1
|
Saito T, Espe M, Mommens M, Bock C, Fernandes JM, Skjærven KH. Altered spawning seasons of Atlantic salmon broodstock transcriptionally and epigenetically influence cell cycle and lipid-mediated regulations in their offspring. PLoS One 2025; 20:e0317770. [PMID: 39992963 PMCID: PMC11849821 DOI: 10.1371/journal.pone.0317770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
Manipulating spawning seasons of Atlantic salmon (Salmo salar) is a common practice to facilitate year-round harvesting in salmon aquaculture. This process involves adjusting water temperature and light regime to control female broodstock maturation. However, recent studies have indicated that altered spawning seasons can significantly affect the nutritional status and growth performance of the offspring. Therefore, gaining a deeper understanding of the biological regulations influenced by these alterations is crucial to enhance the growth performance of fish over multiple generations. In this study, we investigated omics data from four different spawning seasons achieved through recirculating aquaculture systems (RAS) and sea-pen-based approaches. In addition to the normal spawning season in November (sea-pen), three altered seasons were designated: off-season (five-month advance, RAS), early season (two-month advance, sea-pen), and late season (two-month delay, sea-pen). We conducted comprehensive gene expression and DNA methylation analysis on liver samples collected from the start-feeding larvae of the next generation. Our results revealed distinct gene expression and DNA methylation patterns associated with the altered spawning seasons. Specifically, offspring from RAS-based off-season exhibited altered lipid-mediated regulation, while those from sea-pen-based early and late seasons showed changes in cellular processes, particularly in cell cycle regulation when compared to the normal season. The consequences of our findings are significant for growth and health, potentially providing information for developing valuable tools for assessing growth potential and optimizing production strategies in aquaculture.
Collapse
Affiliation(s)
| | - Marit Espe
- Institute of Marine Research, Bergen, Norway
| | | | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | |
Collapse
|
2
|
Dhanasiri AK, Siciliani D, Kortner TM, Krogdahl Å. Epigenetic changes in pyloric caeca of Atlantic salmon fed diets containing increasing levels of lipids and choline. Epigenetics 2024; 19:2305079. [PMID: 38281164 PMCID: PMC10824149 DOI: 10.1080/15592294.2024.2305079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
An earlier study of ours investigating the effect of dietary lipid levels on the choline requirement of Atlantic salmon showed increasing severity of intestinal steatosis with increasing lipid levels. As choline is involved in epigenetic regulation by being the key methyl donor, pyloric caeca samples from the study were analysed for epigenetic effects of dietary lipid and choline levels. The diets varied in lipid levels between 16% and 28%, and choline levels between 1.9 and 2.3 g/kg. The diets were fed for 8 weeks to Atlantic salmon of 25 g of initial weight. Using reduced representation bisulfite sequencing (RRBS), this study revealed that increasing dietary lipid levels induced methylation differences in genes involved in membrane transport and signalling pathways, and in microRNAs important for the regulation of lipid homoeostasis. Increasing choline levels also affected genes involved in fatty acid biosynthesis and transport, lipolysis, and lipogenesis, as well as important immune genes. Our observations confirmed that choline is involved in epigenetic regulation in Atlantic salmon, as has been reported for higher vertebrates. This study showed the need for the inclusion of biomarkers of epigenetic processes in studies that must be conducted to define optimal choline levels in diets for Atlantic salmon.
Collapse
Affiliation(s)
- Anusha K.S. Dhanasiri
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Daphne Siciliani
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
3
|
Michels KB, Binder AM. Impact of folic acid supplementation on the epigenetic profile in healthy unfortified individuals - a randomized intervention trial. Epigenetics 2024; 19:2293410. [PMID: 38096372 PMCID: PMC10730197 DOI: 10.1080/15592294.2023.2293410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Folate is an essential mediator in one-carbon metabolism, which provides methyl groups for DNA synthesis and methylation. The availability of active methyl groups can be influenced by the uptake of folic acid. We conducted a randomized intervention trial to test the influence of folic acid supplementation on DNA methylation in an unfortified population in Germany. A total of 16 healthy male volunteers (age range 23-61 y) were randomized to receive either 400 μg (n = 9) or 800 μg (n = 7) folic acid supplements daily for 8 weeks. Infinium Human Methylation 450K BeadChip Microarrays were used to assay site-specific DNA methylation across the genome. Microarray analyses were conducted on PBL DNA. We estimated several epigenetic clocks and mean DNA methylation across all autosomal probes on the array. AgeAccel was estimated as the residual variation in each metric. In virtually all participants, both serum and red blood cell (RBC) folate increased successively throughout the trial period. Participants with a larger increase in RBC folate had a larger increase in DNAmAge AgeAccel (Spearman Rho: 0.56, p-value = 0.03). No notable changes in the methylome resulting from the folic acid supplementation emerged. In this population with adequate folate levels derived from diet, an increase in RBC folate had a modest impact on the epigenetic clock predicting chronologic age.
Collapse
Affiliation(s)
- Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Alexandra M. Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
4
|
Pokushalov E, Ponomarenko A, Shrainer E, Kudlay D, Miller R. Biomarker-Guided Dietary Supplementation: A Narrative Review of Precision in Personalized Nutrition. Nutrients 2024; 16:4033. [PMID: 39683427 DOI: 10.3390/nu16234033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Dietary supplements (DS) are widely used to address nutritional deficiencies and promote health, yet their indiscriminate use often leads to reduced efficacy, adverse effects, and safety concerns. Biomarker-driven approaches have emerged as a promising strategy to optimize DS prescriptions, ensuring precision and reducing risks associated with generic recommendations. Methods: This narrative review synthesizes findings from key studies on biomarker-guided dietary supplementation and the integration of artificial intelligence (AI) in biomarker analysis. Key biomarker categories-genomic, proteomic, metabolomic, lipidomic, microbiome, and immunological-were reviewed, alongside AI applications for interpreting these biomarkers and tailoring supplement prescriptions. Results: Biomarkers enable the identification of deficiencies, metabolic imbalances, and disease predispositions, supporting targeted and safe DS use. For example, genomic markers like MTHFR polymorphisms inform folate supplementation needs, while metabolomic markers such as glucose and insulin levels guide interventions in metabolic disorders. AI-driven tools streamline biomarker interpretation, optimize supplement selection, and enhance therapeutic outcomes by accounting for complex biomarker interactions and individual needs. Limitations: Despite these advancements, AI tools face significant challenges, including reliance on incomplete training datasets and a limited number of clinically validated algorithms. Additionally, most current research focuses on clinical populations, limiting generalizability to healthier populations. Long-term studies remain scarce, raising questions about the sustained efficacy and safety of biomarker-guided supplementation. Regulatory ambiguity further complicates the classification of supplements, especially when combinations exhibit pharmaceutical-like effects. Conclusions: Biomarker-guided DS prescription, augmented by AI, represents a cornerstone of personalized nutrition. While offering significant potential for precision and efficacy, advancing these strategies requires addressing challenges such as incomplete AI data, regulatory uncertainties, and the lack of long-term studies. By overcoming these obstacles, clinicians can better meet individual health needs, prevent diseases, and integrate precision nutrition into routine care.
Collapse
Affiliation(s)
- Evgeny Pokushalov
- Center for New Medical Technologies, Novosibirsk 630090, Russia
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
| | | | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Richard Miller
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
| |
Collapse
|
5
|
Mani S, Srivastava V, Shandilya C, Kaushik A, Singh KK. Mitochondria: the epigenetic regulators of ovarian aging and longevity. Front Endocrinol (Lausanne) 2024; 15:1424826. [PMID: 39605943 PMCID: PMC11598335 DOI: 10.3389/fendo.2024.1424826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ovarian aging is a major health concern for women. Ovarian aging is associated with reduced health span and longevity. Mitochondrial dysfunction is one of the hallmarks of ovarian aging. In addition to providing oocytes with optimal energy, the mitochondria provide a co-substrate that drives epigenetic processes. Studies show epigenetic alterations, both nuclear and mitochondrial contribute to ovarian aging. Both, nuclear and mitochondrial genomes cross-talk with each other, resulting in two ways orchestrated anterograde and retrograde response that involves epigenetic changes in nuclear and mitochondrial compartments. Epigenetic alterations causing changes in metabolism impact ovarian function. Key mitochondrial co-substrate includes acetyl CoA, NAD+, ATP, and α-KG. Thus, enhancing mitochondrial function in aging ovaries may preserve ovarian function and can lead to ovarian longevity and reproductive and better health outcomes in women. This article describes the role of mitochondria-led epigenetics involved in ovarian aging and discusses strategies to restore epigenetic reprogramming in oocytes by preserving, protecting, or promoting mitochondrial function.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Vidushi Srivastava
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Chesta Shandilya
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Aditi Kaushik
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Women’s Reproductive Health, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Kaushik A, Bhattacharjee D, Chaudhary V, Dahal S, Devi NK, Mitra RP, Dhamija RK, Krishan K, Pandey R, Saraswathy KN. Hypertension and global DNA methylation: a population-based study in rural, Punjab, India. Sci Rep 2024; 14:25826. [PMID: 39468219 PMCID: PMC11519324 DOI: 10.1038/s41598-024-77437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hypertension is a significant public health concern and a modifiable risk factor for increased mortality worldwide. It is reported to be influenced by gene-environment interactions and micronutrient intake. This study aims to understand the relationship between global DNA methylation levels and hypertension, independently and in the context of micronutrient status, among rural population in Punjab, India. A total of 2300 individuals, aged 30-75 years, (54.9% females) were screened for blood pressure. Of 2300 screened individuals, 900 (age sex matched 450 cases and 450 controls of hypertension) individuals were selected to examine the relationship between hypertension, global DNA methylation (5mC), and biochemicals (Folate, Vitamin B12, and Homocysteine). Folate, vitamin B12, and homocysteine levels were estimated using chemiluminescence technique. The ELISA-based colorimetric technique was used for performing peripheral blood leucocyte (PBL) global DNA methylation (5mC). Statistical analyses were performed using SPSS version 22.0. Hypertensives were found to have significantly lower levels of global DNA methylation than normotensives (0.65 vs. 0.72 respectively; p-value = 0.01*). Individuals in the 1st quartile of 5mC were at significantly (OR: 1.671; 95% CI: 1.206-2.315; p-value = 0.01*) increased risk for hypertension in comparison to those in the 4th quartile (reference). Further hypertensives on medication with controlled blood pressure (BP) were significantly hypermethylated as compared to hypertensives on medication with uncontrolled BP (0.70 vs. 0.62 respectively; p-value = 0.04*). Folate appeared to mediate global DNA methylation among hypertensives on medication-controlled BP. Further hypertension driven hypomethylation hints towards accelerated biological aging among younger hypertensives. Hypertension may be associated with Global DNA hypomethylation in the studied rural population of Punjab, India. Folate sufficiency may prove to be an aid in improving the methylation levels among the cases of hypertension who were on medication and had controlled BP.
Collapse
Affiliation(s)
- Anshika Kaushik
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India
| | - Debashis Bhattacharjee
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India
| | - Vineet Chaudhary
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India
| | - Suresh Dahal
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India
| | | | - R P Mitra
- Department of Anthropology, University of Delhi, Delhi, 110007, India
| | - Rajinder K Dhamija
- Institute of Human Behaviour and Allied Sciences, New Delhi, Delhi, 110095, India
| | - Kewal Krishan
- Department of Anthropology, Panjab University, Chandigarh, 160014, India
| | - Ranjita Pandey
- Department of Statistics, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
7
|
Martín Barraza JI, Bars-Cortina D. Dietary Pattern's Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD. Nutrients 2024; 16:2956. [PMID: 39275272 PMCID: PMC11396970 DOI: 10.3390/nu16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
NAFLD has emerged as a significant public health concern, with its prevalence increasing globally. Emphasizing the complex relationship between dietary patterns and epigenetic modifications such as DNA methylation or miRNA expression can exert a positive impact on preventing and managing metabolic disorders, including NAFLD, within the 2030 Sustainable Development Goals. This review aims to evaluate the influence of dietary patterns on hepatic epigenetic gene modulation and provide dietary recommendations for the prevention and management of NAFLD in the general population. METHODS Comprehensive screening and eligibility criteria identified eleven articles focusing on epigenetic changes in NAFLD patients through dietary modifications or nutrient supplementation. RESULTS AND DISCUSSION Data were organized based on study types, categorizing them into evaluations of epigenetic changes in NAFLD patients through dietary pattern modifications or specific nutrient intake. CONCLUSIONS The study highlights the importance of dietary interventions in managing and preventing NAFLD, emphasizing the potential of dietary patterns to influence hepatic epigenetic gene modulation. This study provides valuable insights and recommendations to mitigate the risk of developing NAFLD: (i) eat a primarily plant-based diet; (ii) increase consumption of high-fiber foods; (iii) consume more polyunsaturated and monounsaturated fatty acids; (iv) limit processed foods, soft drinks, added sugars, and salt; and (v) avoid alcohol.
Collapse
Affiliation(s)
| | - David Bars-Cortina
- Oncology Data Analytics Program (ODAP), Unit of Biomarkers and Susceptibility (UBS), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Department of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| |
Collapse
|
8
|
Zhao Q, Lv X, Liu Q, Hu Z, Zhan Y. Association between serum folate concentrations and all-cause mortality in U.S. adults: a cohort study based on National Health and Nutrition Examination Survey III. Front Nutr 2024; 11:1408023. [PMID: 39055385 PMCID: PMC11270589 DOI: 10.3389/fnut.2024.1408023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
The association between serum folate and all-cause mortality in general population remains unclear. The objective of this study was to investigate the potential association between serum folate concentrations and all-cause mortality in a large, prospective, long-term U.S. cohort. Our study included adults from the National Health and Nutrition Examination Survey (NHANES) III, and mortality data was obtained by linking with the National Death Index (NDI) until December 31, 2019. Cox proportional hazard models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) to assess the association between serum folate concentrations and all-cause mortality. A total of 12,862 participants were included in this cohort study. After a median follow-up of 26.4 years [interquartile range (IQR), 15.4-28.7 years], a total of 5,299 deaths were recorded. The risk of death was lower by 12% per 1.0 g/L increase in log-transformed serum folate concentrations (HR, 0.88; 95% CI, 0.83-0.94). Compared with the lowest quartiles of serum folate level, the risk of death was lower in the second (HR, 0.84; 95% CI, 0.72-0.97), third (HR, 0.78; 95% CI, 0.68-0.91) and the highest quartiles (HR, 0.78; 95% CI, 0.69-0.88) in multivariable-adjusted model. In subgroup analyses, the inverse association between serum folate and all-cause mortality remained statistically significant for women, men and non-Hispanic White people. Higher serum folate levels were found to be significantly associated with reduced risk of all-cause mortality. However, further studies are needed to verify these findings and explore the underlying mechanism.
Collapse
Affiliation(s)
- Qingya Zhao
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaogang Lv
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhao Hu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Simonenko SY, Bogdanova DA, Kuldyushev NA. Emerging Roles of Vitamin B 12 in Aging and Inflammation. Int J Mol Sci 2024; 25:5044. [PMID: 38732262 PMCID: PMC11084641 DOI: 10.3390/ijms25095044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Vitamin B12 (cobalamin) is an essential nutrient for humans and animals. Metabolically active forms of B12-methylcobalamin and 5-deoxyadenosylcobalamin are cofactors for the enzymes methionine synthase and mitochondrial methylmalonyl-CoA mutase. Malfunction of these enzymes due to a scarcity of vitamin B12 leads to disturbance of one-carbon metabolism and impaired mitochondrial function. A significant fraction of the population (up to 20%) is deficient in vitamin B12, with a higher rate of deficiency among elderly people. B12 deficiency is associated with numerous hallmarks of aging at the cellular and organismal levels. Cellular senescence is characterized by high levels of DNA damage by metabolic abnormalities, increased mitochondrial dysfunction, and disturbance of epigenetic regulation. B12 deficiency could be responsible for or play a crucial part in these disorders. In this review, we focus on a comprehensive analysis of molecular mechanisms through which vitamin B12 influences aging. We review new data about how deficiency in vitamin B12 may accelerate cellular aging. Despite indications that vitamin B12 has an important role in health and healthy aging, knowledge of the influence of vitamin B12 on aging is still limited and requires further research.
Collapse
Affiliation(s)
- Sergey Yu. Simonenko
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia;
| |
Collapse
|
10
|
Gaździcka J, Biernacki K, Gołąbek K, Miśkiewicz-Orczyk K, Zięba N, Misiołek M, Strzelczyk JK. Global DNA Methylation Level in Tumour and Margin Samples in Relation to Human Papilloma Virus and Epstein-Barr Virus in Patients with Oropharyngeal and Oral Squamous Cell Carcinomas. Biomedicines 2024; 12:914. [PMID: 38672268 PMCID: PMC11047928 DOI: 10.3390/biomedicines12040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Aberrant DNA methylation is a common epigenetic modification in cancers, including oropharyngeal squamous cell carcinoma (OPSCC) and oral squamous cell carcinoma (OSCC). Therefore, the analysis of methylation levels appears necessary to improve cancer therapy and prognosis. METHODS The enzyme-linked immunosorbent assay (ELISA) was used to analyse global DNA methylation levels in OPSCC and OSCC tumours and the margin samples after DNA isolation. HPV detection was conducted by hybridisation using GenoFlow HPV Array Test Kits (DiagCor Bioscience Inc., Hong Kong, China). EBV detection was performed using real-time PCR with an EBV PCR Kit (EBV/ISEX/100, GeneProof, Brno, Czech Republic). RESULTS OPSCC tumour samples obtained from women showed lower global DNA methylation levels than those from men (1.3% vs. 3.5%, p = 0.049). The margin samples from OPSCC patients with HPV and EBV coinfection showed global DNA methylation lower than those without coinfection (p = 0.042). G3 tumours from OSCC patients had significantly lower levels of global DNA methylation than G2 tumours (0.98% ± 0.74% vs. 3.77% ± 4.97%, p = 0.010). Additionally, tumours from HPV-positive OSCC patients had significantly lower global DNA methylation levels than those from HPV-negative patients (p = 0.013). In the margin samples, we observed a significant negative correlation between global DNA methylation and the N stage of OSCC patients (rS = -0.33, p = 0.039). HPV-positive OPSCC patients had higher global DNA methylation levels than HPV-positive OSCC patients (p = 0.015). CONCLUSION We confirmed that methylation could be changed in relation to viral factors, such as HPV and EBV, as well as clinical and demographical parameters.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Street, 41-808 Zabrze, Poland (J.K.S.)
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Street, 41-808 Zabrze, Poland (J.K.S.)
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Street, 41-808 Zabrze, Poland (J.K.S.)
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C. Skłodowskiej Street, 41-800 Zabrze, Poland
| | - Natalia Zięba
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C. Skłodowskiej Street, 41-800 Zabrze, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C. Skłodowskiej Street, 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Street, 41-808 Zabrze, Poland (J.K.S.)
| |
Collapse
|
11
|
Monasso GS, Hoang TT, Mancano G, Fernández-Barrés S, Dou J, Jaddoe VW, Page CM, Johnson L, Bustamante M, Bakulski KM, Håberg SE, Ueland PM, Battram T, Merid SK, Melén E, Caramaschi D, Küpers LK, Sunyer J, Nystad W, Heil SG, Schmidt RJ, Vrijheid M, Sharp GC, London SJ, Felix JF. A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation. Epigenetics 2023; 18:2202835. [PMID: 37093107 PMCID: PMC10128528 DOI: 10.1080/15592294.2023.2202835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023] Open
Abstract
Circulating vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.
Collapse
Affiliation(s)
- Giulietta S. Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Giulia Mancano
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - Sílvia Fernández-Barrés
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Laura Johnson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Mariona Bustamante
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Siri E. Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Thomas Battram
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Simon K. Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children’s Hospital, South General Hospital, Stockholm, Sweden
| | - Doretta Caramaschi
- College of Life and Environmental Sciences, Department of Psychology, University of Exeter, Exeter, UK
| | - Leanne K. Küpers
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jordi Sunyer
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra G. Heil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, USA
- The UC Davis MIND Institute, School of Medicine, University of California Davis, Sacramento, USA
| | - Martine Vrijheid
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
| | - Gemma C. Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Fernando KK, Craig JM, Dawson SL. Relationships between the maternal prenatal diet and epigenetic state in infants: a systematic review of human studies. J Dev Orig Health Dis 2023; 14:540-555. [PMID: 37496159 DOI: 10.1017/s2040174423000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Most human studies investigating the relationship between maternal diet in pregnancy and infant epigenetic state have focused on macro- and micro-nutrient intake, rather than the whole diet. This makes it difficult to translate the evidence into practical prenatal dietary recommendations.To review the evidence on how the prenatal diet relates to the epigenetic state of infants measured in the first year of life via candidate gene or genome-wide approaches.Following the PRISMA guidelines, this systematic literature search was completed in August 2020, and updated in August 2021 and April 2022. Studies investigating dietary supplementation were excluded. Risk of bias was assessed, and the certainty of results was analysed with consideration of study quality and validity.Seven studies were included, encompassing 6852 mother-infant dyads. One study was a randomised controlled trial and the remaining six were observational studies. There was heterogeneity in dietary exposure measures. Three studies used an epigenome-wide association study (EWAS) design and four focused on candidate genes from cord blood samples. All studies showed inconsistent associations between maternal dietary measures and DNA methylation in infants. Effect sizes of maternal diet on DNA methylation ranged from very low (< 1%) to high (> 10%). All studies had limitations and were assessed as having moderate to high risk of bias.The evidence presented here provides very low certainty that dietary patterns in pregnancy relate to epigenetic state in infants. We recommend that future studies maximise sample sizes and optimise and harmonise methods of dietary measurement and pipelines of epigenetic analysis.
Collapse
Affiliation(s)
- Kathya K Fernando
- Department of Immunology & Pathology, Alfred Health and Monash University, Melbourne, Australia
| | - Jeffrey M Craig
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| | - Samantha L Dawson
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
13
|
Boughanem H, Kompella P, Tinahones FJ, Macias-Gonzalez M. An overview of vitamins as epidrugs for colorectal cancer prevention. Nutr Rev 2023; 81:455-479. [PMID: 36018754 DOI: 10.1093/nutrit/nuac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression altering epigenomic modifications such as DNA methylation, histone modification, and chromosome remodeling is crucial to regulating many biological processes. Several lifestyle factors, such as diet and natural, bioactive food compounds, such as vitamins, modify epigenetic patterns. However, epigenetic dysregulation can increase the risk of many diseases, including cancer. Various studies have provided supporting and contrasting evidence on the relationship between vitamins and cancer risk. Though there is a gap in knowledge about whether dietary vitamins can induce epigenetic modifications in the context of colorectal cancer (CRC), the possibility of using them as epidrugs for CRC treatment is being explored. This is promising because such studies might be informative about the most effective way to use vitamins in combination with DNA methyltransferase inhibitors and other approved therapies to prevent and treat CRC. This review summarizes the available epidemiological and observational studies involving dietary, circulating levels, and supplementation of vitamins and their relationship with CRC risk. Additionally, using available in vitro, in vivo, and human observational studies, the role of vitamins as potential epigenetic modifiers in CRC is discussed. This review is focused on the action of vitamins as modifiers of DNA methylation because aberrant DNA methylation, together with genetic alterations, can induce the initiation and progression of CRC. Although this review presents some studies with promising results, studies with better study designs are necessary. A thorough understanding of the underlying molecular mechanisms of vitamin-mediated epigenetic regulation of CRC genes can help identify effective therapeutic targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Hatim Boughanem
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pallavi Kompella
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,is with the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Francisco J Tinahones
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Macias-Gonzalez
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Huang CY, Chen WJ, Lee HL, Lin YC, Huang YL, Shiue HS, Pu YS, Hsueh YM. Possible Combined Effects of Plasma Folate Levels, Global DNA Methylation, and Blood Cadmium Concentrations on Renal Cell Carcinoma. Nutrients 2023; 15:nu15040937. [PMID: 36839294 PMCID: PMC9959822 DOI: 10.3390/nu15040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Epigenetic effects of environmental pollutants may be related to carcinogenesis. This study aimed to explore the association between the global DNA methylation marker: 5-methyl-2-deoxycytidine (5mdC) and renal cell carcinoma (RCC), and further investigated whether plasma folate and vitamin B12 levels and 5mdC modified the association between blood cadmium concentrations and RCC. We recruited 174 RCC patients and 673 non-RCC controls. Blood cadmium concentrations, plasma folate and vitamin B12 levels were measured. The amount of 5mdC in the DNA sample was expressed as percentages of the total cytosine content. An increase of 5mdC (%) and plasma folate and vitamin B12 levels were associated with decreasing odds ratio (OR) of RCC. Although plasma folate levels were not directly associated with 5mdC (%), a combined effect was observed with the odds of low plasma folate levels and low 5mdC (%) were greater among RCC patients compared to controls (OR (95% confidence interval, CI) = 11.86 (5.27-26.65)). Additionally, we observed that the odds of low plasma folate and high blood cadmium levels were greater among RCC patients than in controls (OR (95% CI): 8.15 (1.39-7.13)). This study provides suggestive evidence that plasma folate levels may modify the associations between 5mdC (%) or blood cadmium concentrations and RCC.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei City 110, Taiwan
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei City 110, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Correspondence: ; Tel.: +886-2736-1661 (ext. 6513)
| |
Collapse
|
15
|
Martínez-Iglesias O, Naidoo V, Corzo L, Pego R, Seoane S, Rodríguez S, Alcaraz M, Muñiz A, Cacabelos N, Cacabelos R. DNA Methylation as a Biomarker for Monitoring Disease Outcome in Patients with Hypovitaminosis and Neurological Disorders. Genes (Basel) 2023; 14:genes14020365. [PMID: 36833292 PMCID: PMC9956161 DOI: 10.3390/genes14020365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
DNA methylation remains an under-recognized diagnostic biomarker for several diseases, including neurodegenerative disorders. In this study, we examined differences in global DNA methylation (5mC) levels in serum samples from patients during the initial- and the follow-up visits. Each patient underwent a blood analysis and neuropsychological assessments. The analysis of 5mC levels revealed two categories of patients; Group A who, during the follow-up, had increased 5mC levels, and Group B who had decreased 5mC levels. Patients with low Fe-, folate-, and vitamin B12- levels during the initial visit showed increased levels of 5mC after treatment when assessed during the follow-up. During the follow-up, 5mC levels in Group A patients increased after treatment for hypovitaminosis with the nutraceutical compounds Animon Complex and MineraXin Plus. 5mC levels were maintained during the follow-up in Group A patients treated for neurological disorders with the bioproducts AtreMorine and NeoBrainine. There was a positive correlation between 5mC levels and MMSE scores, and an inverse correlation between 5mC and ADAS-Cog scores. This expected correlation was observed in Group A patients only. Our study appears to indicate that 5mC has a diagnostic value as a biomarker across different pathologies.
Collapse
|
16
|
Validating Accuracy of an Internet-Based Application against USDA Computerized Nutrition Data System for Research on Essential Nutrients among Social-Ethnic Diets for the E-Health Era. Nutrients 2022; 14:nu14153168. [PMID: 35956344 PMCID: PMC9370220 DOI: 10.3390/nu14153168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Internet-based applications (apps) are rapidly developing in the e-Health era to assess the dietary intake of essential macro-and micro-nutrients for precision nutrition. We, therefore, validated the accuracy of an internet-based app against the Nutrition Data System for Research (NDSR), assessing these essential nutrients among various social-ethnic diet types. The agreement between the two measures using intraclass correlation coefficients was good (0.85) for total calories, but moderate for caloric ranges outside of <1000 (0.75) and >2000 (0.57); and good (>0.75) for most macro- (average: 0.85) and micro-nutrients (average: 0.83) except cobalamin (0.73) and calcium (0.51). The app underestimated nutrients that are associated with protein and fat (protein: −5.82%, fat: −12.78%, vitamin B12: −13.59%, methionine: −8.76%, zinc: −12.49%), while overestimated nutrients that are associated with carbohydrate (fiber: 6.7%, B9: 9.06%). Using artificial intelligence analytics, we confirmed the factors that could contribute to the differences between the two measures for various essential nutrients, and they included caloric ranges; the differences between the two measures for carbohydrates, protein, and fat; and diet types. For total calories, as an example, the source factors that contributed to the differences between the two measures included caloric range (<1000 versus others), fat, and protein; for cobalamin: protein, American, and Japanese diets; and for folate: caloric range (<1000 versus others), carbohydrate, and Italian diet. In the e-Health era, the internet-based app has the capacity to enhance precision nutrition. By identifying and integrating the effects of potential contributing factors in the algorithm of output readings, the accuracy of new app measures could be improved.
Collapse
|
17
|
He J, Fu H, Li C, Deng Z, Chang H. Association between Vitamin B 12 and Risk of Gastric Cancer: A Systematic Review and Meta-Analysis of Epidemiological Studies. Nutr Cancer 2022; 74:3263-3273. [PMID: 35538710 DOI: 10.1080/01635581.2022.2074062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidemiological studies focusing on the association between vitamin B12 and gastric cancer risk reported inconsistent findings. We conducted a systematic review and meta-analysis to assess the relationship. PubMed (Medline), Web of science and EMBASE databases were systematically searched. A total of nine studies involving 3,494 cases of with gastric cancer and 611,638 participants were included. The result showed that there is no significant association between vitamin B12 intake and the risk of gastric cancer (OR = 0.88, 95% CI: 0.69-1.12, P = 0.303). Nevertheless, high intake of vitamin B12 might decrease the risk of gastric cancer in Helicobacter pylori (Hp)-negative people (OR = 0.83, 95% CI: 0.62-0.99, P = 0.044), but increase the cancer risk in Hp-positive populations (OR = 1.66, 95% CI: 1.27-2.16, P = 10-4). Additionally, further analysis indicated that excessive vitamin B12 might increase the risk of non-cardia gastric cancer (OR = 1.15, 95% CI: 1.01-1.33, P = 0.006). A negative association between vitamin B12 intake and gastric cancer risk was found in nonsmokers (OR = 0.83, 95% CI: 0.71-0.96, P = 0.012) but not in smokers (OR = 1.08, 95% CI: 0.71-1.47, P = 0.619). In conclusion, although we found no convincing evidence that vitamin B12 intake is associated with the risk of gastric cancer, it is important to maintain the relative stability of vitamin B12 for people with Hp infection.
Collapse
Affiliation(s)
- Jianbo He
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjuan Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Cancan Li
- College of Food Science, Southwest University, Chongqing, China
| | - Zhihui Deng
- College of Food Science, Southwest University, Chongqing, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era. Nutrients 2022; 14:nu14030537. [PMID: 35276892 PMCID: PMC8839756 DOI: 10.3390/nu14030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
In preparation for personalized nutrition, an accurate assessment of dietary intakes on key essential nutrients using smartphones can help promote health and reduce health risks across vulnerable populations. We, therefore, validated the accuracy of a mobile application (app) against Food Frequency Questionnaire (FFQ) using artificial intelligence (AI) machine-learning-based analytics, assessing key macro- and micro-nutrients across various modern diets. We first used Bland and Altman analysis to identify and visualize the differences between the two measures. We then applied AI-based analytics to enhance prediction accuracy, including generalized regression to identify factors that contributed to the differences between the two measures. The mobile app underestimated most macro- and micro-nutrients compared to FFQ (ranges: -5% for total calories, -19% for cobalamin, -33% for vitamin E). The average correlations between the two measures were 0.87 for macro-nutrients and 0.84 for micro-nutrients. Factors that contributed to the differences between the two measures using total calories as an example, included caloric range (1000-2000 versus others), carbohydrate, and protein; for cobalamin, included caloric range, protein, and Chinese diet. Future studies are needed to validate actual intakes and reporting of various diets, and to examine the accuracy of mobile App. Thus, a mobile app can be used to support personalized nutrition in the mHealth era, considering adjustments with sources that could contribute to the inaccurate estimates of nutrients.
Collapse
|
19
|
Saito T, Whatmore P, Taylor JF, Fernandes JM, Adam AC, Tocher DR, Espe M, Skjærven KH. Micronutrient supplementation affects transcriptional and epigenetic regulation of lipid metabolism in a dose-dependent manner. Epigenetics 2021; 16:1217-1234. [PMID: 33315488 PMCID: PMC8813078 DOI: 10.1080/15592294.2020.1859867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Micronutrients (vitamins and minerals) have been less well studied compared to macronutrients (fats, proteins, and carbohydrates) although they play important roles in growth, metabolism, and maintenance of tissues. Hence, there is growing interest to understand the influence of micronutrients across various aspects in nutritional research. In the last two decades, aquaculture feeds have been shifted to containing more plant-based materials to meet the increasing demand and maintain the sustainability in the industry. A recent whole life cycle feeding trial of Atlantic salmon (Salmo salar) with graded levels of micronutrient packages has concluded that the levels of several B-vitamins and microminerals need to be increased from the current recommendation levels for optimal growth and fish welfare when plant-based diets are used. Here, we show the effect of micronutrient supplementation on hepatic transcriptional and epigenetic regulation in a dose dependent manner. . Specifically, our aim is to reveal the mechanisms of altered cell metabolism, which results in improved growth performance by micronutrient surpluses, at gene expression and DNA methylation levels. Our results strongly indicate that micronutrient supplementation suppresses gene expression in lipid metabolism in a dose-dependent manner and broadly affects DNA methylation in cell-adhesion and cell-signalling. In particular, it increases DNA methylation levels on the acetyl-CoA carboxylase alpha promoter in a concentration-dependent manner, which further suggests that acetyl-CoA carboxylase alpha is an upstream epigenetic regulator controlling its downstream lipid biosynthesis activities. This study demonstrates a comprehensive analysis to reveal an important role of micronutrients in lipid metabolism through epigenetic control of gene expression.
Collapse
Affiliation(s)
- Takaya Saito
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| | - Paul Whatmore
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| | - John F. Taylor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Scotland, UK
| | | | - Anne-Catrin Adam
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Scotland, UK
| | - Marit Espe
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| | - Kaja H. Skjærven
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
20
|
Francioso A, Fanelli S, d'Erme M, Lendaro E, Miraglia N, Fontana M, Cavallaro RA, Mosca L. Pharmacokinetic properties of a novel formulation of S-adenosyl-L-methionine phytate. Amino Acids 2021; 53:1559-1568. [PMID: 34536129 PMCID: PMC8519898 DOI: 10.1007/s00726-021-03076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
S-adenosyl-L-methionine (SAM), the main endogenous methyl donor, is the adenosyl derivative of the amino acid methionine, which displays many important roles in cellular metabolism. It is widely used as a food supplement and in some countries is also marketed as a drug. Its interesting nutraceutical and pharmacological properties prompted us to evaluate the pharmacokinetics of a new form of SAM, the phytate salt. The product was administered orally to rats and pharmacokinetic parameters were evaluated by comparing the results with that obtained by administering the SAM tosylated form (SAM PTS). It was found that phytate anion protects SAM from degradation, probably because of steric hindrance exerted by the counterion, and that the SAM phytate displayed significant better pharmacokinetic parameters compared to SAM PTS. These results open to the perspective of the use of new salts of SAM endowed with better pharmacokinetic properties.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University, Rome, Italy.
| | - Sergio Fanelli
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University, Rome, Italy.
| | - Maria d'Erme
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Eugenio Lendaro
- Department of Medical‑Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Niccolò Miraglia
- Clinical and Pre-clinical Development, Gnosis by Lesaffre, Milan, Italy
| | - Mario Fontana
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University, Rome, Italy
| | | | - Luciana Mosca
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University, Rome, Italy
| |
Collapse
|
21
|
Khairan P, Sobue T, Eshak ES, Zha L, Kitamura T, Sawada N, Iwasaki M, Inoue M, Yamaji T, Shimazu T, Iso H, Tsugane S. Association of dietary intakes of vitamin B12, vitamin B6, folate, and methionine with the risk of esophageal cancer: the Japan Public Health Center-based (JPHC) prospective study. BMC Cancer 2021; 21:982. [PMID: 34470601 PMCID: PMC8411535 DOI: 10.1186/s12885-021-08721-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
Background B vitamins and methionine are essential substrates in the one-carbon metabolism pathway involved in DNA synthesis and methylation. They may have essential roles in cancer development. We aimed to evaluate the associations of dietary intakes of vitamin B12, vitamin B6, folate, and methionine with the risk of esophageal cancer (EC) using data from the Japan Public Health Center-based Prospective Study. Methods We included 87,053 Japanese individuals who completed a food frequency questionnaire and were followed up from 1995–1998 to 2013 and 2015. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated by Cox proportional-hazard regression across quintiles of dietary intakes of B vitamins and methionine. Results After 1,456,678 person-years of follow-up, 427 EC cases were documented. The multivariable HR (95% CI) of incident EC in the highest versus lowest quintile of dietary intake of vitamin B12 was 1.75 (1.13–2.71; p-trend=0.01). Stratification analysis based on alcohol consumption showed that higher dietary intakes of vitamin B12 and methionine were associated with an increased risk of EC among never-drinkers; HRs (95% CIs) were 2.82 (1.18–6.74; p-trend=0.009; p-interaction=0.18) and 3.45 (1.32–9.06; p-trend=0.003; p-interaction 0.02) for vitamin B12 and methionine, respectively. Meanwhile, there was no association between vitamin B12 and methionine intake with the risk of EC among drinkers. There were no associations between dietary intake of folate or vitamin B6 and the risk of EC. Conclusion Dietary intake of vitamin B12 was positively associated with the risk of EC in the Japanese population. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08721-8.
Collapse
Affiliation(s)
- Paramita Khairan
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah, Jakarta, Indonesia
| | - Tomotaka Sobue
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Ehab Salah Eshak
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Public Health and Preventive Medicine, Faculty of Medicine, Minia University, Minya, Egypt
| | - Ling Zha
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuhisa Kitamura
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku Tokyo, 104-0045, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku Tokyo, 104-0045, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku Tokyo, 104-0045, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku Tokyo, 104-0045, Japan
| | - Taichi Shimazu
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku Tokyo, 104-0045, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku Tokyo, 104-0045, Japan
| |
Collapse
|
22
|
Wilson SL, Wallingford M. Epigenetic regulation of reproduction in human and in animal models. Mol Hum Reprod 2021; 27:6329199. [PMID: 34318322 DOI: 10.1093/molehr/gaab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Samantha L Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Mary Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA.,Division of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
23
|
de Assis Pinheiro J, Freitas FV, Borçoi AR, Mendes SO, Conti CL, Arpini JK, Dos Santos Vieira T, de Souza RA, Dos Santos DP, Barbosa WM, Archanjo AB, de Oliveira MM, Dos Santos JG, Sorroche BP, Casali-da-Rocha JC, Trivilin LO, Borloti EB, Louro ID, Arantes LMRB, Alvares-da-Silva AM. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation. Sci Rep 2021; 11:6768. [PMID: 33762648 PMCID: PMC7990967 DOI: 10.1038/s41598-021-86189-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
The NR3C1 glucocorticoid receptor (GR) gene is a component of the stress response system, which can be regulated by epigenetic mechanisms. NR3C1 methylation has been associated with trauma and mental issues, including depression, post-traumatic stress, anxiety, and personality disorders. Previous studies have reported that stressful events are involved in NR3C1 gene methylation, suggesting that its regulation under environmental effects is complex. The present study aimed to analyze associations involving stressors such as socioeconomic status, health conditions, and lifestyle in relation to NR3C1 methylation in adults. This study included 386 individual users of the Brazilian Public Unified Health System (SUS), and evaluated socioeconomic and health conditions, body mass index, cortisol levels, and lifestyle. Data were correlated with NR3C1 methylation, determined using DNA pyrosequencing. The results showed that alcohol consumption, overweight, and high cortisol levels were related to NR3C1 demethylation, while depression was related to its methylation. Habits, lifestyle, and health status may influence NR3C1 gene regulation via methylation, revealing the complexity of environmental impacts on NR3C1 methylation.
Collapse
Affiliation(s)
- Júlia de Assis Pinheiro
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Flávia Vitorino Freitas
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.,Department of Pharmacy and Nutrition, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Aline Ribeiro Borçoi
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Suzanny Oliveira Mendes
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Catarine Lima Conti
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Juliana Krüger Arpini
- Graduate Program in Forest Sciences, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Tamires Dos Santos Vieira
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Wagner Miranda Barbosa
- Department of Pharmacy and Nutrition, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Anderson Barros Archanjo
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Mayara Mota de Oliveira
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital do Câncer de Barretos, Barretos, SP, Brazil
| | | | | | - Elizeu Batista Borloti
- Department of Social and Developmental Psychology, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Iuri Drumond Louro
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | - Adriana Madeira Alvares-da-Silva
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil. .,Department of Morphology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil. .,Departamento de Biologia, Universidade Federal do Espirito Santo, Alto Universitário Sem Número, Alegre, ES, 29500000, Brazil.
| |
Collapse
|
24
|
M Dave K, Kaur L, Randhir KN, Mehendale SS, Sundrani DP, Chandak GR, Joshi SR. Placental growth factor and Fms related tyrosine kinase-1 are hypomethylated in preeclampsia placentae. Epigenomics 2021; 13:257-269. [PMID: 33471580 DOI: 10.2217/epi-2020-0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: This study aims to examine the DNA methylation (DNAm) and expression patterns of genes associated with placental angiogenesis in preeclampsia. Materials & methods: DNAm and expression were examined in normotensive (n = 100) and preeclampsia (n = 100) women using pyrosequencing and quantitative real-time PCR respectively. Results: Hypomethylation at several CpGs was observed in PlGF and FLT-1 in women with preeclampsia compared to normotensive controls. PlGF expression was lower in women with preeclampsia while FLT-1 expression was comparable. DNAm at various CpGs was negatively correlated with expression in both the genes and were associated with maternal blood pressure and birth outcomes. Conclusion: DNAm and expression of angiogenic factors in placentae are differentially regulated in preeclampsia and influence birth outcomes.
Collapse
Affiliation(s)
- Kinjal M Dave
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Lovejeet Kaur
- Genomic Research on Complex diseases (GRC Group), Council of Scientific and Industrial Research Centre for Cellular & Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Karuna N Randhir
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Savita S Mehendale
- Department of Gynecology & Obstetrics, Bharati Vidyapeeth Medical College & Hospital, Pune 411043, India
| | - Deepali P Sundrani
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC Group), Council of Scientific and Industrial Research Centre for Cellular & Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Sadhana R Joshi
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| |
Collapse
|
25
|
Association between Serum Vitamin B12 and Global DNA Methylation in Colorectal Cancer Patients. Nutrients 2020; 12:nu12113567. [PMID: 33233812 PMCID: PMC7709022 DOI: 10.3390/nu12113567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin B12 has been widely related to methionine metabolism, which is an essential component for biological methylation reactions, including DNA methylation. However, the relationship between vitamin B12 and DNA methylation is still controversial. In addition, there is increasing evidence for the association between vitamin B12 and the risk of colorectal cancer (CRC), although results of this association need to be assessed with caution. For this purpose, we hypothesized that serum vitamin B12 could be associated with global DNA methylation in the CRC context. To test this hypothesis, we studied the association between global DNA methylation through long interspersed nuclear element-1 (LINE1) in CRC patients under the 25th percentile of serum vitamin B12. We found that the high vitamin B12 group had low LINE1 methylation in both tumor area and peripheral blood mononuclear cells (PBMCs) than the low serum vitamin B12 group. LINE1 methylation levels were significantly lower in tumor area compared to the adjacent tumor-free area, only in the high vitamin B12 group. LINE1 methylation in visceral adipose tissue (VAT) and PBMCs were correlated with tumoral, inflammatory, and insulin metabolism markers. However, the interaction between LINE1 methylation and vitamin B12 levels was associated with neoadjuvant therapy in the regression analysis only in men, suggesting a beneficial relationship. In conclusion, our results reported an inverse association between DNA methylation and vitamin B12 in the CRC context, which suggests that vitamin B12 may be implicated in an epigenetic state or mediation in CRC.
Collapse
|
26
|
Amenyah SD, Ward M, McMahon A, Deane J, McNulty H, Hughes C, Strain JJ, Horigan G, Purvis J, Walsh CP, Lees-Murdock DJ. DNA methylation of hypertension-related genes and effect of riboflavin supplementation in adults stratified by genotype for the MTHFR C677T polymorphism. Int J Cardiol 2020; 322:233-239. [PMID: 32920065 DOI: 10.1016/j.ijcard.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The interaction between genetic, epigenetic and environmental factors plays an important role in the aetiology of hypertension. GWAS and observational studies link the C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR) with hypertension, while riboflavin, the MTHFR cofactor, has been shown to reduce blood pressure and global DNA methylation in homozygous (TT genotype) individuals. It is currently unclear whether riboflavin modulates DNA methylation of other hypertension-related genes. OBJECTIVES To compare DNA methylation of hypertension-related genes in adults stratified by MTHFR genotype and effect of riboflavin intervention in adults with the variant MTHFR 677TT genotype. METHOD Pyrosequencing was carried out for hypertension-related genes (ACE, AGTR1, GCK, GNA12, IGF2, MMP9 and NOS3) in blood samples from participants in previous trials (CC, n = 40; TT, n = 40). The effect of intervention with riboflavin (1.6 mg/d for16 weeks) or placebo on DNA methylation was investigated in adults with the variant MTHFR 677TT genotype (n = 80). RESULTS Individuals with the MTHFR 677TT v CC genotype had significantly higher average DNA methylation at NOS3 (+1.66%, P = 0.044). In response to riboflavin supplementation in TT individuals, there was an increase in average DNA methylation at IGF2 (+1.09%, P = 0.019) and a decrease at ACE (-0.44%, P = 0.021) in females only. Specific CpG sites were hypomethylated in GNA12 and hypermethylated in AGTR1. CONCLUSION This study provides the first RCT evidence that riboflavin alters DNA methylation of hypertension-related genes in adults with the MTHFR 677TT genotype, providing some insight into mechanisms linking hypertension with the genotype-specific response of BP to riboflavin.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK; Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Amy McMahon
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Jennifer Deane
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Catherine Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Geraldine Horigan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - John Purvis
- Department of Cardiology, Altnagelvin Area Hospital, BT47 6SB, N. Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK.
| |
Collapse
|
27
|
Amenyah SD, Ward M, Strain JJ, McNulty H, Hughes CF, Dollin C, Walsh CP, Lees-Murdock DJ. Nutritional Epigenomics and Age-Related Disease. Curr Dev Nutr 2020; 4:nzaa097. [PMID: 32666030 PMCID: PMC7335360 DOI: 10.1093/cdn/nzaa097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent advances in epigenetic research have enabled the development of epigenetic clocks, which have greatly enhanced our ability to investigate molecular processes that contribute to aging and age-related disease. These biomarkers offer the potential to measure the effect of environmental exposures linked to dynamic changes in DNA methylation, including nutrients, as factors in age-related disease. They also offer a compelling insight into how imbalances in the supply of nutrients, particularly B-vitamins, or polymorphisms in regulatory enzymes involved in 1-carbon metabolism, the key pathway that supplies methyl groups for epigenetic reactions, may influence epigenetic age and interindividual disease susceptibility. Evidence from recent studies is critically reviewed, focusing on the significant contribution of the epigenetic clock to nutritional epigenomics and its impact on health outcomes and age-related disease. Further longitudinal studies and randomized nutritional interventions are required to advance the field.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Caitlin Dollin
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Colum P Walsh
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| |
Collapse
|
28
|
Steiger H, Booij L. Eating Disorders, Heredity and Environmental Activation: Getting Epigenetic Concepts into Practice. J Clin Med 2020; 9:jcm9051332. [PMID: 32375223 PMCID: PMC7291135 DOI: 10.3390/jcm9051332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms are believed to link environmental exposures to alterations in gene expression, and in so doing, to provide a physical substrate for the activation of hereditary potentials by life experiences. In keeping with this idea, accumulating data suggest that epigenetic processes are implicated in eating-disorder (ED) etiology. This paper reviews literature on putative links between epigenetic factors and EDs, and examines ways in which epigenetic programming of gene expression could account for gene-environment interactions acting in the EDs. The paper also presents evidence suggesting that epigenetic processes link malnutrition and life stresses (gestational, perinatal, childhood, and adult) to risk of ED development. Drawing from empirical evidence and clinical experience, we propose that an epigenetically informed understanding of ED etiology can benefit patients, caregivers, and clinicians alike, in the sense that the perspective can reduce judgmental or blameful attitudes on the part of clinicians and caregivers, and increase self-acceptance and optimism about recovery on the part of those affected.
Collapse
Affiliation(s)
- Howard Steiger
- Eating Disorders Continuum, Douglas University Institute, Montreal, Quebec H4H 1R3, Canada
- Douglas Institute Research Centre, McGill University, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Correspondence: (H.S.); (L.B.)
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Psychology, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec H3T 1C5, Canada
- Correspondence: (H.S.); (L.B.)
| |
Collapse
|
29
|
Impact of the MTHFR C677T polymorphism on one-carbon metabolites: Evidence from a randomised trial of riboflavin supplementation. Biochimie 2020; 173:91-99. [PMID: 32330571 DOI: 10.1016/j.biochi.2020.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Homozygosity for the C677T polymorphism in MTHFR (TT genotype) is associated with a 24-87% increased risk of hypertension. Blood pressure (BP) lowering was previously reported in adults with the TT genotype, in response to supplementation with the MTHFR cofactor, riboflavin. Whether the BP phenotype associated with the polymorphism is related to perturbed one-carbon metabolism is unknown. This study investigated one-carbon metabolites and their responsiveness to riboflavin in adults with the TT genotype. Plasma samples from adults (n 115) screened for the MTHFR genotype, who previously participated in RCTs to lower BP, were analysed for methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), betaine, choline and cystathionine by liquid chromatography tandem mass spectrometry (LC-MS/MS). The one-carbon metabolite response to riboflavin (1.6 mg/d; n 24) or placebo (n 23) for 16 weeks in adults with the TT genotype was also investigated. Plasma SAM (74.7 ± 21.0 vs 85.2 ± 22.6 nmol/L, P = 0.013) and SAM:SAH ratio (1.66 ± 0.55 vs 1.85 ± 0.51, P = 0.043) were lower and plasma homocysteine was higher (P = 0.043) in TT, compared to CC individuals. In response to riboflavin, SAM (P = 0.008) and cystathionine (P = 0.045) concentrations increased, with no responses in other one-carbon metabolites observed. These findings confirm perturbed one-carbon metabolism in individuals with the MTHFR 677TT genotype, and for the first time demonstrate that SAM, and cystathionine, increase in response to riboflavin supplementation in this genotype group. The genotype-specific, one-carbon metabolite responses to riboflavin intervention observed could offer some insight into the role of this gene-nutrient interaction in blood pressure.
Collapse
|
30
|
Manandhar M, Beydoun H, Kancherla V. Association between body mass index and folate insufficiency indicative of neural tube defects risk among nonpregnant women of childbearing age in the United States, NHANES, 2007-2010. Birth Defects Res 2020; 112:490-502. [PMID: 32052935 DOI: 10.1002/bdr2.1658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Maternal folate status and obesity are known risk factors for neural tube defects (NTD) in the offspring. We examined the association between body mass index (BMI) categories and blood folate concentrations, specifically, red blood cell (RBC) folate concentrations indicative of NTD risk among nonpregnant women of child-bearing age (20-44 years) in the United States. METHODS We used data from 2007 to 2010 US National Health and Nutrition Examination Survey (NHANES). Overweight, obesity, and strata within obesity were examined. Serum and RBC folate concentrations were examined as continuous and categorical variables. RBC folate concentrations were grouped indicating high (≤585 nmol/L) and elevated risk (586-747 nmol/L) for NTDs. Unadjusted and adjusted prevalence odds ratios (aPOR) and their 95% confidence intervals (CI) were estimated using logistic regression. RESULTS Of the 30,878 participants, 25.6% were overweight, 32.7% obese, and 32.3% had RBC folate concentration indicating NTD risk (<748 nmol/L). Overweight was not associated with RBC folate level for NTD risk; however, a marginally significant negative association was noted for overall obesity and RBC folate concentrations indicative of elevated NTD risk (aPOR = 0.76; 95% CI = 0.45, 1.00). A significant protective association was noted between Class 3 obesity (BMI ≥40 kg/m2 ) and folate concentration indicative of high NTD risk (≤585 nmol/L; aPOR = 0.46; 95% CI = 0.24, 0.89). CONCLUSIONS The prevalence of RBC folate concentrations indicating elevated or high NTD risk varied by level of obesity among nonpregnant women of child-bearing age. Further studies are needed to understand the folate pathway in overweight and obese women and subsequent NTD risk in their offspring.
Collapse
Affiliation(s)
- Meryna Manandhar
- Department of Epidemiology, Rollins School of Public Health of Emory University, Atlanta, Georgia
| | - Hind Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, Virginia
| | - Vijaya Kancherla
- Department of Epidemiology, Rollins School of Public Health of Emory University, Atlanta, Georgia
| |
Collapse
|