1
|
Braunscheidel KM, Voren G, Fowler CD, Lu Q, Kuryatov A, Cameron MD, Ibañez-Tallon I, Lindstrom JM, Kamenecka TM, Kenny PJ. SR9883 is a novel small-molecule enhancer of α4β2* nicotinic acetylcholine receptor signaling that decreases intravenous nicotine self-administration in rats. Front Mol Neurosci 2024; 17:1459098. [PMID: 39346680 PMCID: PMC11428108 DOI: 10.3389/fnmol.2024.1459098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4β2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results The NS9283 derivative SR9883 enhanced the effect of nicotine on α4β2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 μM. SR9883 had no effect on α3β2* or α3β4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4β2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.
Collapse
Affiliation(s)
- Kevin M. Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George Voren
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Qun Lu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Ines Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Jon M. Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Theodore M. Kamenecka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Baranzini SE, Börner K, Morris J, Nelson CA, Soman K, Schleimer E, Keiser M, Musen M, Pearce R, Reza T, Smith B, Herr BW, Oskotsky B, Rizk‐Jackson A, Rankin KP, Sanders SJ, Bove R, Rose PW, Israni S, Huang S. A biomedical open knowledge network harnesses the power of AI to understand deep human biology. AI MAG 2022; 43:46-58. [PMID: 36093122 PMCID: PMC9456356 DOI: 10.1002/aaai.12037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Knowledge representation and reasoning (KR&R) has been successfully implemented in many fields to enable computers to solve complex problems with AI methods. However, its application to biomedicine has been lagging in part due to the daunting complexity of molecular and cellular pathways that govern human physiology and pathology. In this article we describe concrete uses of SPOKE, an open knowledge network that connects curated information from 37 specialized and human-curated databases into a single property graph, with 3 million nodes and 15 million edges to date. Applications discussed in this article include drug discovery, COVID-19 research and chronic disease diagnosis and management.
Collapse
Affiliation(s)
- Sergio E. Baranzini
- Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco California USA
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
| | - Katy Börner
- Department of Intelligent Systems Engineering Indiana University Bloomington Indiana USA
| | - John Morris
- Department of Pharmaceutical Chemistry University of California San Francisco San Francisco California USA
| | - Charlotte A. Nelson
- Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco California USA
| | - Karthik Soman
- Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco California USA
| | - Erica Schleimer
- Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco California USA
| | - Michael Keiser
- Department of Pharmaceutical Chemistry University of California San Francisco San Francisco California USA
- Institute for Neurodegenerative Diseases University of California San Francisco San Francisco California USA
| | - Mark Musen
- Department of Medicine (Biomedical Informatics) and of Biomedical Data Science Stanford University School of Medicine Stanford California USA
| | - Roger Pearce
- Center for Applied Scientific Computing (CASC) Lawrence Livermore National Laboratory Livermore California USA
| | - Tahsin Reza
- Center for Applied Scientific Computing (CASC) Lawrence Livermore National Laboratory Livermore California USA
| | - Brett Smith
- Institute for Systems Biology Seattle Washington USA
| | - Bruce W. Herr
- Department of Intelligent Systems Engineering Indiana University Bloomington Indiana USA
| | - Boris Oskotsky
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
| | - Angela Rizk‐Jackson
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
| | - Katherine P. Rankin
- Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco California USA
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
| | - Stephan J. Sanders
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
- Weill Institute for Neurosciences Department of Psychiatry and Behavioral Sciences University of California San Francisco San Francisco California USA
| | - Riley Bove
- Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco California USA
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
| | - Peter W. Rose
- San Diego Supercomputer Center University of California San Diego La Jolla California USA
| | - Sharat Israni
- Bakar Institute for Computational Health Sciences University of California San Francisco San Francisco California USA
| | - Sui Huang
- Institute for Systems Biology Seattle Washington USA
| |
Collapse
|
3
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
4
|
Xi Z, Muldoon P, Wang X, Bi G, Damaj MI, Lichtman AH, Pertwee RG, Gardner EL. Δ 8 -Tetrahydrocannabivarin has potent anti-nicotine effects in several rodent models of nicotine dependence. Br J Pharmacol 2019; 176:4773-4784. [PMID: 31454413 PMCID: PMC6965695 DOI: 10.1111/bph.14844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties. EXPERIMENTAL APPROACH We tested Δ8 -THCV in seven different rodent models relevant to nicotine dependence-nicotine self-administration, cue-triggered nicotine-seeking behaviour following forced abstinence, nicotine-triggered reinstatement of nicotine-seeking behaviour, acquisition of nicotine-induced conditioned place preference, anxiety-like behaviour induced by nicotine withdrawal, somatic withdrawal signs induced by nicotine withdrawal, and hyperalgesia induced by nicotine withdrawal. KEY RESULTS Δ8 -THCV significantly attenuated intravenous nicotine self-administration and both cue-induced and nicotine-induced relapse to nicotine-seeking behaviour in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice. CONCLUSIONS AND IMPLICATIONS We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.
Collapse
Affiliation(s)
- Zheng‐Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - Pretal Muldoon
- Department of Anatomy and NeurobiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Xiao‐Fei Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Guo‐Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - M. Imad Damaj
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Aron H. Lichtman
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| |
Collapse
|
5
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Duran‐Frigola M, Fernández‐Torras A, Bertoni M, Aloy P. Formatting biological big data for modern machine learning in drug discovery. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miquel Duran‐Frigola
- Joint IRB‐BSC‐CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
| | - Adrià Fernández‐Torras
- Joint IRB‐BSC‐CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
| | - Martino Bertoni
- Joint IRB‐BSC‐CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
| | - Patrick Aloy
- Joint IRB‐BSC‐CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| |
Collapse
|
7
|
Rollema H, Hurst RS. The contribution of agonist and antagonist activities of α4β2* nAChR ligands to smoking cessation efficacy: a quantitative analysis of literature data. Psychopharmacology (Berl) 2018; 235:2479-2505. [PMID: 29980822 DOI: 10.1007/s00213-018-4921-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/29/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVE Two mechanisms underlie smoking cessation efficacies of α4β2* nicotinic acetylcholine receptor (nAChR) agonists: a "nicotine-like" agonist activity reduces craving by substituting for nicotine during a quit attempt, and a "nicotine-blocking" antagonist activity attenuates reinforcement by competing with inhaled nicotine during a relapse. To evaluate the contribution of each mechanism to clinical efficacy, we estimated the degree of agonist and antagonist activities of nicotine replacement therapy (NRT), varenicline, cytisine, and the discontinued nAChR agonists dianicline, ABT-418, ABT-089, CP-601927, and CP-601932, relative to the functional effects of nicotine from smoking. METHODS Functional activities that occur in vivo with clinical doses were predicted from literature data on binding and functional potencies at the target α4β2 nAChR, as well as at α6β2* nAChRs, and from estimates of free drug exposures in human brain. Agonist activity is comprised of nAChR activation and desensitization, which were expressed as percentages of desensitization and activation by nicotine from smoking. Antagonist activity was expressed as the reduction in nAChR occupancy by nicotine during smoking in the presence of an agonist. RESULTS Comparisons with odds ratios at end of treatment suggest that extensive α4β2 and α6β2* nAChR desensitization combined with α6β2* nAChR activation at similar levels as nicotine from smoking is associated with clinical efficacy (NRT, varenicline, cytisine, ABT-418). Effective competition with inhaled nicotine for α4β2 and α6β2* nAChRs further improves clinical efficacy (varenicline). Other discontinued nAChR agonists have lower agonist and antagonist activities at α4β2 nAChRs and are inactive or less efficacious than NRT (dianicline, ABT-089, CP-601927, CP-601932). CONCLUSION Three pharmacological effects appear to be key factors underlying smoking cessation efficacy: the degree of activation of α6β2* nAChRs, desensitization of α4β2 and α6β2* nAChRs (agonist activity), and the reduction of nicotine occupancy at α4β2 and α6β2* nAChRs (antagonist activity). No single activity is dominant, and the level of smoking cessation efficacy depends on the profile of these activities achieved at clinical doses. While adequate agonist activity alone seems sufficient for a clinical effect (e.g., NRT, cytisine), clinical efficacy is improved with substantial competitive antagonism of α4β2 nAChRs, i.e., if the drug has a dual agonist-antagonist mechanism of action (e.g., varenicline).
Collapse
Affiliation(s)
- Hans Rollema
- Rollema Biomedical Consulting, 20 Holdridge Court, Mystic, CT, 06355, USA.
| | - Raymond S Hurst
- Hurst Neuropharmacology Consulting, 30 Brook Trail Road, Wayland, MA, 01778, USA
- Concert Pharmaceuticals, Inc., 99 Hayden Avenue, Suite 500, Lexington, MA, 02421, USA
| |
Collapse
|
8
|
Wolfman SL, Gill DF, Bogdanic F, Long K, Al-Hasani R, McCall JG, Bruchas MR, McGehee DS. Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum. Nat Commun 2018; 9:2710. [PMID: 30006624 PMCID: PMC6045623 DOI: 10.1038/s41467-018-04654-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optogenetics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN-LDTg connection blocks nicotine conditioned place aversion, suggesting that the IPN-LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine.
Collapse
Affiliation(s)
- Shannon L Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel F Gill
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Fili Bogdanic
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Katie Long
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Ream Al-Hasani
- St. Louis College of Pharmacy, Center for Clinical Pharmacology and Division of Basic Research of the Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jordan G McCall
- St. Louis College of Pharmacy, Center for Clinical Pharmacology and Division of Basic Research of the Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Basic Research, Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael R Bruchas
- Division of Basic Research, Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Keyworth H, Georgiou P, Zanos P, Rueda AV, Chen Y, Kitchen I, Camarini R, Cropley M, Bailey A. Wheel running during chronic nicotine exposure is protective against mecamylamine-precipitated withdrawal and up-regulates hippocampal α7 nACh receptors in mice. Br J Pharmacol 2018; 175:1928-1943. [PMID: 29266170 PMCID: PMC5978981 DOI: 10.1111/bph.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Evidence suggests that exercise decreases nicotine withdrawal symptoms in humans; however, the mechanisms mediating this effect are unclear. We investigated, in a mouse model, the effect of exercise intensity during chronic nicotine exposure on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-opioid (μ receptors) and D2 dopamine receptors and on brain-derived neurotrophic factor (BDNF) and plasma corticosterone levels. EXPERIMENTAL APPROACH Male C57Bl/6J mice treated with nicotine (minipump, 24 mg·kg-1 ·day-1 ) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 h·day-1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D2 receptor binding was performed in brain sections of these mice. Plasma corticosterone and brain BDNF levels were also measured. KEY RESULTS Nicotine-treated mice undertaking 2 or 24 h·day-1 wheel running displayed a significant reduction in withdrawal symptom severity compared with the sedentary group. Wheel running induced a significant up-regulation of α7 nAChR binding in the CA2/3 area of the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ or D2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone levels and α4β2* nAChR binding, irrespective of exercise regimen. CONCLUSIONS AND IMPLICATIONS We demonstrated for the first time a profound effect of exercise on α7 nAChRs in nicotine-dependent animals, irrespective of exercise intensity. These findings shed light onto the mechanism underlining the protective effect of exercise on the development of nicotine dependence. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Helen Keyworth
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Polymnia Georgiou
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Panos Zanos
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - André Veloso Rueda
- Department of Pharmacology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Ying Chen
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Institute of Psychiatry, Psychology and Neuroscience, Division of Academic PsychiatryKing's College LondonLondonUK
| | - Ian Kitchen
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Mark Cropley
- School of Psychology, Faculty of Health and Medical SciencesUniversity of SurreySurreyUK
| | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Institute of Medical and Biomedical EducationSt George's University of LondonLondonUK
| |
Collapse
|
10
|
Moro F, Orrù A, Marzo CM, Di Clemente A, Cervo L. mGluR2/3 mediates short-term control of nicotine-seeking by acute systemic N-acetylcysteine. Addict Biol 2018; 23:28-40. [PMID: 27558879 DOI: 10.1111/adb.12443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
Chronic self-administration of nicotine induces maladaptive changes in the cortico-accumbal glutamate (Glu) network. Consequently, re-exposure to nicotine-associated cues raises extracellular Glu in the nucleus accumbens reinstating drug-seeking. Restoring basal concentrations of extracellular Glu, thereby increasing tonic activation of the presynaptic group II metabotropic Glu receptors (mGluR2/3) with N-acetylcysteine (N-AC), might offer a valid therapeutic approach for maintaining smoking abstinence. Although N-AC modulates nicotine-seeking behavior by drug-associated stimuli in abstinent rats, it is still unclear whether it occurs through activation of mGluR2/3. Male Wistar rats were trained to associate discriminative stimuli (SD s) with the availability of intravenous nicotine (0.03 mg/kg/65 µl/2-second/infusion) or oral saccharin (100 µl of 50 mg/l) self-administration versus non-reward. Reinforced response was followed by a cue signaling 20-second time-out (CSs). Once the training criterion was met, rats underwent lever press extinction, without reinforcers, SD s and CSs. Re-exposure to nicotine or saccharin SD+ /CS+ , but not non-reward SD- /CS- , revived responding on the previously reinforced lever. Acute N-AC, 100 but not 60 or 30 mg/kg i.p., reduced cue-induced nicotine-seeking. N-AC 100 mg/kg did not modify cue-induced saccharin-seeking behavior or influenced locomotor activity. Blocking mGluR2/3 with the selective antagonist LY341495, 1 mg/kg i.p., completely prevented the antirelapse activity of N-AC. The finding that N-AC prevents cue-induced nicotine-seeking by stimulating mGluR2/3 might indicate a therapeutic opportunity for acute cue-controlled nicotine-seeking. Future studies could evaluate the persistent effects of chronic N-AC in promoting enduring suppression of nicotine-cue conditioned responding.
Collapse
Affiliation(s)
- Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Claudio Marcello Marzo
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| |
Collapse
|
11
|
Myers Virtue S, Rotz ME, Boyd M, Lykon JL, Waldron EM, Theodorou J. Impact of a novel interprofessional dental and pharmacy student tobacco cessation education programme on dental patient outcomes. J Interprof Care 2017; 32:52-62. [DOI: 10.1080/13561820.2017.1378171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shannon Myers Virtue
- Department of Pediatric Dentistry and Community Oral Health Sciences, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
- Christiana Care Health System, Helen F. Graham Cancer Center & Research Institute, Newark, DE, USA
| | - Melissa E Rotz
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Matthew Boyd
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Jillian L Lykon
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Elizabeth M Waldron
- Department of Pediatric Dentistry and Community Oral Health Sciences, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacqueline Theodorou
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
12
|
Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, Green A, Khankhanian P, Baranzini SE. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 2017; 6:26726. [PMID: 28936969 PMCID: PMC5640425 DOI: 10.7554/elife.26726] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
The ability to computationally predict whether a compound treats a disease would improve the economy and success rate of drug approval. This study describes Project Rephetio to systematically model drug efficacy based on 755 existing treatments. First, we constructed Hetionet (neo4j.het.io), an integrative network encoding knowledge from millions of biomedical studies. Hetionet v1.0 consists of 47,031 nodes of 11 types and 2,250,197 relationships of 24 types. Data were integrated from 29 public resources to connect compounds, diseases, genes, anatomies, pathways, biological processes, molecular functions, cellular components, pharmacologic classes, side effects, and symptoms. Next, we identified network patterns that distinguish treatments from non-treatments. Then, we predicted the probability of treatment for 209,168 compound-disease pairs (het.io/repurpose). Our predictions validated on two external sets of treatment and provided pharmacological insights on epilepsy, suggesting they will help prioritize drug repurposing candidates. This study was entirely open and received realtime feedback from 40 community members.
Collapse
Affiliation(s)
- Daniel Scott Himmelstein
- Biological and Medical Informatics Program, University of California, San Francisco, San Francisco, United States.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, United States
| | - Antoine Lizee
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,ITUN-CRTI-UMR 1064 Inserm, University of Nantes, Nantes, France
| | - Christine Hessler
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Leo Brueggeman
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,University of Iowa, Iowa City, United States
| | - Sabrina L Chen
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Johns Hopkins University, Baltimore, United States
| | - Dexter Hadley
- Department of Pediatrics, University of California, San Fransisco, San Fransisco, United States.,Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, United States
| | - Ari Green
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Pouya Khankhanian
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, United States
| | - Sergio E Baranzini
- Biological and Medical Informatics Program, University of California, San Francisco, San Francisco, United States.,Department of Neurology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
13
|
Lassi G, Taylor AE, Timpson NJ, Kenny PJ, Mather RJ, Eisen T, Munafò MR. The CHRNA5-A3-B4 Gene Cluster and Smoking: From Discovery to Therapeutics. Trends Neurosci 2016; 39:851-861. [PMID: 27871728 PMCID: PMC5152594 DOI: 10.1016/j.tins.2016.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 01/11/2023]
Abstract
Genome-wide association studies (GWASs) have identified associations between the CHRNA5-CHRNA3-CHRNB4 gene cluster and smoking heaviness and nicotine dependence. Studies in rodents have described the anatomical localisation and function of the nicotinic acetylcholine receptors (nAChRs) formed by the subunits encoded by this gene cluster. Further investigations that complemented these studies highlighted the variability of individuals' smoking behaviours and their ability to adjust nicotine intake. GWASs of smoking-related health outcomes have also identified this signal in the CHRNA5-CHRNA3-CHRNB4 gene cluster. This insight underpins approaches to strengthen causal inference in observational data. Combining genetic and mechanistic studies of nicotine dependence and smoking heaviness may reveal novel targets for medication development. Validated targets can inform genetic therapeutic interventions for smoking cessation and tobacco-related diseases.
Collapse
Affiliation(s)
- Glenda Lassi
- UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK; Oncology Translational Medicine Unit, Early Clinical Development, AstraZeneca, Cambridge, UK.
| | - Amy E Taylor
- UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Paul J Kenny
- Department of Neuroscience and Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Tim Eisen
- Oncology Translational Medicine Unit, Early Clinical Development, AstraZeneca, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marcus R Munafò
- UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Wadgave U, Nagesh L. Nicotine Replacement Therapy: An Overview. Int J Health Sci (Qassim) 2016; 10:425-435. [PMID: 27610066 PMCID: PMC5003586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Today tobacco use is the single greatest preventable cause of death in the world. Tobacco use is often incorrectly perceived to be solely a personal choice. This is contradicted by the fact that when fully aware of the health impact, most tobacco users want to quit but find it difficult to stop due to the addictiveness of nicotine. Henceforth, Nicotine replacement therapy (NRT) came into existence which temporarily replaces much of the nicotine from tobacco to reduce motivation to consume tobacco and nicotine withdrawal symptoms, thus easing the transition from cigarette smoking to complete abstinence. Various alternative nicotine sources (gum, transdermal patch, nasal spray, inhaler and sublingual tablets/lozenges) have been incorporated into tobacco cessation programs. Recent research is more focusing on rapid delivery of nicotine (Nicotine preloading, true pulmonary inhaler) and immunological approaches (nicotine vaccine) to tackle nicotine dependence. These NRTs are in general well tolerated and have minimal adverse effects. The review aims to summarize literature on various modes of nicotine replacement therapy methods currently used to treat nicotine dependence, and to give an overview about future possible approaches to treat tobacco use disorder.
Collapse
Affiliation(s)
- Umesh Wadgave
- Assistant Professor, Dept. of Public Health Dentistry, Bharati Vidyapeeth Deemed University Dental College and Hospital, Sangli, Maharashtra, India
| | - L Nagesh
- Professor and Head, Dept. of Public Health Dentistry, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| |
Collapse
|
15
|
Justinova Z, Panlilio LV, Secci ME, Redhi GH, Schindler CW, Cross AJ, Mrzljak L, Medd A, Shaham Y, Goldberg SR. The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys. Biol Psychiatry 2015; 78:452-62. [PMID: 25802079 PMCID: PMC4529372 DOI: 10.1016/j.biopsych.2015.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Based on rodent studies, group II metabotropic glutamate receptors (mGluR2 and mGluR3) were suggested as targets for addiction treatment. However, LY379268 and other group II agonists do not discriminate between the mainly presynaptic inhibitory mGluR2 (the proposed treatment target) and mGluR3. These agonists also produce tolerance over repeated administration and are no longer considered for addiction treatment. Here, we determined the effects of AZD8529, a selective positive allosteric modulator of mGluR2, on abuse-related effects of nicotine in squirrel monkeys and rats. METHODS We first assessed modulation of mGluR2 function by AZD8529 using functional in vitro assays in membranes prepared from a cell line expressing human mGluR2 and in primate brain slices. We then determined AZD8529 (.03-10 mg/kg, intramuscular injection) effects on intravenous nicotine self-administration and reinstatement of nicotine seeking induced by nicotine priming or nicotine-associated cues. We also determined AZD8529 effects on food self-administration in monkeys and nicotine-induced dopamine release in accumbens shell in rats. RESULTS AZD8529 potentiated agonist-induced activation of mGluR2 in the membrane-binding assay and in primate cortex, hippocampus, and striatum. In monkeys, AZD8529 decreased nicotine self-administration at doses (.3-3 mg/kg) that did not affect food self-administration. AZD8529 also reduced nicotine priming- and cue-induced reinstatement of nicotine seeking after extinction of the drug-reinforced responding. In rats, AZD8529 decreased nicotine-induced accumbens dopamine release. CONCLUSIONS These results provide evidence for efficacy of positive allosteric modulators of mGluR2 in nonhuman primate models of nicotine reinforcement and relapse. This drug class should be considered for nicotine addiction treatment.
Collapse
Affiliation(s)
- Zuzana Justinova
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Beckmann JS, Meyer AC, Pivavarchyk M, Horton DB, Zheng G, Smith AM, Wooters TE, McIntosh JM, Crooks PA, Bardo MT, Dwoskin LP. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement. Neurochem Res 2015; 40:2121-30. [PMID: 26227997 DOI: 10.1007/s11064-015-1680-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
Abstract
α6β2* nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [(3)H]nicotine or [(3)H]methyllycaconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule that acts as a potent and selective antagonist at α6β2* nAChRs to specifically decrease nicotine self-administration in rats, thus, establishing r-bPiDI as a lead compound for development as a treatment for nicotine addiction.
Collapse
Affiliation(s)
- Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Andrew C Meyer
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - M Pivavarchyk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA
| | - David B Horton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew M Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA
| | - Thomas E Wooters
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA.
| |
Collapse
|
17
|
Liu M, Fan R, Liu X, Cheng F, Wang J. Pathways and networks-based analysis of candidate genes associated with nicotine addiction. PLoS One 2015; 10:e0127438. [PMID: 25965070 PMCID: PMC4429103 DOI: 10.1371/journal.pone.0127438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/14/2015] [Indexed: 11/30/2022] Open
Abstract
Nicotine is the addictive substance in tobacco and it has a broad impact on both the central and peripheral nervous systems. Over the past decades, an increasing number of genes potentially involved in nicotine addiction have been identified by different technical approaches. However, the molecular mechanisms underlying nicotine addiction remain largely unclear. Under such situation, a comprehensive analysis focusing on the overall functional characteristics of these genes, as well as how they interact with each other will provide us valuable information to understand nicotine addiction. In this study, we presented a systematic analysis on nicotine addiction-related genes to identify the major underlying biological themes. Functional analysis revealed that biological processes and biochemical pathways related to neurodevelopment, immune system and metabolism were significantly enriched in the nicotine addiction-related genes. By extracting the nicotine addiction-specific subnetwork, a number of novel genes associated with addiction were identified. Moreover, we constructed a schematic molecular network for nicotine addiction via integrating the pathways and network, providing an intuitional view to understand the development of nicotine addiction. Pathway and network analysis indicated that the biological processes related to nicotine addiction were complex. Results from our work may have important implications for understanding the molecular mechanism underlying nicotine addiction.
Collapse
Affiliation(s)
- Meng Liu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Rui Fan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xinhua Liu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JW); (FC)
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- * E-mail: (JW); (FC)
| |
Collapse
|
18
|
Perkins KA, Karelitz JL, Michael VC, Fromuth M, Conklin CA, Chengappa KNR, Hope C, Lerman C. Initial Evaluation of Fenofibrate for Efficacy in Aiding Smoking Abstinence. Nicotine Tob Res 2015; 18:74-8. [PMID: 25895948 DOI: 10.1093/ntr/ntv085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Primate and rodent models show that peroxisome proliferator-activated receptor-alpha (PPAR-α) ligands, including fibrate medications, reduce nicotine reinforcement, reward, and related effects. We tested fenofibrate, the most common U.S. Food and Drug Administration-approved fibrate for lipid control versus placebo for initial evidence of efficacy in smoking cessation using a validated cross-over procedure for early Phase 2 evaluations. METHODS Adult dependent smokers (N = 38) in this 4-week within-subjects study were those already intending to try to quit in the next 2 months. All smoked ad libitum during weeks 1 (baseline) and 3 (washout) and began fenofibrate (160 mg/d; dosing approved for lipid control) or placebo near the end of weeks 1 and 3. Following each 4-day dose run-up, they were then instructed to try to quit for 4 days (Tuesday-Friday) during weeks 2 and 4, with the order of medication conditions counter-balanced and administered double-blind. Abstinence was verified daily in each 4-day quit period by self-report of no smoking in the prior 24 hours and carbon monoxide < 5 ppm. Secondary measures of acute smoking reinforcement and cue reactivity prior to quitting, and smoking reduction when trying to quit, were also assessed. RESULTS No differences between fenofibrate versus placebo were found on days quit (means ± SEM of 1.8±0.3 vs. 1.9±0.3, respectively). Similarly, there were no differences in any of the secondary measures (all P > .20). CONCLUSIONS Although higher dosing or other proliferator-activated receptor-alpha agonists may show efficacy, this study indicates that fenofibrate does not aid ability to stop smoking during a brief practice quit period in dependent smokers high in current quit interest.
Collapse
Affiliation(s)
| | | | | | - Margaret Fromuth
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA
| | | | | | - Chris Hope
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA
| | - Caryn Lerman
- Department of Psychiatry and Abramson Cancer Center, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
19
|
Lockner JW, Lively JM, Collins KC, Vendruscolo JCM, Azar MR, Janda KD. A Conjugate Vaccine Using Enantiopure Hapten Imparts Superior Nicotine-Binding Capacity. J Med Chem 2014; 58:1005-11. [DOI: 10.1021/jm501625j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jonathan W. Lockner
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jenny M. Lively
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| | - Karen C. Collins
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| | | | - Marc R. Azar
- Behavioral Pharma Inc., 505 Coast
Boulevard South, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Perkins KA. Improving efficiency of initial tests for efficacy in smoking cessation drug discovery. Expert Opin Drug Discov 2014; 9:1259-64. [PMID: 25138487 DOI: 10.1517/17460441.2014.951632] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION One obstacle to rapid development of new smoking cessation medications is the inefficient early clinical evaluation of the efficacy of novel drugs, which inform us as to whether or not to proceed with the greater expense and time of more formal clinical trials. The vast majority of novel drugs fail to show efficacy for cessation only after substantial resources have been spent and, thus, are largely wasted. AREAS COVERED The author reviews the general limitations in the current typical procedures for initial tests of cessation efficacy in novel drugs. Small, randomized clinical trials often have good validity but may have practical limitations in achieving adequate statistical power to test novel versus placebo treatment conditions. Lab tests of acute drug effects on abstinence symptoms, during brief enforced cessation periods, are practical but have limited clinical predictive validity. EXPERT OPINION Initial efficacy testing may be more efficient if done using innovative crossover designs that evaluate brief 'practice' quit periods for both active and placebo treatments within the same smokers, recruiting those high in quit motivation. Because this approach would require far fewer subjects and a shorter duration of testing, results could be obtained more rapidly and inexpensively to indicate that a novel drug may, or may not, be sufficiently efficacious as to warrant the greater costs and time of formal randomized clinical trials.
Collapse
Affiliation(s)
- Kenneth A Perkins
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic , 3811 O'Hara Street, Pittsburgh, PA 15213 , USA +1 412 246 5395 ; +1 412 246 5390 ;
| |
Collapse
|
21
|
Ashare RL, Schmidt HD. Optimizing treatments for nicotine dependence by increasing cognitive performance during withdrawal. Expert Opin Drug Discov 2014; 9:579-94. [PMID: 24707983 DOI: 10.1517/17460441.2014.908180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, there is a clear need to develop novel antismoking medications. Nicotine withdrawal is associated with cognitive impairments that predict smoking relapse. It has been proposed that these cognitive deficits are a hallmark of nicotine withdrawal that could be targeted in order to prevent smoking relapse. Thus, pharmacotherapies that increase cognitive performance during nicotine withdrawal may represent potential smoking cessation agents. AREAS COVERED The authors review the clinical literature demonstrating that nicotine withdrawal is associated with deficits in working memory, attention and response inhibition. They then briefly summarize different classes of compounds and strategies to increase cognitive performance during nicotine withdrawal. Particular emphasis has been placed on translational research in order to highlight areas for which there is strong rationale for pilot clinical trials of potential smoking cessation medications. EXPERT OPINION There is emerging evidence that supports deficits in cognitive function as a plausible nicotine withdrawal phenotype. The authors furthermore believe that the translational paradigms presented here may represent efficient and valid means for the evaluation of cognitive-enhancing medications as possible treatments for nicotine dependence.
Collapse
Affiliation(s)
- Rebecca L Ashare
- University of Pennsylvania, Perelman School of Medicine, Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry , 3535 Market St, Suite 4100, Philadelphia, PA 19104 , USA +1 215 746 5789 ;
| | | |
Collapse
|
22
|
Taylor JJ, Laudenbach M, Tucker AM, Jenkins MK, Pravetoni M. Hapten-specific naïve B cells are biomarkers of vaccine efficacy against drugs of abuse. J Immunol Methods 2014; 405:74-86. [PMID: 24462800 DOI: 10.1016/j.jim.2014.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022]
Abstract
Vaccination against drugs of abuse shows efficacy in animal models, yet few subjects achieve effective serum antibody titers in clinical studies. A barrier to translation is the lack of pre-vaccination screening assays that predict the most effective conjugate vaccines or subjects amenable to vaccination. To address this obstacle, we developed a fluorescent antigen-based enrichment method paired with flow cytometry to characterize hapten-specific B cells. Using this approach, we studied naïve and activated B cells specific for structurally-related model haptens based on derivatization of the morphinan structure at the C6 position on oxycodone or at the C8 position on hydrocodone, and showing different pre-clinical efficacy against the prescription opioid oxycodone. Prior to vaccination, naïve B cells exhibited relatively higher affinity for the more effective C6-derivatized oxycodone-based hapten (6OXY) and the 6OXY-specific naïve B cell population contained a higher number of B cells with greater affinity for free oxycodone. Higher affinity of naïve B cells for hapten or oxycodone reflected greater efficacy of vaccination in blocking oxycodone distribution to brain in mice. Shortly after immunization, activated hapten-specific B cells were detected prior to oxycodone-specific serum antibodies and provided earlier evidence of vaccine failure or success. Analysis of hapten-specific naïve and activated B cells may aid rational vaccine design and provide screening tools to predict vaccine clinical efficacy against drugs of abuse or other small molecules.
Collapse
Affiliation(s)
- J J Taylor
- University of Minnesota, Department of Microbiology, Center for Immunology, 2101 6th Street SE, 2-142 MBB, Minneapolis, MN 55455, USA
| | - M Laudenbach
- Minneapolis Medical Research Foundation, 701 Park Avenue, Minneapolis, MN 55404, USA
| | - A M Tucker
- Minneapolis Medical Research Foundation, 701 Park Avenue, Minneapolis, MN 55404, USA
| | - M K Jenkins
- University of Minnesota, Department of Microbiology, Center for Immunology, 2101 6th Street SE, 2-142 MBB, Minneapolis, MN 55455, USA
| | - M Pravetoni
- Minneapolis Medical Research Foundation, 701 Park Avenue, Minneapolis, MN 55404, USA; University of Minnesota, School of Medicine, Department of Medicine, 420 Delaware Street SE, MMC 194, Suite 14-110, Phillips-Wangensteen Building, Minneapolis, MN 55455, USA; University of Minnesota, School of Medicine, Department of Pharmacology, 6-120 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Crooks PA, Bardo MT, Dwoskin LP. Nicotinic receptor antagonists as treatments for nicotine abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:513-51. [PMID: 24484986 DOI: 10.1016/b978-0-12-420118-7.00013-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the proven efficacy of current pharmacotherapies for tobacco dependence, relapse rates continue to be high, indicating that novel medications are needed. Currently, several smoking cessation agents are available, including varenicline (Chantix®), bupropion (Zyban®), and cytisine (Tabex®). Varenicline and cytisine are partial agonists at the α4β2* nicotinic acetylcholine receptor (nAChR). Bupropion is an antidepressant but is also an antagonist at α3β2* ganglionic nAChRs. The rewarding effects of nicotine are mediated, in part, by nicotine-evoked dopamine (DA) release leading to sensitization, which is associated with repeated nicotine administration and nicotine addiction. Receptor antagonists that selectivity target central nAChR subtypes mediating nicotine-evoked DA release should have efficacy as tobacco use cessation agents with the therapeutic advantage of a limited side-effect profile. While α-conotoxin MII (α-CtxMII)-insensitive nAChRs (e.g., α4β2*) contribute to nicotine-evoked DA release, these nAChRs are widely distributed in the brain, and inhibition of these receptors may lead to nonselective and untoward effects. In contrast, α-CtxMII-sensitive nAChRs mediating nicotine-evoked DA release offer an advantage as targets for smoking cessation, due to their more restricted localization primarily to dopaminergic neurons. Small drug-like molecules that are selective antagonists at α-CtxMII-sensitive nAChR subtypes that contain α6 and β2 subunits have now been identified. Early research identified a variety of quaternary ammonium analogs that were potent and selective antagonists at nAChRs mediating nicotine-evoked DA release. More recent data have shown that novel, nonquaternary bis-1,2,5,6-tetrahydropyridine analogs potently inhibit (IC50<1nM) nicotine-evoked DA release in vitro by acting as antagonists at α-CtxMII-sensitive nAChR subtypes; these compounds also decrease NIC self-administration in rats.
Collapse
Affiliation(s)
- Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arizona, USA.
| | - Michael T Bardo
- Department of Psychology, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Perkins KA, Lerman C. An efficient early phase 2 procedure to screen medications for efficacy in smoking cessation. Psychopharmacology (Berl) 2014; 231:1-11. [PMID: 24297304 PMCID: PMC3910509 DOI: 10.1007/s00213-013-3364-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/13/2013] [Indexed: 01/26/2023]
Abstract
RATIONALE Initial screening of new medications for potential efficacy (i.e., Food and Drug Administration (FDA) early phase 2), such as in aiding smoking cessation, should be efficient in identifying which drugs do, or do not, warrant more extensive (and expensive) clinical testing. OBJECTIVES This focused review outlines our research on development, evaluation, and validation of an efficient crossover procedure for sensitivity in detecting medication efficacy for smoking cessation. First-line FDA-approved medications of nicotine patch, varenicline, and bupropion were tested as model drugs, in three separate placebo-controlled studies. We also tested specificity of our procedure in identifying a drug that lacks efficacy, using modafinil. RESULTS This crossover procedure showed sensitivity (increased days of abstinence) during week-long "practice" quit attempts with each of the active cessation medications (positive controls) versus placebo, but not with modafinil (negative control) versus placebo, as hypothesized. Sensitivity to medication efficacy signal was observed only in smokers high in intrinsic quit motivation (i.e., already preparing to quit soon) and not smokers low in intrinsic quit motivation, even if monetarily reinforced for abstinence (i.e., given extrinsic motivation). CONCLUSIONS A crossover procedure requiring less time and fewer subjects than formal trials may provide an efficient strategy for a go/no-go decision whether to advance to subsequent phase 2 randomized clinical trials with a novel drug. Future research is needed to replicate our results and evaluate this procedure with novel compounds, identify factors that may limit its utility, and evaluate its applicability to testing efficacy of compounds for treating other forms of addiction.
Collapse
Affiliation(s)
- Kenneth A Perkins
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA,
| | | |
Collapse
|
25
|
Li X, Semenova S, D'Souza MS, Stoker AK, Markou A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation. Neuropharmacology 2014; 76 Pt B:554-65. [PMID: 23752091 PMCID: PMC3830589 DOI: 10.1016/j.neuropharm.2013.05.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/29/2023]
Abstract
Tobacco smoking continues to be a major global health hazard despite significant public awareness of its harmful consequences. Although several treatment options are currently available for smoking cessation, these medications are effective in only a small subset of smokers, and relapse rates continue to be high. Therefore, a better understanding of the neurobiological mechanisms that mediate tobacco dependence is essential for the development of effective smoking cessation medications. Nicotine is the primary psychoactive component of tobacco that drives the harmful tobacco smoking habit. Nicotine binds to nicotinic acetylcholine receptors (nAChRs) in the brain, resulting in the release of a wide range of neurotransmitters, including glutamate and γ-aminobutyric acid (GABA). This review article focuses on the role of the excitatory glutamate system and inhibitory GABA system in nicotine dependence. Accumulating evidence suggests that blockade of glutamatergic transmission or facilitation of GABAergic transmission attenuates the positive reinforcing and incentive motivational aspects of nicotine, inhibits the reward-enhancing and conditioned rewarding effects of nicotine, and blocks nicotine-seeking behavior. Chronic nicotine exposure produced long-term neuroadaptations that contribute to nicotine withdrawal, but the role of GABA and glutamate transmission in nicotine withdrawal is less understood. Overall, the findings presented in this review provide strong converging evidence for the potential effectiveness of glutamatergic and GABAergic medications in nicotine dependence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
| | | | | | - Astrid K. Stoker
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Wang Y, Borlak J, Tong W. Toxicogenomics – A Drug Development Perspective. GENOMIC BIOMARKERS FOR PHARMACEUTICAL DEVELOPMENT 2014:127-155. [DOI: 10.1016/b978-0-12-397336-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Minichino A, Bersani FS, Calò WK, Spagnoli F, Francesconi M, Vicinanza R, Delle Chiaie R, Biondi M. Smoking behaviour and mental health disorders--mutual influences and implications for therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4790-811. [PMID: 24157506 PMCID: PMC3823321 DOI: 10.3390/ijerph10104790] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/27/2022]
Abstract
Tobacco use is strongly associated with a variety of psychiatric disorders. Smokers are more likely than non-smokers to meet current criteria for mental health conditions, such as mood disorders, anxiety disorders and psychosis. Evidence also suggest that smokers with psychiatric disorders may have more difficulty quitting, offering at least a partial explanation for why smoking rates are higher in this population. The mechanisms linking mental health conditions and cigarette smoking are complex and likely differ across each of the various disorders. The most commonly held view is that patients with mental health conditions smoke in an effort to regulate the symptoms associated with their disorder. However some recent evidence suggests that quitting smoking may actually improve mental health symptoms. This is particularly true if the tobacco cessation intervention is integrated into the context of ongoing mental health treatment. In this paper we reviewed and summarized the most relevant knowledge about the relationship between tobacco use and dependence and psychiatric disorders. We also reviewed the most effective smoking cessation strategies available for patients with psychiatric comorbidity and the impact of smoking behavior on psychiatric medication.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| | - Francesco Saverio Bersani
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| | - Wanda Katharina Calò
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| | - Francesco Spagnoli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| | - Roberto Vicinanza
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University, Rome 00185, Italy; E-Mail:
| | - Roberto Delle Chiaie
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| | - Massimo Biondi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (F.S.B.); (W.K.C.); (F.S.); (M.F.); (R.D.C.); (M.B.)
| |
Collapse
|
28
|
Ngkelo A, Adcock IM. New treatments for COPD. Curr Opin Pharmacol 2013; 13:362-9. [DOI: 10.1016/j.coph.2013.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/03/2013] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
|