1
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Siskin M, Economides MP, Wise DR. Cyclin-Dependent Kinase Inhibition in Prostate Cancer: Past, Present, and Future. Cancers (Basel) 2025; 17:774. [PMID: 40075623 PMCID: PMC11898528 DOI: 10.3390/cancers17050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite significant progress, prostate cancer remains a leading cause of death. Cyclin-dependent kinase (CDK) 4/6 inhibitors, which are already approved for the treatment of hormone receptor-positive breast cancer, are undergoing extensive testing as monotherapy and in various combinations as a potentially valuable treatment modality in prostate cancer patients. Thus far, a limited number of these studies have published results, which have been largely disappointing. AREAS COVERED In this review, we describe the biologic rationale for the use of CDK4/6 inhibitors in prostate cancer, the existing clinical data describing their use in prostate cancer, and ongoing clinical trials of CDK4/6 inhibitors as monotherapy and in combination for the treatment of prostate cancer. In particular, we focus on possible resistance mechanisms that may be particularly relevant in prostate cancer patients, leading to de novo and acquired resistance, and we highlight novel strategies that can overcome this resistance. CONCLUSIONS Current clinical trials are actively working to (1) refine the role of CDK4/6 inhibitors in prostate cancer patients; (2) develop new inhibitors of other cell-cycle targets, such as CDK2 and CDK7; and (3) explore novel combination therapies with inhibitors of other relevant pathways, such as PI3K or MAPK. Further genomic subtyping of advanced prostate cancer will likely shed light on the subsets of patients most likely to benefit from cell-cycle-targeted agents.
Collapse
Affiliation(s)
| | | | - David R. Wise
- Genitourinary Medical Oncology Service, Perlmutter Cancer Center, NYU Langone Heath Center, New York, NY 10016, USA; (M.S.); (M.P.E.)
| |
Collapse
|
3
|
Belew MD, Chen J, Cheng Z. Emerging roles of cyclin-dependent kinase 7 in health and diseases. Trends Mol Med 2025; 31:138-151. [PMID: 39414519 PMCID: PMC11825286 DOI: 10.1016/j.molmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.
Collapse
Affiliation(s)
- Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA.
| |
Collapse
|
4
|
Roy R, Gampa SC, Garimella SV. Role of specific CDKs in regulating DNA damage repair responses and replication stress. Curr Opin Pharmacol 2024; 79:102485. [PMID: 39265226 DOI: 10.1016/j.coph.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
Cyclins along with their catalytic units, Cyclin-dependent kinases (CDKs) regulate the cell cycle transition and transcription; and are essentially known as 'master regulators' in modulating DNA damage response (DDR) and replication stress. In addition to influencing DNA repair and damage signaling, CDKs also play a pivotal role in cell division fidelity and the maintenance of genomic integrity after DNA damage. In this review, we focus on the intricate ways by which specific CDKs mainly CDK7, CDK9, and CDK12/13, regulate the cell cycle progression and transcription and how their modulation can lead to lethal effects on the integrity of the genome. With a better knowledge of how these CDKs control the DDR and replication stress, it is now possible to combine CDK inhibitors with chemotherapeutic drugs that damage DNA in ways that can be applied in clinical settings as successful therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Roy
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (deemed to be University), Visakhapatnam, 530045, India
| | - Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
5
|
Lu H, Zhang Y, Liu J, Jiang T, Yu X, Zhang H, Liang T, Peng J, Cai X, Lan X, Ren J, Ge M, Zhang J, Shang J, Yu J, Ren H, Liu Q, Gao J, Tang L, Ding X, Zhang M, Aliper A, Lu Q, Zhou F, Lan J, Ren F, Zhavoronkov A. Discovery of a Novel Macrocyclic Noncovalent CDK7 Inhibitor for Cancer Therapy. J Med Chem 2024; 67:20580-20594. [PMID: 39520367 DOI: 10.1021/acs.jmedchem.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) is a key regulator of the cell cycle and transcription, making it a promising target for cancer therapy. Although current CDK7 inhibitors have improved in their selectivity and druglike properties, CDK7 inhibitors have failed to progress through clinical development due to severe gastrointestinal and hematotoxic side effects. To mitigate these limitations, we have developed novel, macrocyclic, noncovalent CDK7 hit compounds 2 and 3 using a macrocyclization platform that has optimized these compounds from SY-5609, a leading clinical asset. We conducted extensive structure-activity relationship (SAR) studies to improve their potency, enhance oral bioavailability, and reduce intestinal distribution, which resulted in compound 13. Compound 13 exhibits potent in vitro activity, good ADME properties, and robust in vivo antitumor activity in xenograft models as a monotherapy. Notably, compound 13 with lower basicity demonstrated improved Caco-2 permeability, reduced blood/plasma ratio, and reduced intestinal distribution in rats, thus mitigating gastrointestinal and hematotoxic side effects.
Collapse
Affiliation(s)
- Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Yihong Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jinxin Liu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Tao Jiang
- GenFleet Therapeutics (Zhejiang) Co Ltd., Shaoxing, 312000, P.R. China
| | - Xiang Yu
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Haoyu Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Tao Liang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoling Lan
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jinmin Ren
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Mei Ge
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jingyang Zhang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jingjin Shang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jiaojiao Yu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongcan Ren
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Qiang Liu
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jinting Gao
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Lili Tang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Qiang Lu
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Fusheng Zhou
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jiong Lan
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
6
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
7
|
Zhang H, Tu Y, Tao Z, Gao L, Huang S, Gao M, Mao J, Zhou Y, Li Y, Li J, Zhou Y, Xu T. Design, Synthesis, and Biological Evaluation of 2,4-Diaminopyrimidine Derivatives as Potent CDK7 Inhibitors. ACS Med Chem Lett 2024; 15:1213-1220. [PMID: 39140066 PMCID: PMC11318012 DOI: 10.1021/acsmedchemlett.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Developing selective CDK7 inhibitors has emerged as a promising approach for cancer treatment owing to the critical role of CDK7 in cancer progression. Starting from BTX-A51, a CK1α inhibitor that also targets CDK7 and CDK9, we designed and synthesized a series of 2,4-diaminopyrimidine derivatives as potent CDK7 inhibitors. The representative compound, 22, displayed significant enzymatic inhibitory activity and demonstrated a remarkable selectivity profile against a panel of kinases, including seven CDK subtypes. Modeling studies and molecular dynamics simulations revealed that the sulfone group of 22 significantly enhanced the binding affinity, while the acetyl group contributed to the increased selectivity of CDK7 against CDK9. Compound 22 effectively inhibited the phosphorylation of RNA polymerase II and CDK2 and resulted in G1/S phase cell cycle arrest and apoptosis in MV4-11 cells. It appears to be a promising lead compound for the development of a CDK7 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Hualin Zhang
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Department
of Chemistry, College of Sciences, Shanghai
University, Shanghai 200444, China
| | - Yutong Tu
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaofan Tao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Gao
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Huang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Mingshan Gao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jialuo Mao
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhou
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Yupeng Li
- Department
of Pharmaceutical Sciences, School of Pharmacy and Border Biomedical
Research Center, The University of Texas
at EI Paso, EI Paso, Texas 79902, United States
| | - Jia Li
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- Zhongshan
Institute for Drug Discovery, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- The
National Center for Drug Screening, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Tianfeng Xu
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
8
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
9
|
Song P, Han R, Yang F. Super enhancer lncRNAs: a novel hallmark in cancer. Cell Commun Signal 2024; 22:207. [PMID: 38566153 PMCID: PMC10986047 DOI: 10.1186/s12964-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.
Collapse
Affiliation(s)
- Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, China
| | - Rongyan Han
- Department of emergency, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
| | - Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
10
|
Fuentes‐Antrás J, Bedard PL, Cescon DW. Seize the engine: Emerging cell cycle targets in breast cancer. Clin Transl Med 2024; 14:e1544. [PMID: 38264947 PMCID: PMC10807317 DOI: 10.1002/ctm2.1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/31/2023] [Indexed: 01/25/2024] Open
Abstract
Breast cancer arises from a series of molecular alterations that disrupt cell cycle checkpoints, leading to aberrant cell proliferation and genomic instability. Targeted pharmacological inhibition of cell cycle regulators has long been considered a promising anti-cancer strategy. Initial attempts to drug critical cell cycle drivers were hampered by poor selectivity, modest efficacy and haematological toxicity. Advances in our understanding of the molecular basis of cell cycle disruption and the mechanisms of resistance to CDK4/6 inhibitors have reignited interest in blocking specific components of the cell cycle machinery, such as CDK2, CDK4, CDK7, PLK4, WEE1, PKMYT1, AURKA and TTK. These targets play critical roles in regulating quiescence, DNA replication and chromosome segregation. Extensive preclinical data support their potential to overcome CDK4/6 inhibitor resistance, induce synthetic lethality or sensitise tumours to immune checkpoint inhibitors. This review provides a biological and drug development perspective on emerging cell cycle targets and novel inhibitors, many of which exhibit favourable safety profiles and promising activity in clinical trials.
Collapse
Affiliation(s)
- Jesús Fuentes‐Antrás
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
- NEXT OncologyHospital Universitario QuironSalud MadridMadridSpain
| | - Philippe L. Bedard
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - David W. Cescon
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
11
|
Ocker M, Neureiter D. Gene expression inhibitors for the treatment of liver fibrosis: drugs under preclinical and early clinical investigation. Expert Opin Investig Drugs 2023; 32:1133-1141. [PMID: 37997755 DOI: 10.1080/13543784.2023.2288075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Liver fibrosis represents an unmet medical condition with growing incidence and only limited therapeutic options. Interfering with dysregulated gene expression was considered a specific treatment approach, and we are here reviewing the current options to modulate transcription and translation with small molecule inhibitors of involved enzymes, transcription factors or by using non-coding RNA molecules (RNA interference) or DNA antisense oligonucleotides. Despite promising results in preclinical models, only limited data are available from studies in humans. AREAS COVERED This expert opinion provides a general overview of how to interfere with gene expression (transcription and translation) and highlighting recent achievements in liver fibrosis. EXPERT OPINION Many compounds that were explored to modulate gene expression in liver fibrosis (models) were developed as anti-cancer agents. Their use in humans with impaired liver function is often impaired by the lack of specificity to inhibit only fibrosis-related genes in the liver and by associated general toxicity and narrow therapeutic windows. RNAi approaches show a higher degree of specificity and potentially less systemic toxicity. Clinical development in liver fibrosis requires close interaction between pharmaceutical companies and regulatory authorities to address topics like relevant (surrogate) endpoints to achieve meaningful readouts faster.
Collapse
Affiliation(s)
- Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|