1
|
Qin Y, Chen L, Zhao Z, Li Y, Tian X, Feng M, Tang J, Ji K. Dietary nutrient intake and cancer presence: evidence from a cross-sectional study. Front Nutr 2025; 12:1551822. [PMID: 40236640 PMCID: PMC11996664 DOI: 10.3389/fnut.2025.1551822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND While the role of specific nutrients in cancer is established, associations between comprehensive between dietary nutrient intake and cancer presence remain underexplored. This cross-sectional study investigates global dietary nutrient profiles in relation to solid and blood cancers. METHODS A total of 42,732 mobile adults from the National Health and Nutrition Examination Survey (NHANES, 2001-2023) were enrolled in this study. The potential associations of dietary intakes of 34 nutrients and 4 common trace components with cancer presence were investigated by weighted logistic regression and restricted cubic spline. RESULTS Higher intake of saturated fatty acid (OR = 1.1082, 95% CI: 1.0110-1.2146), β-carotene (OR = 1.0431, 1.0096-1.0777) and vitamin K (OR = 1.0370, 1.0094-1.0654) was positively associated with overall cancer presence, while phosphorus intake (OR = 0.9016, 0.8218-0.9892) showed a protective association. For solid tumors, dietary intakes of saturated fatty acid (OR = 1.1099), α-carotene (OR = 1.0353), β-carotene (OR = 1.0484), and vitamin K (OR = 1.0405) exhibited positive associations. Retinol intake was linked to blood carcinoma (OR = 1.0935, 1.0222-1.1698). Dose-response analyses revealed linear relationships without non-linear thresholds. CONCLUSION Specific dietary nutrients, notably saturated fats, carotenoids, and vitamin K, are associated with increased cancer presence, whereas phosphorus intake is associated with the reduced cancer presence. Due to the cross-sectional nature of the study and the measurement of dietary intake after cancer diagnosis, a causal relationship could not be established. These findings underscore the need for longitudinal studies to establish causality and inform dietary interventions in cancer management.
Collapse
Affiliation(s)
- Youjia Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zilong Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuguan Li
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Tian
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Tang
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kangkang Ji
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Clinical Medical Research, Binhai County People’s Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Sahoo BM, Banik BK, Sharma S, Singh B. Current Insights into Therapeutic Potential of Terpenoids as Anticancer Agents. Anticancer Agents Med Chem 2025; 25:339-356. [PMID: 39440731 DOI: 10.2174/0118715206342920241008062115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Cancer is regarded as one of the main causes of death globally. Future predictions indicate that the death rate from cancer will keep rising, which may reach 11.4 million in 2030. Carcinogenesis refers to the phenomenon of transforming a normal cell into a cancer cell. Cancer is characterized by unregulated and uncontrolled cell division due to alterations at the molecular and genetic levels. Gene mutations can speed up the rate of cell division, which leads to cancer. Metastasis entails the dissemination of cancer cells from the primary site to distant regions of the body via the circulatory or lymphatic systems. OBJECTIVE This review is mainly focusing on the anticancer properties of terpenoids. In the case of human beings, several types of cancers can be treated clinically based on the form and phase of the cancer. So, there are different types of treatment regimens available for the management of cancer, such as immunotherapy, hormonal therapy, radiation therapy, and chemotherapy. METHODS Several problems are associated with cancer therapy, including chemoresistance, severe toxicity, relapse, and metastasis. To minimize these complications, natural products like terpenoids seem to be beneficial for the effective management of cancer. RESULTS Experimental results revealed that the anticancer potential of terpenoids is due to activation of apoptosis and stimulation of cell cycle arrest. Some of the terpenoids exhibit anticancer effects by inhibiting angiogenesis and metastasis via the regulation of several signaling pathways intracellularly. Certain terpenoids have been shown to work in concert with anticancer medications (doxorubicin, cisplatin, paclitaxel, and 5-fluorouracil) to provide synergistic effects. These terpenoids have also been shown to be effective against cancer cells that are resistant to several drug therapies. CONCLUSION The current study will focus on signaling pathways and mode of action of several types of terpenoids as anticancer agents. Further, it will provide insights into the ongoing clinical trials and prospective pathways for the advancement of terpenoids as possible anti-cancer agents.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology & Management, Jatni, Bhubaneswar, Khurda, 752050, Odisha, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
- Department of Pharmacy, S.N. Medical College, Agra, 282002, India
| |
Collapse
|
3
|
Eilers T, Legein M, Temmermans J, Dillen J, Vandendriessche I, Sandra K, Bron PA, Wittouck S, Lebeer S. Distribution of C30 carotenoid biosynthesis genes suggests habitat adaptation function in insect-adapted and nomadic Lactobacillaceae. Commun Biol 2024; 7:1610. [PMID: 39627396 PMCID: PMC11615344 DOI: 10.1038/s42003-024-07291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Carotenoids are membrane-bound pigments that are essential for photosynthesizing plants and algae, widely applied in food, feed and cosmetics due to their antioxidant and anti-inflammatory properties. The production of carotenoids, particularly C30 forms, has been documented in some non-photosynthetic prokaryotes. However, their function, distribution and ecology beyond photosynthesizing organisms remains understudied. In this study, we performed an eco-evolutionary analysis of terpenoid biosynthetic gene clusters in the Lactobacillaceae family, screening 4203 dereplicated genomes for terpenoid biosynthesis genes, and detected crtMN genes in 28/361 (7.7%) species across 14/34 (41.2%) genera. These genes encode key enzymes for producing the C30 carotenoid 4,4'-diaponeurosporene. crtMN genes appeared to be convergently gained within Fructilactobacillus and horizontally transferred across species and genera, including Lactiplantibacillus to Levilactobacillus. The phenotype was confirmed in 87% of the predicted crtMN gene carriers (27/31). Nomadic and insect-adapted species, particularly those isolated from vegetable fermentations, e.g., Lactiplantibacillus, and floral habitats, e.g., Fructilactobacillus, contained crtMN genes, while vertebrate-associated species, including vaginal associated species, lacked this trait. This habitat association aligned with the observations that C30 carotenoid-producing strains were more resistant to UV-stress. In summary, C30 carotenoid biosynthesis plays a role in habitat adaptation and is scattered across Lactobacillaceae in line with this habitat adaptation.
Collapse
Affiliation(s)
- Tom Eilers
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Marie Legein
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jari Temmermans
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jelle Dillen
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | | | - Koen Sandra
- RIC BV, President Kennedypark 6, 8500, Kortrijk, Belgium
| | - Peter A Bron
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Stijn Wittouck
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
4
|
Blagov AV, Summerhill VI, Sukhorukov VN, Zhigmitova EB, Postnov AY, Orekhov AN. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front Pharmacol 2024; 15:1378335. [PMID: 38818374 PMCID: PMC11137403 DOI: 10.3389/fphar.2024.1378335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O2•-) and hydrogen peroxide (H2O2), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | | | - Anton Y. Postnov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
5
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
6
|
Sui J, Guo J, Pan D, Wang Y, Xu Y, Sun G, Xia H. The Efficacy of Dietary Intake, Supplementation, and Blood Concentrations of Carotenoids in Cancer Prevention: Insights from an Umbrella Meta-Analysis. Foods 2024; 13:1321. [PMID: 38731692 PMCID: PMC11083701 DOI: 10.3390/foods13091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Previous meta-analyses of multiple studies have suggested that dietary intake and blood concentrations of carotenoids, as well as dietary supplement of certain carotenoids, play a role in reducing the risk of cancer. However, the conclusions of these studies have been subject to controversy. We conducted an umbrella review of meta-analyses to comprehensively analyze and evaluate the evidence pertaining the association between carotenoids and cancer outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases of meta-analyses and systematic reviews up to June 2023. Our selection criteria encompassed meta-analyses of cohort and case-control studies, as well as randomized controlled clinical trials, which investigated the associations between carotenoids and cancer risk. We also determined the levels of evidence for these associations with AMSTAR 2 criteria. We included 51 eligible articles, including 198 meta-analyses for qualitative synthesis in the umbrella review. Despite the presence of moderate to high heterogeneity among the studies, dietary intake, supplementation, and blood concentrations of carotenoids were inversely associated with the risk of total cancer, and certain specific cancers of lung, digestive system, prostate, breast, head and neck, and others. Subgroup analysis also showed that individual carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene) offer certain protection against specific types of cancers. However, high doses of carotenoid supplements, especially β-carotene, significantly increased the risk of total cancer, lung cancer, and bladder cancer. Our umbrella meta-analysis supported that high intake of dietary carotenoids as a whole food approach could be more beneficial in reducing cancer risk. Concurrently, the findings suggest that the efficacy of single-carotenoid supplementation in cancer prevention remains a subject of controversy.
Collapse
Affiliation(s)
- Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (J.G.); (Y.X.)
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Jingwen Guo
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (J.G.); (Y.X.)
| | - Da Pan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Ying Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Ying Xu
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (J.G.); (Y.X.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (D.P.); (Y.W.); (G.S.)
| |
Collapse
|
7
|
Ademowo OS, Oyebode O, Edward R, Conway ME, Griffiths HR, Dias IH. Effects of carotenoids on mitochondrial dysfunction. Biochem Soc Trans 2024; 52:65-74. [PMID: 38385583 PMCID: PMC10903474 DOI: 10.1042/bst20230193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Oxidative stress, an imbalance between pro-oxidant and antioxidant status, favouring the pro-oxidant state is a result of increased production of reactive oxygen species (ROS) or inadequate antioxidant protection. ROS are produced through several mechanisms in cells including during mitochondrial oxidative phosphorylation. Increased mitochondrial-derived ROS are associated with mitochondrial dysfunction, an early event in age-related diseases such as Alzheimer's diseases (ADs) and in metabolic disorders including diabetes. AD post-mortem investigations of affected brain regions have shown the accumulation of oxidative damage to macromolecules, and oxidative stress has been considered an important contributor to disease pathology. An increase in oxidative stress, which leads to increased levels of superoxide, hydrogen peroxide and other ROS in a potentially vicious cycle is both causative and a consequence of mitochondrial dysfunction. Mitochondrial dysfunction may be ameliorated by molecules with antioxidant capacities that accumulate in mitochondria such as carotenoids. However, the role of carotenoids in mitigating mitochondrial dysfunction is not fully understood. A better understanding of the role of antioxidants in mitochondrial function is a promising lead towards the development of novel and effective treatment strategies for age-related diseases. This review evaluates and summarises some of the latest developments and insights into the effects of carotenoids on mitochondrial dysfunction with a focus on the antioxidant properties of carotenoids. The mitochondria-protective role of carotenoids may be key in therapeutic strategies and targeting the mitochondria ROS is emerging in drug development for age-related diseases.
Collapse
Affiliation(s)
- Opeyemi Stella Ademowo
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Olubukola Oyebode
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Roshita Edward
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Myra E. Conway
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Helen R. Griffiths
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, U.K
| | - Irundika H.K. Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham U.K
| |
Collapse
|
8
|
Ojobor CC, O'Brien GM, Siervo M, Ogbonnaya C, Brandt K. Carrot intake is consistently negatively associated with cancer incidence: A systematic review and meta-analysis of prospective observational studies. Crit Rev Food Sci Nutr 2023; 65:1009-1021. [PMID: 38104588 DOI: 10.1080/10408398.2023.2287176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Carrots are main dietary sources of several potential anti-cancer compounds, including polyacetylenes, while β-carotene has shown no benefits in controlled cancer trials. Accordingly, associations between carrot intake and cancer incidence were quantified, where necessary using α-carotene as a non-causal biomarker of carrot consumption, by searching for studies published before June 2022 reporting risk estimates for relationships of cancer incidence with carrot intake or α-carotene intake or α-carotene plasma concentration, supplemented with hand searches of included studies and reviews. Meta-analyses comparing highest and lowest reported intakes in prospective studies using a random-effects model estimated summary relative risks (RRs) with 95% confidence intervals (CIs), separately for carrot intake or α-carotene plasma concentration, and the corresponding dose-responses. Of 198 observational studies, in 50 prospective studies with 52000 cases recording carrot intake, the cancer-risk was substantially reduced (RR 0.90, 95% CI 0.87-0.94, p ˂ 0·00004). In 30 prospective studies with 9331 cases reporting plasma α-carotene levels, summary RR was 0.80 (0.72-0.89, p ˂ 0·00006). For both exposure types, inter-study heterogeneity was moderate, interaction with cancer types insignificant, and the dose-response significant (p ˂ 0·01). In conclusion, carrot consumption is robustly associated with decreased cancer-risk; carrot consumption should be encouraged, and the causal mechanisms further investigated.
Collapse
Affiliation(s)
- Charles C Ojobor
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gerard M O'Brien
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Siervo
- School of Life Sciences, Queen's Medical Centre, The University of Nottingham Medical School, Nottingham, UK
| | - Chibueze Ogbonnaya
- Population, Policy and Practice Research and Teaching Department, Institute of Child Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Kirsten Brandt
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Giles ED, Purcell SA, Olson J, Vrieling A, Hirko KA, Woodruff K, Playdon MC, Thomas GA, Gilmore LA, Moberly HK, Newell-Fugate AE. Trends in Diet and Cancer Research: A Bibliometric and Visualization Analysis. Cancers (Basel) 2023; 15:3761. [PMID: 37568578 PMCID: PMC10417030 DOI: 10.3390/cancers15153761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Diet plays a critical role for patients across the cancer continuum. The World Cancer Research Fund International and the American Cancer Society have published evidence supporting the role of nutrition in cancer prevention. We conducted an analysis of the literature on dietary nutrients and cancer to uncover opportunities for future research. The objective of the bibliometric analysis was to describe trends in peer-reviewed publications on dietary components and cancer and to highlight research gaps. PubMed was queried for manuscripts with diet- and cancer-related keywords and Medical Subject Headings (MeSH) terms. Metadata covering 99,784 publications from 6469 journals were analyzed to identify trends since 1970 on diet topics across 19 tumor types. Publications focused largely on breast, colorectal, and liver cancer, with fewer papers linking diet with other cancers such as brain, gallbladder, or ovarian. With respect to "unhealthy" diets, many publications focused on high-fat diets and alcohol consumption. The largest numbers of publications related to "healthy" diets examined the Mediterranean diet and the consumption of fruits and vegetables. These findings highlight the need for additional research focused on under-investigated cancers and dietary components, as well as dietary studies during cancer therapy and post-therapy, which may help to prolong survivorship.
Collapse
Affiliation(s)
- Erin D. Giles
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah A. Purcell
- Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jessica Olson
- Division of Community Health, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Alina Vrieling
- Department for Health Evidence, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Kelly A. Hirko
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48825, USA;
| | - Kary Woodruff
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA;
| | - Gwendolyn A. Thomas
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - L. Anne Gilmore
- Department of Clinical Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Heather K. Moberly
- University Libraries, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Annie E. Newell-Fugate
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|