared between patients. We demonstrated that DNA methylation profiles are mostly maintained during IDH-mutant glioma progression, but CpG site-specific methylation alterations can occur.
Collapse
Affiliation(s)
- Sandra Ferreyra Vega
- grid.8761.80000 0000 9919 9582Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45 Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- grid.8761.80000 0000 9919 9582Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Teresia Kling
- grid.8761.80000 0000 9919 9582Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden. .,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden. .,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway.
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
39
|
Fanucci K, Pilat MJ, Shyr D, Shyr Y, Boerner S, Li J, Durecki D, Drappatz J, Puduvalli V, Lieberman FS, Gonzalez J, Giglio P, Ivy SP, Bindra RS, Omuro A, LoRusso P. Multicenter Phase II Trial of the PARP Inhibitor Olaparib in Recurrent IDH1- and IDH2-mutant Glioma. CANCER RESEARCH COMMUNICATIONS 2023; 3:192-201. [PMID: 36968138 PMCID: PMC10035510 DOI: 10.1158/2767-9764.crc-22-0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Purpose Isocitrate dehydrogenase (IDH) 1 and IDH2 mutations (IDH1/2mt) are frequent in glioma. Preclinical studies suggest IDH1/2mts confer "BRCAness" phenotype, a vulnerability that can be targeted through PARP inhibition. To test this hypothesis, we conducted a multicenter study of olaparib monotherapy in patients with IDH1/2mt gliomas. Methods Patients with recurrent, contrast-enhancing IDH1/2mt gliomas were enrolled in a two-step phase II trial; the primary endpoint was overall response rate per Response Assessment in Neuro-Oncology (RANO) criteria. Olaparib 300 mg orally twice daily was given. Results A total of 15 evaluable patients were enrolled. Histology was astrocytoma (N = 12) and oligodendroglioma (N = 3). Most toxicities were grade 1 or 2. Best response was stable disease (SD) in 9 (60%) patients. Median progression-free survival (PFS) was 3.63 months and median overall survival was 20.7 months. For patients with SD, median PFS was 5.53 months; 4 patients had SD for >6 months. Among patients with best response progressive disease (N = 6), 5 had grade 4 tumor and 4 had known CDKN2A alteration. PFS was 5.23 months for grades 2 or 3 tumors (N = 10) versus 1.8 months for grade 4 (N = 5; P = 0.0013). Conclusion The study did not meet the prespecified response-based activity threshold for moving to step 2. However, prolonged SD was observed in patients with grades 2 and 3 histologies, suggesting olaparib monotherapy could be of clinical benefit in select populations. Grade 4 tumors per 2021 World Health Organization classification defined by histology or CDKN2A alteration derived no benefit from this drug, highlighting the usefulness of this classification for future patient stratification and trial design. Significance A single-arm phase II trial of olaparib in IDH-mutant glioma demonstrated clinically significant prolonged SD for select patients with grade 2/3 disease, suggesting potential benefit of olaparib in IDH-mutant gliomas.
Collapse
Affiliation(s)
| | | | - Derek Shyr
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yu Shyr
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee
| | | | - Jing Li
- Yale Cancer Center, New Haven, Connecticut
| | - Diane Durecki
- University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jan Drappatz
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Vinay Puduvalli
- Division of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Javier Gonzalez
- Division of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Pierre Giglio
- Division of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | | | | |
Collapse
|
40
|
Reuss DE. Updates on the WHO diagnosis of IDH-mutant glioma. J Neurooncol 2023; 162:461-469. [PMID: 36717507 DOI: 10.1007/s11060-023-04250-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE The WHO classification of Tumors of the Central Nervous System represents the international standard classification for brain tumors. In 2021 the 5th edition (WHO CNS5) was published, and this review summarizes the changes regarding IDH-mutant gliomas and discusses unsolved issues and future perspectives. METHODS This review is based on the 5th edition of the WHO Blue Book of CNS tumors (WHO CNS5) and relevant related papers. RESULTS Major changes include taxonomy and nomenclature of IDH-mutant gliomas. Essential and desirable criteria for classification were established considering technical developments. For the first time molecular features are not only relevant for the classification of IDH-mutant gliomas but may impact grading as well. CONCLUSION WHO CNS5 classification moves forward towards a classification which is founded on tumor biology and serves clinical needs. The rapidly increasing knowledge on the molecular landscape of IDH-mutant gliomas is expected to further refine classification and grading in the future.
Collapse
Affiliation(s)
- David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
41
|
The Role of Epigenetics in Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:119-136. [PMID: 36587385 DOI: 10.1007/978-3-031-14732-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Identification of distinct genetic and epigenetic profiles in various neuroepithelial tumors has improved the classification and uncovered novel diagnostic, prognostic, and predictive molecular biomarkers for improved prediction of treatment response and outcome. Especially, in pediatric high-grade brain tumors, such as diffuse midline glioma, H3K27M-altered and posterior fossa group A-ependymoma, epigenetic changes predominate, along with changes in expression of known oncogenes and tumor suppressor genes induced by histone modifications and DNA methylation. The precise role of epigenetic abnormalities is important for understanding tumorigenesis and the establishment of brain tumor treatment strategies. Using powerful epigenetic-based therapies for cancer cells, the aberrantly regulated epigenome can be restored to a more normal state through epigenetic reprogramming. Combinations of agents targeting DNA methylation and/or other epigenetic modifications may be a promising cancer treatment. Therefore, the integration of multi-omics data including epigenomics is now important for classifying primary brain tumors and predicting their biological behavior. Recent advances in molecular genetics and epigenetic integrated diagnostics of brain tumors influence new strategies for targeted therapy.
Collapse
|
42
|
Wu Z, Li W, Zhu H, Li X, Zhou Y, Chen Q, Huang H, Zhang W, Jiang X, Ren C. Identification of cuproptosis-related subtypes and the development of a prognostic model in glioma. Front Genet 2023; 14:1124439. [PMID: 36936439 PMCID: PMC10014798 DOI: 10.3389/fgene.2023.1124439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: A copper-dependent cell death, cuproptosis, involves copper binding with lipoylated tricarboxylic acid (TCA) cycle components. In cuproptosis, ferredoxin 1 (FDX1) and lipoylation act as key regulators. The mechanism of cuproptosis differs from the current knowledge of cell death, which may invigorate investigations into copper's potential as a cancer treatment. An extremely dismal prognosis is associated with gliomas, the most prevalent primary intracranial tumor. In patients with glioma, conventional therapies, such as surgery and chemotherapy, have shown limited improvement. A variety of cell death modes have been confirmed to be operative in glioma oncogenesis and participate in the tumor microenvironment (TME), implicated in glioma development and progression. In this study, we aimed to explore whether cuproptosis influences glioma oncogenesis. Methods: Gene expression profiles related to cuproptosis were comprehensively evaluated by comparing adjacent tissues from glioma tissues in The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) database. Gene expression, prognostic, clinical, and pathological data of lower-grade gliomas (LGG) and glioblastoma were retrieved from TCGA and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. The datasets were managed by "Combat" algorithm to eliminate batch effects and then combined. A consensus clustering algorithm based on the Partitioning Around Medoid (PAM) algorithm was used to classified 725 patients with LGG and glioblastoma multiforme (GBM) into two cuproptosis subtypes. According to the differentially expressed genes in the two cuproptosis subtypes, 725 patients were divided into 2 gene subtypes. Additionally, a scoring system that associated with TME was constructed to predict patient survival and patient immunotherapy outcomes. Furthermore, we constructed a prognostic CRG-score and nomogram system to predict the prognosis of glioma patients. 95 tissue specimens from 83 glioma patients undergoing surgical treatment were collected, including adjacent tissues. Using immunohistochemistry and RT-qPCR, we verified cuproptosis-related genes expression and CRG-score predictive ability in these clinical samples. Results: Our results revealed extensive regulatory mechanisms of cuproptosis-related genes in the cell cycle, TME, clinicopathological characteristics, and prognosis of glioma. We also developed a prognostic model based on cuproptosis. Through the verifications of database and clinical samples, we believe that cuproptosis affects the prognosis of glioma and potentially provides novel glioma research approaches. Conclusion: We suggest that cuproptosis has potential importance in treating gliomas and could be utilized in new glioma research efforts.
Collapse
Affiliation(s)
- Zhaoping Wu
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan, China
| | - Xuewen Li
- Changsha Kexin Cancer Hospital, Changsha, Hunan, China
| | - Yi Zhou
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Chen
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoxuan Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenlong Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Xingjun Jiang, ; Caiping Ren,
| | - Caiping Ren
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- *Correspondence: Xingjun Jiang, ; Caiping Ren,
| |
Collapse
|
43
|
Zhu Q, Shen S, Yang C, Li M, Zhang X, Li H, Zhao X, Li M, Cui Y, Ren X, Lin S. A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma. Front Neurol 2022; 13:1074593. [PMID: 36588901 PMCID: PMC9795846 DOI: 10.3389/fneur.2022.1074593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic indicators may not be completely suitable for patients with oligodendroglioma based on the new diagnostic criteria. To find potential prognostic indicators for oligodendroglioma, we analyzed the expression of mRNAs of oligodendrogliomas in Chinese Glioma Genome Atlas (CGGA). Methods We collected 165 CGGA oligodendroglioma mRNA-sequence datasets and divided them into two cohorts. Patients in the two cohorts were further classified into long-survival and short-survival subgroups. The most predictive mRNAs were filtered out of differentially expressed mRNAs (DE mRNAs) between long-survival and short-survival patients in the training cohort by least absolute shrinkage and selection operator (LASSO), and risk scores of patients were calculated. Univariate and multivariate analyses were performed to screen factors associated with survival and establish the prognostic model. qRT-PCR was used to validate the expression differences of mRNAs. Results A total of 88 DE mRNAs were identified between the long-survival and the short-survival groups in the training cohort. Seven RNAs were selected to calculate risk scores. Univariate analysis showed that risk level, age, and primary-or-recurrent status (PRS) type were statistically correlated with survival and were used as factors to establish a prognostic model for patients with oligodendroglioma. The model showed an optimal predictive accuracy with a C-index of 0.912 (95% CI, 0.679-0.981) and harbored a good agreement between the predictions and observations in both training and validation cohorts. Conclusion We established a prognostic model based on mRNA-sequence data for patients with oligodendroglioma. The predictive ability of this model was validated in a validation cohort, which demonstrated optimal accuracy. The 7 mRNAs included in the model would help predict the prognosis of patients and guide personalized treatment.
Collapse
Affiliation(s)
- Qinghui Zhu
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoyi Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,*Correspondence: Song Lin
| |
Collapse
|
44
|
Antonelli M, Poliani PL. Adult type diffuse gliomas in the new 2021 WHO Classification. Pathologica 2022; 114:397-409. [PMID: 36534419 PMCID: PMC9763975 DOI: 10.32074/1591-951x-823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Adult-type diffuse gliomas represent a group of highly infiltrative central nervous system tumors with a prognosis that significantly varies depending on the specific subtype and histological grade. Traditionally, adult-type diffuse gliomas have been classified based on their morphological features with a great interobserver variability and discrepancy in patient survival even within the same histological grade. Over the last few decades, advances in molecular profiling have drastically changed the diagnostic approach and classification of brain tumors leading to the development of an integrated morphological and molecular classification endowed with a more clinically relevant value. These concepts were largely anticipated in the revised fourth-edition of WHO classification of central nervous system tumors published in 2016. The fifth-edition (WHO 2021) moved molecular diagnostics forward into a full integration of molecular parameters with the histological features into an integrative diagnostic approach. Diagnosis of adult type diffuse gliomas, IDH mutant and IDH-wildtype has been simplified by introducing revised diagnostic and grading criteria. In this review, we will discuss the most recent updates to the classification of adult-type diffuse gliomas and summarize the essential diagnostic keys providing a practical guidance to pathologists.
Collapse
Affiliation(s)
- Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza, Rome, Italy
| | - Pietro Luigi Poliani
- Pathology Units, Department of Molecular and Translational Medicine, University of Brescia, Italy,Correspondence Pietro Luigi Poliani Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia Italy, p.le Spedali Civili 1, 25125 Brescia, Italy Tel.: 030-3998-(407) Fax: 030-3995-377 E-mail:
| |
Collapse
|
45
|
Pan R, Wang X, Fang R, Xia Q, Wu N, Rao Q. Epithelioid glioblastoma exhibits a heterogeneous molecular feature: A targeted next-generation sequencing study. Front Oncol 2022; 12:980059. [PMID: 36505786 PMCID: PMC9730819 DOI: 10.3389/fonc.2022.980059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Epithelioid glioblastoma (eGBM) is one of the rare glioblastoma (GBM) variants in the current World Health Organization (WHO) categorization of central nervous system (CNS) tumours. However, the diagnostic basis and molecular features of eGBM have not been clearly defined to date. In this study, we aimed to molecularly characterize these tumours. Methods The clinicopathological, molecular, and immunohistochemical characteristics of 12 cases of eGBM were investigated. Results The tumours were found to be made up of epithelioid and rhabdoid cells when examined under a microscope. Six cases (50%) harboured the BRAF V600E mutation, and NF1 mutation was detected in 2 eGBM cases (16.7%). CDKN2A/B homozygous deletion was seen in 5 cases (41.7%). TP53 mutation was recognized in 2 instances (16.7%), and TERT promoter mutation was recognized in 5 cases (41.7%). Discussion eGBM is characterized by high molecular heterogeneity and has molecular overlaps between low-grade gliomas. Moreover, rather than being a variant or entity, the biological significance of the "epithelioid" appearance may be reduced to a simply morphological pattern. In order to target the proper treatment to suitable patients, molecular stratification via genome-wide molecular profiling will be crucial.
Collapse
Affiliation(s)
| | | | | | | | - Nan Wu
- *Correspondence: Qiu Rao, ; Nan Wu,
| | - Qiu Rao
- *Correspondence: Qiu Rao, ; Nan Wu,
| |
Collapse
|
46
|
Slocum CC, Park HJ, Baek I, Catalano J, Wells MT, Liechty B, Mathew S, Song W, Solomon JP, Pisapia DJ. Towards a single-assay approach: a combined DNA/RNA sequencing panel eliminates diagnostic redundancy and detects clinically-relevant fusions in neuropathology. Acta Neuropathol Commun 2022; 10:167. [PMCID: PMC9670552 DOI: 10.1186/s40478-022-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractSince the introduction of integrated histological and molecular diagnoses by the 2016 World Health Organization (WHO) Classification of Tumors of the Nervous System, an increasing number of molecular markers have been found to have prognostic significance in infiltrating gliomas, many of which have now become incorporated as diagnostic criteria in the 2021 WHO Classification. This has increased the applicability of targeted-next generation sequencing in the diagnostic work-up of neuropathology specimens and in addition, raises the question of whether targeted sequencing can, in practice, reliably replace older, more traditional diagnostic methods such as immunohistochemistry and fluorescence in-situ hybridization. Here, we demonstrate that the Oncomine Cancer Gene Mutation Panel v2 assay targeted-next generation sequencing panel for solid tumors is not only superior to IHC in detecting mutation in IDH1/2 and TP53 but can also predict 1p/19q co-deletion with high sensitivity and specificity relative to fluorescence in-situ hybridization by looking at average copy number of genes sequenced on 1p, 1q, 19p, and 19q. Along with detecting the same molecular data obtained from older methods, targeted-next generation sequencing with an RNA sequencing component provides additional information regarding the presence of RNA based alterations that have diagnostic significance and possible therapeutic implications. From this work, we advocate for expanded use of targeted-next generation sequencing over more traditional methods for the detection of important molecular alterations as a part of the standard diagnostic work up for CNS neoplasms.
Collapse
|
47
|
Smith HL, Wadhwani N, Horbinski C. Major Features of the 2021 WHO Classification of CNS Tumors. Neurotherapeutics 2022; 19:1691-1704. [PMID: 35578106 PMCID: PMC9723092 DOI: 10.1007/s13311-022-01249-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Advances in the understanding of the molecular biology of central nervous system (CNS) tumors prompted a new World Health Organization (WHO) classification scheme in 2021, only 5 years after the prior iteration. The 2016 version was the first to include specific molecular alterations in the diagnoses of a few tumors, but the 2021 system greatly expanded this approach, with over 40 tumor types and subtypes now being defined by their key molecular features. Many tumors have also been reconceptualized into new "supercategories," including adult-type diffuse gliomas, pediatric-type diffuse low- and high-grade gliomas, and circumscribed astrocytic gliomas. Some entirely new tumors are in this scheme, particularly pediatric tumors. Naturally, these changes will impact how CNS tumor patients are diagnosed and treated, including clinical trial enrollment. This review addresses the most clinically relevant changes in the 2021 WHO book, including diffuse and circumscribed gliomas, ependymomas, embryonal tumors, and meningiomas.
Collapse
Affiliation(s)
- Heather L Smith
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, IL, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Feinberg School of Medicine, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
48
|
Abstract
Standard treatment for patients with IDH-mutant gliomas with radiation therapy and chemotherapy is non-curative and associated with long-term neurotoxicity. This has created intense interest in targeted therapeutic strategies that are specifically designed of IDH-mutant tumors. Much progress has been made in understanding the unique biology of IDH-mutant gliomas, and now various IDH-mutant-specific targeting strategies are in various phases of development. Here, we will review a range of IDH-mutant targeting treatments being explored, including direct IDH inhibitors, as well as strategies that take advantage of IDH-mutant-specific vulnerabilities.
Collapse
Affiliation(s)
- Julie J Miller
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Berger TR, Wen PY, Lang-Orsini M, Chukwueke UN. World Health Organization 2021 Classification of Central Nervous System Tumors and Implications for Therapy for Adult-Type Gliomas: A Review. JAMA Oncol 2022; 8:1493-1501. [PMID: 36006639 DOI: 10.1001/jamaoncol.2022.2844] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Previous histologic classifications of brain tumors have been limited by discrepancies in diagnoses reported by neuropathologists and variability in outcomes and response to therapies. Such diagnostic discrepancies have impaired clinicians' ability to select the most appropriate therapies for patients and have allowed heterogeneous populations of patients to be enrolled in clinical trials, hindering the development of more effective therapies. In adult-type diffuse gliomas, histologic classification has a particularly important effect on clinical care. Observations In 2021, the World Health Organization published the fifth edition of the Classification of Tumors of the Central Nervous System. This classification incorporates advances in understanding the molecular pathogenesis of brain tumors with histopathology in order to group tumors into more biologically and molecularly defined entities. As such, tumor classification is significantly improved through better characterized natural histories. These changes have particularly important implications for gliomas. For the first time, adult- and pediatric-type gliomas are classified separately on the basis of differences in molecular pathogenesis and prognosis. Furthermore, the previous broad category of adult-type diffuse gliomas has been consolidated into 3 types: astrocytoma, isocitrate dehydrogenase (IDH) mutant; oligodendroglioma, IDH mutant and 1p/19q codeleted; and glioblastoma, IDH wild type. These major changes are driven by IDH mutation status and include the restriction of the diagnosis of glioblastoma to tumors that are IDH wild type; the reclassification of tumors previously diagnosed as IDH-mutated glioblastomas as astrocytomas IDH mutated, grade 4; and the requirement for the presence of IDH mutations to classify tumors as astrocytomas or oligodendrogliomas. Conclusions and Relevance The 2021 World Health Organization central nervous system tumor classification is a major advance toward improving the diagnosis of brain tumors. It will provide clinicians with more accurate guidance on prognosis and optimal therapy for patients and ensure that more homogenous patient populations are enrolled in clinical trials, potentially facilitating the development of more effective therapies.
Collapse
Affiliation(s)
- Tamar R Berger
- Division of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Division of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Melanie Lang-Orsini
- Division of Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston
| | - Ugonma N Chukwueke
- Division of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
50
|
Hersh AM, Jallo GI, Shimony N. Surgical approaches to intramedullary spinal cord astrocytomas in the age of genomics. Front Oncol 2022; 12:982089. [PMID: 36147920 PMCID: PMC9485889 DOI: 10.3389/fonc.2022.982089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Intramedullary astrocytomas represent approximately 30%–40% of all intramedullary tumors and are the most common intramedullary tumor in children. Surgical resection is considered the mainstay of treatment in symptomatic patients with neurological deficits. Gross total resection (GTR) can be difficult to achieve as astrocytomas frequently present as diffuse lesions that infiltrate the cord. Therefore, GTR carries a substantial risk of new post-operative deficits. Consequently, subtotal resection and biopsy are often the only surgical options attempted. A midline or paramedian sulcal myelotomy is frequently used for surgical resection, although a dorsal root entry zone myelotomy can be used for lateral tumors. Intra-operative neuromonitoring using D-wave integrity, somatosensory, and motor evoked potentials is critical to facilitating a safe resection. Adjuvant radiation and chemotherapy, such as temozolomide, are often administered for high-grade recurrent or progressive lesions; however, consensus is lacking on their efficacy. Biopsied tumors can be analyzed for molecular markers that inform clinicians about the tumor’s prognosis and response to conventional as well as targeted therapeutic treatments. Stratification of intramedullary tumors is increasingly based on molecular features and mutational status. The landscape of genetic and epigenetic mutations in intramedullary astrocytomas is not equivalent to their intracranial counterparts, with important difference in frequency and type of mutations. Therefore, dedicated attention is needed to cohorts of patients with intramedullary tumors. Targeted therapeutic agents can be designed and administered to patients based on their mutational status, which may be used in coordination with traditional surgical resection to improve overall survival and functional status.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George I. Jallo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- *Correspondence: George I. Jallo,
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Le Bonheur Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|