1
|
Isaac T, Mansour N. Atypical Presentation of Glioblastoma: A Case Report. Cureus 2024; 16:e72160. [PMID: 39583439 PMCID: PMC11581957 DOI: 10.7759/cureus.72160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
This case report describes a patient who presented with devastating stroke-like symptoms secondary to a cystic brain lesion that was confirmed to be glioblastoma without significant symptomatology before her dramatic presentation. It further highlights the aggressive nature and the swift growth of the tumor in a short period of time. A 55-year-old female with no significant past medical history presented to the emergency department in a comatose state. The patient had experienced a week of worsening headaches and vomiting, self-medicating with Tylenol. Upon evaluation, she was noticed to have bilaterally dilated fixed pupils: R: 6 mm, L: 3 mm. The initial head CT revealed a right frontal cystic lesion associated with descending trans-tentorial brain herniation and brain-stem compression. Because of her relatively young age and sudden onset symptoms, the decision was made to take her urgently to the operating room. The patient underwent an emergency right frontal craniotomy, resection, and lobectomy. The patient was intubated and ventilated after surgery. The postoperative exam was significant for pupils ~2-3 mm and reactive to light. On postoperative day 1, the patient became very responsive and was eventually extubated. She was found to have a normal neurological examination after extubating her; despite the devastating presentation and extent of the tumor, the patient recovered well without significant motor or behavioral deficits. The surgical intervention prevented an impending brain death. A follow-up MRI after two weeks shows a substantial recurrence of the tumor as compared to imaging upon discharge. The patient was taken again to the operating room for a second surgery. She was discharged a few days after her second operation with follow-up recommendations with oncology. This case is among very few cases that highlight a swift and dramatic presentation of glioblastoma and isocitrate dehydrogenase-wild type grade IV in a patient without precipitating symptoms succeeding the main presentation. It also emphasizes rapid approaches to prevent a dreadful prognosis in this well-known aggressive type of brain tumor.
Collapse
Affiliation(s)
- Tambi Isaac
- Surgery, Wyckoff Heights Medical Center, New York, USA
- Medical Academy, Kabardino-Balkarian State University, Nalchik, RUS
| | - Nassir Mansour
- Neurological Surgery, Wyckoff Heights Medical Center, New York, USA
| |
Collapse
|
2
|
Alharbi WS, Alshehri AA, Ahmed TA, Shadab M, Almehmady AM, Alshabibi MA, Altamimi RM, El-Say KM. Enhancing the Antiproliferative Activity of Perillyl Alcohol against Glioblastoma Cell Lines through Synergistic Formulation with Natural Oils. Curr Pharm Des 2024; 30:1075-1084. [PMID: 38532602 DOI: 10.2174/0113816128293758240318080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils. OBJECTIVE This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy. METHODS The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated. RESULTS The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0. CONCLUSION The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.
Collapse
Affiliation(s)
- Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Shadab
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Li C, Liu W, Liu C, Luo Q, Luo K, Wei C, Li X, Qin J, Zheng C, Lan C, Wei S, Tan R, Chen J, Chen Y, Huang H, Zhang G, Huang H, Wang X. Integrating machine learning and bioinformatics analysis to m6A regulator-mediated methylation modification models for predicting glioblastoma patients' prognosis and immunotherapy response. Aging (Albany NY) 2023; 15:204495. [PMID: 37244287 DOI: 10.18632/aging.204495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/30/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Epigenetic regulations of immune responses are essential for cancer development and growth. As a critical step, comprehensive and rigorous explorations of m6A methylation are important to determine its prognostic significance, tumor microenvironment (TME) infiltration characteristics and underlying relationship with glioblastoma (GBM). METHODS To evaluate m6A modification patterns in GBM, we conducted unsupervised clustering to determine the expression levels of GBM-related m6A regulatory factors and performed differential analysis to obtain m6A-related genes. Consistent clustering was used to generate m6A regulators cluster A and B. Machine learning algorithms were implemented for identifying TME features and predicting the response of GBM patients receiving immunotherapy. RESULTS It is found that the m6A regulatory factor significantly regulates the mutation of GBM and TME. Based on Europe, America, and China data, we established m6Ascore through the m6A model. The model accurately predicted the results of 1206 GBM patients from the discovery cohort. Additionally, a high m6A score was associated with poor prognoses. Significant TME features were found among the different m6A score groups, which demonstrated positive correlations with biological functions (i.e., EMT2) and immune checkpoints. CONCLUSIONS m6A modification was important to characterize the tumorigenesis and TME infiltration in GBM. The m6Ascore provided GBM patients with valuable and accurate prognosis and prediction of clinical response to various treatment modalities, which could be useful to guide patient treatments.
Collapse
Affiliation(s)
- Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chengming Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Qisheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Kunxiang Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Cuicui Wei
- Department of Outpatient, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Xueyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jiancheng Qin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Chuanhua Zheng
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Chuanliu Lan
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Shiyin Wei
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rong Tan
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jiaxing Chen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yuanbiao Chen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huadong Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Gaolian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Haineng Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
5
|
Hosseini A, Ashraf H, Rahimi F, Alipourfard I, Alivirdiloo V, Hashemi B, Yazdani Y, Ghazi F, Eslami M, Ameri Shah Reza M, Dadashpour M. Recent advances in the detection of glioblastoma, from imaging-based methods to proteomics and biosensors: A narrative review. Cancer Cell Int 2023; 23:98. [PMID: 37210528 PMCID: PMC10199620 DOI: 10.1186/s12935-023-02947-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that originates in the cells called astrocytes, which support the functioning of nerve cells. It can develop in either the brain or the spinal cord and is also known as glioblastoma multiform. GBM is a highly aggressive cancer that can occur in either the brain or spinal cord. The detection of GBM in biofluids offers potential advantages over current methods for diagnosing and treatment monitoring of glial tumors. Biofluid-based detection of GBM focuses on identifying tumor-specific biomarkers in blood and cerebrospinal fluid. To date, different methods have been used to detect biomarkers of GBM, ranging from various imaging techniques to molecular approaches. Each method has its own strengths and weaknesses. The present review aims to scrutinize multiple diagnostic methods for GBM, with a focus on proteomics methods and biosensors. In other words, this study aims to provide an overview of the most significant research findings based on proteomics and biosensors for the diagnosis of GBM.
Collapse
Affiliation(s)
| | - Hami Ashraf
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azari Children Training, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Eslami
- Department of Medical Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mehdi Dadashpour
- Department of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
6
|
Optimal Approximation of Fractional Order Brain Tumor Model Using Generalized Laguerre Polynomials. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9898866 DOI: 10.1007/s40995-022-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A brain tumor occurs when abnormal cells form within the brain. Glioblastoma (GB) is an aggressive and fast-growing type of brain tumor that invades brain tissue or spinal cord. GB evolves from astrocytic glial cells in the central nervous system. GB can occur at almost any age, but the occurrence increases with advancing age in older adults. Its symptoms may include nausea, vomiting, headaches, or even seizures. GB, formerly known as glioblastoma multiforme, currently has no cure with a high rate of resistance to therapy in clinical treatment. However, treatments can slow tumor progression or alleviate the signs and symptoms. In this paper, a fractional order brain tumor model was considered. The optimal solution of the model was obtained using an optimization method based on operational matrices. The solution to the problem under study was expanded in terms of generalized Laguerre polynomials (GLPs). The study problem was shifted to a system of nonlinear algebraic equations by the use of Lagrange multipliers combined with operational matrices based on GLPs. The analysis of convergence was discussed. In the end, some numerical examples were presented to justify theoretical statements along with the patterns of biological behavior.
Collapse
|
7
|
Rolim GB, Dantas Lima AJP, Dos Santos Cardoso VI, de Fátima Machado Soares É, Nunes DN, Barros HCS, Leite AB, Alexandre-Moreira MS, Duarte AWF, de Sales Marques C, de Carvalho Fraga CA, de Queiroz AC. Can inflammasomes promote the pathophysiology of glioblastoma multiforme? A view about the potential of the anti-inflammasome therapy as pharmacological target. Crit Rev Oncol Hematol 2022; 172:103641. [PMID: 35189327 DOI: 10.1016/j.critrevonc.2022.103641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor with one of the worst general survivorship cases among the existing neoplasia. This aggressiveness is due to its complex molecular heterogeneity, immunohistochemistry and genetics. The current therapeutic approach brings little contribution to the improvement of the survival of the patients. Due to that, new forms of treatment have been explored, one of them being immunotherapy. In this aspect, the inflammasome pathway, which induces inflammation and immunosuppressive tumor response, contributing to the progression of the tumor, seems to be a new alternative to improve the treatment efficacy and the survival of the patients.
Collapse
Affiliation(s)
- Giovanna Barros Rolim
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Ayara Jhulia Palmeira Dantas Lima
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Vitória Ingryd Dos Santos Cardoso
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Érika de Fátima Machado Soares
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Danielle Nascimento Nunes
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Herbert Charles Silva Barros
- Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil
| | - Anderson Brandão Leite
- Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil
| | - Alysson Wagner Fernandes Duarte
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Carolinne de Sales Marques
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Carlos Alberto de Carvalho Fraga
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil; Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil.
| |
Collapse
|
8
|
Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, Olalla Saad ST, Chorilli M. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm 2021; 168:76-89. [PMID: 34461214 DOI: 10.1016/j.ejpb.2021.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBM has aggressive development, and the pharmacological treatment remains a challenge due to GBM anatomical characteristics' (the blood-brain barrier and tumor microenvironment) and the increasing resistance to marketed drugs, such as temozolomide (TMZ), the first-line drug for GBM treatment. Due to physical-chemical properties such as short half-life time and the increasing resistance shown by GBM cells, high doses and repeated administrations are necessary, leading to significant adverse events. This review will discuss the main molecular mechanisms of TMZ resistance and the use of functionalized nanocarriers as an efficient and safe strategy for TMZ delivery. GBM-targeting nanocarriers are an important tool for the treatment of GBM, demonstrating to improve the biopharmaceutical properties of TMZ and repurpose its use in anti-GBM therapy. Technical aspects of nanocarriers will be discussed, and biological models highlighting the advantages and effects of functionalization strategies in TMZ anti-GBM activity. Finally, conclusions regarding the main findings will be made in the context of new perspectives for the treatment of GBM using TMZ as a chemotherapy agent, improving the sensibility and biological anti-tumor effect of TMZ through functionalization strategies.
Collapse
Affiliation(s)
| | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Luiza Ribeiro Nicoleti
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Belghali MY, Ba-M´hamed S, Admou B, Brahimi M, Khouchani M. [Epidemiological, clinical, therapeutic and evolutionary features of patients with glioblastoma: series of cases managed in the Department of Hematology-Oncology at the Mohammed VI University Hospital Center in Marrakech in 2016 and 2017]. Pan Afr Med J 2021; 39:191. [PMID: 34603572 PMCID: PMC8464204 DOI: 10.11604/pamj.2021.39.191.28298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite advances in diagnostic and therapeutic treatments, it is still associated with poor outcome The purpose of this study of cases is to describe the epidemiological, clinical, therapeutic and evolutionary features of patients with glioblastoma admitted to the Department of Hematology-Oncology (DHO) in Marrakech in 2016 and 2017. We conducted a literature review of epidemiological, clinical, radiological, anatomopathological, therapeutic and evolutionary data from 40 patients. Glioblastoma accounted for 47.6% of treated intracranial tumours. The average age of patients was 52.4±12.3 years. Functional impotence and signs of intracranial hypertension were the main symptoms. Tumours mainly occurred in the parietal region (44%) and were large (57.5%). Aphasia was related to tumour size (p=0.042). Nine cases had glioblastomas-IDH1-wild and one case had glioblastoma-IDH1-mutant. On admission, patients had poor performance-status. This was due to a prolonged time between surgery and DHO admission (p= 0.034). Patients with sensory impairments were older (62.5±3 years) than those without sensory impairments (51.2±12 years) (p=0,045). In-patient women received chemoradiotherapy (1.5±1 month) earlier than men (2.3±1.2 months) (p=0.03). Survival was 13.6±5.3 months; it was unrelated to the time to surgery (p=0.076), the time to DHO (p=0.058), and the time to chemoradiotherapy (p=0.073). The epidemiological, clinical, radiological and evolutionary features of our sample were comparable to literature data. The molecular profiling was not systematically realized. Despite prolonged treatment times, no link to survival was detected.
Collapse
Affiliation(s)
- Moulay Yassine Belghali
- Laboratoire de Recherche Morpho-Science, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech, Maroc
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakech, Maroc
| | - Saadia Ba-M´hamed
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakech, Maroc
| | - Brahim Admou
- Laboratoire d´Immunologie, Centre de Recherche Clinique, Centre Hospitalier Universitaire Mohammed VI, Marrakech, Maroc
- Laboratoire de Recherche B2S, Université Cadi Ayyad, Marrakech, Maroc
| | - Maroua Brahimi
- Laboratoire d´Anatomie Pathologique, Hôpital Mohammed V, Safi, Maroc
| | - Mouna Khouchani
- Laboratoire de Recherche Morpho-Science, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech, Maroc
| |
Collapse
|
10
|
Herrera-Oropeza GE, Angulo-Rojo C, Gástelum-López SA, Varela-Echavarría A, Hernández-Rosales M, Aviña-Padilla K. Glioblastoma multiforme: a multi-omics analysis of driver genes and tumour heterogeneity. Interface Focus 2021; 11:20200072. [PMID: 34123356 PMCID: PMC8193468 DOI: 10.1098/rsfs.2020.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common brain cancer in adults with the lowest life expectancy. The current neuro-oncology practice has incorporated genes involved in key molecular events that drive GBM tumorigenesis as biomarkers to guide diagnosis and design treatment. This study summarizes findings describing the significant heterogeneity of GBM at the transcriptional and genomic levels, emphasizing 18 driver genes with clinical relevance. A pattern was identified fitting the stem cell model for GBM ontogenesis, with an upregulation profile for MGMT and downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal subtype. We also detected overexpression of EGFR, NES, VIM and TP53 in the classical subtype and of MKi67 and OLIG2 genes in the proneural subtype. Furthermore, we found a combination of the four biomarkers EGFR, NES, OLIG2 and VIM with a remarkable differential expression pattern which confers them a strong potential to determine the GBM molecular subtype. A unique distribution of somatic mutations was found for the young and adult population, particularly for genes related to DNA repair and chromatin remodelling, highlighting ATRX, MGMT and IDH1. Our results also revealed that highly lesioned genes undergo differential regulation with particular biological pathways for young patients. This multi-omic analysis will help delineate future strategies related to the use of these molecular markers for clinical decision-making in the medical routine.
Collapse
Affiliation(s)
- Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Carla Angulo-Rojo
- Centro de Investigación Aplicada a la Salud, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Santos Alberto Gástelum-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | | | | | - Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| |
Collapse
|
11
|
Neuromuscular Electrical Stimulation (NMES) in the Management of Glioblastoma Multiforme: A Case Report. REHABILITATION ONCOLOGY 2021. [DOI: 10.1097/01.reo.0000000000000189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Oronsky B, Reid TR, Oronsky A, Sandhu N, Knox SJ. A Review of Newly Diagnosed Glioblastoma. Front Oncol 2021; 10:574012. [PMID: 33614476 PMCID: PMC7892469 DOI: 10.3389/fonc.2020.574012] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is an aggressive and inevitably recurrent primary intra-axial brain tumor with a dismal prognosis. The current mainstay of treatment involves maximally safe surgical resection followed by radiotherapy over a 6-week period with concomitant temozolomide chemotherapy followed by temozolomide maintenance. This review provides a summary of the epidemiological, clinical, histologic and genetic characteristics of newly diagnosed disease as well as the current standard of care and potential future therapeutic prospects.
Collapse
Affiliation(s)
- Bryan Oronsky
- Department of Clinical Research, EpicentRx, San Diego, CA, United States
| | - Tony R. Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| | - Arnold Oronsky
- Department of Clinical Research, InterWest Partners, Menlo Park, CA, United States
| | - Navjot Sandhu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan J. Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Current Perspectives on Therapies, Including Drug Delivery Systems, for Managing Glioblastoma Multiforme. ACS Chem Neurosci 2020; 11:2962-2977. [PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
Collapse
|
14
|
Lee SF, Yip PL, Wong FCS. A man with weak limbs. BMJ 2019; 367:l6233. [PMID: 31699825 DOI: 10.1136/bmj.l6233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shing Fung Lee
- Department of Clinical Oncology, Tuen Mun Hospital, New Territory West Cluster Hospital Authority, Hong Kong
| | - Pui Lam Yip
- Department of Clinical Oncology, Tuen Mun Hospital, New Territory West Cluster Hospital Authority, Hong Kong
| | - Frank Chi Sing Wong
- Department of Clinical Oncology, Tuen Mun Hospital, New Territory West Cluster Hospital Authority, Hong Kong
| |
Collapse
|
15
|
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. Current treatment options at diagnosis are multimodal and include surgical resection, radiation, and chemotherapy. Significant advances in the understanding of the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies for recurrent and newly diagnosed disease. Innovative treatments, such as tumor-treating fields (TTFields) and immunotherapy, give hope for enhanced survival. OBJECTIVES This article reviews the background, risks, common complications, and treatment options for GBM. METHODS A brief review of GBM, treatment options, and a look at new therapies that have been approved for new and recurrent disease are included in this article. FINDINGS Despite aggressive resection and combined modality adjuvant treatment, most GBMs recur. Treatments, such as TTFields, drugs to target molecular receptors, and immunotherapy, are promising new options.
Collapse
|