1
|
Bourdais A, Viard P, Bormann J, Sesboüé C, Guerrier D, Therville N, Guillermet-Guibert J, Carroll J, Halet G. Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos. Development 2025; 152:dev204398. [PMID: 39982048 DOI: 10.1242/dev.204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.
Collapse
Affiliation(s)
- Anne Bourdais
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Patricia Viard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | - Côme Sesboüé
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Guerrier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Nicole Therville
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
2
|
Gualtieri R, De Gregorio V, Candela A, Travaglione A, Genovese V, Barbato V, Talevi R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024; 13:996. [PMID: 38920627 PMCID: PMC11202082 DOI: 10.3390/cells13120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples ‘’Federico II’’, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.D.G.); (A.C.); (A.T.); (V.G.); (V.B.); (R.T.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Travaglione A, Candela A, De Gregorio V, Genovese V, Cimmino M, Barbato V, Talevi R, Gualtieri R. Individually Cultured Bovine Zygotes Successfully Develop to the Blastocyst Stage in an Extremely Confined Environment. Cells 2024; 13:868. [PMID: 38786090 PMCID: PMC11119105 DOI: 10.3390/cells13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (A.T.); (A.C.); (V.D.G.); (V.G.); (M.C.); (V.B.); (R.T.)
| |
Collapse
|
4
|
Kikuchi Y, Ito D, Wakayama S, Ooga M, Wakayama T. Time-lapse observation of mouse preimplantation embryos using a simple closed glass capillary method. Sci Rep 2023; 13:19893. [PMID: 37963931 PMCID: PMC10646084 DOI: 10.1038/s41598-023-47017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Time-lapse observation is a popular method for analyzing mammalian preimplantation embryos, but it often requires expensive equipment and skilled techniques. We previously developed a simply and costly embryo-culture system in a sealed tube that does not require a CO2 incubator. In the present study, we developed a new time-lapse observation system using our previous culture method and a glass capillary. Zygotes were placed in a glass capillary and sunk in oil for observation under a stereomicroscope. Warming the capillary using a thermoplate enabled most of the zygotes to develop into blastocysts and produce healthy offspring. This time-lapse observation system captured images every 30 min for up to 5 days, which confirmed that the developmental speed and quality of the embryos were not affected, even with fluorescence. Overall, this new system is a simple time-lapse observation method for preimplantation embryos that does not require dedicated machines and advanced techniques.
Collapse
Affiliation(s)
- Yasuyuki Kikuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
5
|
Candolin U, Goncalves S, Pant P. Delayed early life effects in the threespine stickleback. Proc Biol Sci 2022; 289:20220554. [PMID: 35642365 PMCID: PMC9156908 DOI: 10.1098/rspb.2022.0554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early life conditions can have a decisive influence on viability later in life. However, the influence of embryo density within a nest or body cavity on subsequent viability has received little attention within an ecological setting. This is surprising given that embryos often compete for limited resources, such as nutrients and oxygen, and this could influence their viability later in life through carry-over and compensatory effects. We show that the density of fertilized eggs within the nests of threespine stickleback males (Gasterosteus aculeatus) influences their viability after hatching. Embryos from larger broods hatch earlier and at a smaller size than those from smaller broods, which reduces their survival until the age of four weeks. This indicates a trade-off between the number and viability of offspring that males can raise to the hatching stage, which could explain the high incidence of partial egg cannibalism in nest-brooding fishes-as a strategy to improve the survival of remaining offspring. These results highlight the importance of considering conditions at the embryonic stage when evaluating the impact of early life conditions on viability and the adaptive value of reproductive decisions.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Sara Goncalves
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Pankaj Pant
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
6
|
Fancsovits P, Pribenszky C, Lehner A, Murber A, Kaszas Z, Nemes A, Urbancsek J. Prospective-randomized study comparing clinical outcomes of IVF treatments where embryos were cultured individually or in a microwell group culture dish. Biol Futur 2022; 73:229-236. [PMID: 35278201 DOI: 10.1007/s42977-022-00113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
Culturing embryos together in a microdrop of media may improve embryo quality, based on the results of animal studies, however individual identification of the embryos in such a system is not possible. The microwell group culture dish contains 9 or 16 microwells with a minimal well-to-well distance and a specific well morphology that facilitates paracrine and autocrine effects. The microwell group culture dish enables individual identification of the embryos while providing the environment that comes with similar benefits as group culture. Our aim was to investigate whether embryo culture in the microwell group culture dish (Primo Vision Dish, Vitrolife) improves IVF outcomes compared to individual culture in human IVF treatment. Five hundred thirty-two IVF-ET cycles were enrolled in this prospective randomized study in a university hospital. IVF cycles were randomized into microwell group culture and individual culture groups. Primary outcome measure was clinical pregnancy rate and secondary outcome measures were embryo quality, fertilization, implantation, delivery and embryo utilization rates. Fertilization rate in ICSI cycles was significantly higher in the microwell group culture group (70.6% vs. 64.9%, P = 0.001). Clinical pregnancy rate was 50.8% in the group culture and 40.6% in the individual culture (P = 0.022). Live birth rate was 41.5% in microwell and 32.9% in individual culture (P = 0.0496). Embryo utilization rate was higher in microwell group culture than in individual culture (80.6% vs. 75.0%; P < 0.001). Microwell group culture has a beneficial effect on IVF outcome and it also allows following up individual embryo development.ClinicalTrials.gov: NCT01774006.
Collapse
Affiliation(s)
- Peter Fancsovits
- Division of Assisted Reproduction, Department of Obstetrics and Gynaecology, Semmelweis University School of Medicine, Baross u. 27, Budapest, 1088, Hungary.
| | - Csaba Pribenszky
- Department of Animal Hygiene, Herdhealth and Veterinary Ethology, University of Veterinary Science, Budapest, Hungary
| | - Adam Lehner
- Division of Assisted Reproduction, Department of Obstetrics and Gynaecology, Semmelweis University School of Medicine, Baross u. 27, Budapest, 1088, Hungary
| | - Akos Murber
- Division of Assisted Reproduction, Department of Obstetrics and Gynaecology, Semmelweis University School of Medicine, Baross u. 27, Budapest, 1088, Hungary
| | - Zita Kaszas
- Division of Assisted Reproduction, Department of Obstetrics and Gynaecology, Semmelweis University School of Medicine, Baross u. 27, Budapest, 1088, Hungary
| | - Annamaria Nemes
- Division of Assisted Reproduction, Department of Obstetrics and Gynaecology, Semmelweis University School of Medicine, Baross u. 27, Budapest, 1088, Hungary
| | - Janos Urbancsek
- Division of Assisted Reproduction, Department of Obstetrics and Gynaecology, Semmelweis University School of Medicine, Baross u. 27, Budapest, 1088, Hungary
| |
Collapse
|
7
|
Crasta DN, Adiga SK, Kannan N, Kalthur G. Artificial Activation of Murine Oocytes Using Strontium to Derive Haploid and Diploid Parthenotes. Methods Mol Biol 2022; 2429:15-26. [PMID: 35507152 DOI: 10.1007/978-1-0716-1979-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parthenogenesis is a common reproductive strategy among lower animals that involves the development of an embryo from an oocyte, without any contribution from spermatozoon. This phenomenon does not occur naturally in placental mammals. However, the mammalian oocytes can be artificially activated in vitro using mechanical, electrical, and chemical stimuli which can develop up to the blastocyst stage. In this chapter, we describe the protocol for generating haploid and diploid parthenotes from mouse oocytes using strontium as the activating agent under in vitro conditions.
Collapse
Affiliation(s)
- Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Stem Cell and Cancer Biology Laboratory, Division of Experimental Medicine and Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Mayo Clinic, Rochester, MN, USA
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Nagarajan Kannan
- Stem Cell and Cancer Biology Laboratory, Division of Experimental Medicine and Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
- Stem Cell and Cancer Biology Laboratory, Division of Experimental Medicine and Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
A comparison of in vitro culture systems for cat embryos. Theriogenology 2021; 179:149-154. [PMID: 34875537 DOI: 10.1016/j.theriogenology.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 01/20/2023]
Abstract
The aim of this study was to compare several culture systems for cat embryos. Domestic cat oocytes were matured in vitro (IVM), fertilized (IVF), and cultured individually or in groups in drops under oil (20 μL or 50 μL) and in 16 microwell dishes (Primo Vision®). Moreover, the effects of co-culture with a) uncleaved oocytes, b) homospecific and c) heterospecific co-culture with cat and sheep companion embryos were investigated using a time-lapse system. A higher proportion of blastocysts and hatching blastocysts was observed after culture in Primo Vision® dishes compared with the classical individual (p < 0.001) and group (p < 0.05) culture systems. Culture of presumptive zygotes 16 hpi and the presence of uncleaved oocytes did not reduce blastocyst development compared with culture of embryos 24 hpi without uncleaved oocytes. Co-culture with later-stage companion cator sheep embryos accelerated development of catembryos. The highest percentage of blastocysts was obtained in the group co-cultured with sheep embryos (54%). Moreover, the blastocyst cavity formed on average 10 h faster in this group than for the control group and for embryos co-cultured with cat embryos. The proportion of hatching blastocysts was similar in the co-cultures with cat and with sheep embryos (20% vs. 22%) and significantly (p < 0.05) than in the control group (12%).
Collapse
|
9
|
Vajta G, Parmegiani L, Machaty Z, Chen WB, Yakovenko S. Back to the future: optimised microwell culture of individual human preimplantation stage embryos. J Assist Reprod Genet 2021; 38:2563-2574. [PMID: 33864207 PMCID: PMC8581087 DOI: 10.1007/s10815-021-02167-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Although in vitro culture of human embryos is a crucial step in assisted reproduction, the lack of focused research hampers worldwide standardisation and consistent outcomes. Only 1.2% of research papers published in five leading journals in human reproduction in 2019 focused on in vitro culture conditions, creating the impression that the optimisation process has approached its limits. On the other hand, in vitro culture of mammalian embryos is based on old principles, while there is no consensus on basic issues as density, time, medium change, gas atmosphere and small technical details including the way of drop preparation. This opinion paper aims to highlight and analyse the slow advancement in this field and stimulate research for simple and affordable solutions to meet the current requirements. A possible way for advancement is discussed in detail. Selection of embryos with the highest developmental competence requires individual culture and modification of the widely used "drop under oil" approach. Current use of three-dimensional surfaces instead of large flat bottoms is restricted to time-lapse systems, but these wells are designed for optical clarity, not for the needs of embryos. The size and shape of the original microwells (Well of the Well; WOW) offer a practical and straightforward solution to combine the benefits of communal and individual incubation and improve the overall quality of cultured embryos.
Collapse
Affiliation(s)
- Gábor Vajta
- RVT Australia, Cairns, QLD 4870 Australia
- VitaVitro Biotech Co., Ltd., Shenzhen, China
| | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| | | | - Sergey Yakovenko
- Altravita IVF Clinic, Moscow, Russia
- Biophysics Department, Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Ma Y, Gu M, Chen L, Shen H, Pan Y, Pang Y, Miao S, Tong R, Huang H, Zhu Y, Sun L. Recent advances in critical nodes of embryo engineering technology. Theranostics 2021; 11:7391-7424. [PMID: 34158857 PMCID: PMC8210615 DOI: 10.7150/thno.58799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The normal development and maturation of oocytes and sperm, the formation of fertilized ova, the implantation of early embryos, and the growth and development of foetuses are the biological basis of mammalian reproduction. Therefore, research on oocytes has always occupied a very important position in the life sciences and reproductive medicine fields. Various embryo engineering technologies for oocytes, early embryo formation and subsequent developmental stages and different target sites, such as gene editing, intracytoplasmic sperm injection (ICSI), preimplantation genetic diagnosis (PGD), and somatic cell nuclear transfer (SCNT) technologies, have all been established and widely used in industrialization. However, as research continues to deepen and target species become more advanced, embryo engineering technology has also been developing in a more complex and sophisticated direction. At the same time, the success rate also shows a declining trend, resulting in an extension of the research and development cycle and rising costs. By studying the existing embryo engineering technology process, we discovered three critical nodes that have the greatest impact on the development of oocytes and early embryos, namely, oocyte micromanipulation, oocyte electrical activation/reconstructed embryo electrofusion, and the in vitro culture of early embryos. This article mainly demonstrates the efforts made by researchers in the relevant technologies of these three critical nodes from an engineering perspective, analyses the shortcomings of the current technology, and proposes a plan and prospects for the development of embryo engineering technology in the future.
Collapse
Affiliation(s)
- Youwen Ma
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Mingwei Gu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Hao Shen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yifan Pan
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yan Pang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Sheng Miao
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Ruiqing Tong
- Cardiology, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Haibo Huang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yichen Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
- State Key Laboratory of Robotics & Systems, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Mullen SF. Toward a predictive theoretical model for osmolality rise with non-humidified incubation: a randomized, multivariate response-surface study. Hum Reprod 2021; 36:1230-1241. [PMID: 33561199 DOI: 10.1093/humrep/deab015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION What factors associated with embryo culture techniques contribute to the rate of medium osmolality change over time in an embryo culture incubator without added humidity? SUMMARY ANSWER The surface area-to-volume ratio of culture medium (surface area of the medium exposed to an oil overlay), as well as the density and height of the overlaying oil, all interact in a quantitative way to affect the osmolality rise over time. WHAT IS KNOWN ALREADY Factors such as medium volume, different oil types, and associated properties, individually, can affect osmolality change during non-humidified incubation. STUDY DESIGN, SIZE, DURATION Several experimental designs were used, including simple single-factor completely randomized designs, as well as a multi-factor response surface design. Randomization was performed at one or more levels for each experiment. Osmolality measurements were performed over 7 days, with up to 8 independent osmolality measurements performed per treatment group over that time. For the multi-factor study, 107 independent combinations of factor levels were assessed to develop the mathematical model. PARTICIPANTS/MATERIALS, SETTING, METHODS This study was conducted in a research laboratory setting. Commercially available embryo culture medium and oil was used. A MINC incubator without water for humidification was used for the incubation. Osmolality was measured with a vapor pressure osmometer after calibration. Viscometry and density were conducted using a rheometer, and volumetric flasks with an analytical balance, respectively. Data analyses were conducted with several commercially available software programs. MAIN RESULTS AND THE ROLE OF CHANCE Preliminary experiments showed that the surface area-to-volume ratio of the culture medium, oil density, and oil thickness above the medium all contributed significantly (P < 0.05) to the rise in osmolality. A multi-factor experiment showed that a combination of these variables, in the form of a truncated cubic polynomial, was able to predict the rise in osmolality, with these three variables interacting in the model (P < 0.05). Repeatability, as measured by the response of identical treatments performed independently, was high, with osmolality values being ± 2 of the average in most instances. In the final mathematical model, the terms of the equation were significant predictors of the outcome, with all P-values being significant, and only one P-value > 0.0001. LIMITATIONS, REASONS FOR CAUTION Although the range of values for the variables were selected to encompass values that are expected to be encountered in usual embryo culture conditions, variables outside of the range used may not result in accurate model predictions. Although the use of a single incubator type and medium type is not expected to affect the conclusions, that remains an uncertainty. WIDER IMPLICATIONS OF THE FINDINGS Using this predictive model will help to determine if one should be cautious in using a specific system and will provide guidance on how a system may be modified to provide improved stability during embryo culture. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Cook Medical. The author is a Team Lead and Senior Scientist at Cook Medical. The author has no other conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Steven F Mullen
- Research and Development, Cook Medical, Bloomington, IN 47404, USA
| |
Collapse
|
12
|
Vajta G, Parmegiani L, Machaty Z, Chen WB, Yakovenko S. Back to the future: optimised microwell culture of individual human preimplantation stage embryos. J Assist Reprod Genet 2021. [PMID: 33864207 DOI: 10.1007/s10815-021-02167-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
Although in vitro culture of human embryos is a crucial step in assisted reproduction, the lack of focused research hampers worldwide standardisation and consistent outcomes. Only 1.2% of research papers published in five leading journals in human reproduction in 2019 focused on in vitro culture conditions, creating the impression that the optimisation process has approached its limits. On the other hand, in vitro culture of mammalian embryos is based on old principles, while there is no consensus on basic issues as density, time, medium change, gas atmosphere and small technical details including the way of drop preparation. This opinion paper aims to highlight and analyse the slow advancement in this field and stimulate research for simple and affordable solutions to meet the current requirements. A possible way for advancement is discussed in detail. Selection of embryos with the highest developmental competence requires individual culture and modification of the widely used "drop under oil" approach. Current use of three-dimensional surfaces instead of large flat bottoms is restricted to time-lapse systems, but these wells are designed for optical clarity, not for the needs of embryos. The size and shape of the original microwells (Well of the Well; WOW) offer a practical and straightforward solution to combine the benefits of communal and individual incubation and improve the overall quality of cultured embryos.
Collapse
Affiliation(s)
- Gábor Vajta
- RVT Australia, Cairns, QLD, 4870, Australia. .,VitaVitro Biotech Co., Ltd., Shenzhen, China.
| | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Sergey Yakovenko
- Altravita IVF Clinic, Moscow, Russia.,Biophysics Department, Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
|
14
|
Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online 2020; 42:39-54. [PMID: 33303367 DOI: 10.1016/j.rbmo.2020.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Elective single embryo transfer is rapidly becoming the standard of care in assisted reproductive technology for patients under the age of 35 years with a good prognosis. Clinical pregnancy rates have become increasingly dependent on the selection of a single viable embryo for transfer, and diagnostic techniques facilitating this selection continue to develop. Current progress in elucidating the extracellular vesicle and microRNA components of the embryonic secretome is reviewed, and the potential for these findings to improve clinical embryo selection discussed. Key results have shown that extracellular vesicles and microRNAs are rapidly detectable constituents of the embryonic secretome. Evidence suggests that the vesicular population is largely exosomal in nature, secreted at all stages of preimplantation development and capable of traversing the zona pellucida. Both extracellular vesicle and microRNA concentrations within the secretome are elevated for blastocysts with diminished developmental competence, as indicated either by degeneracy or implantation failure, whereas studies have yet to firmly correlate individual microRNA sequences with pregnancy outcome. These emerging correlations support the viability of extracellular vesicles and microRNAs as the basis for a new diagnostic test to supplement or replace morphokinetic assessment.
Collapse
Affiliation(s)
- David Connor Hawke
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Andrew John Watson
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Dean Harvey Betts
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada.
| |
Collapse
|
15
|
Gardner D, Zander-Fox D, Bakos HW, McPherson N, Pacella-Ince L. In memory of Michelle Lane: 1970 – 2020. Reprod Biomed Online 2020; 40:753-754. [DOI: 10.1016/j.rbmo.2020.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Samal P, Maurer P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. A New Microengineered Platform for 4D Tracking of Single Cells in a Stem-Cell-Based In Vitro Morphogenesis Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907966. [PMID: 32346909 DOI: 10.1002/adma.201907966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recently developed stem-cell-based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high-content imaging. In contrast, using advanced microengineered tools can help in microscale control, long-term culture, and real-time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film-based microdevices. A pipeline consisting of open-source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non-adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Philipp Maurer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
17
|
Walters EA, Brown JL, Krisher R, Voelkel S, Swain JE. Impact of a controlled culture temperature gradient on mouse embryo development and morphokinetics. Reprod Biomed Online 2020; 40:494-499. [DOI: 10.1016/j.rbmo.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022]
|
18
|
Morris MB, Ozsoy S, Zada M, Zada M, Zamfirescu RC, Todorova MG, Day ML. Selected Amino Acids Promote Mouse Pre-implantation Embryo Development in a Growth Factor-Like Manner. Front Physiol 2020; 11:140. [PMID: 32210831 PMCID: PMC7076138 DOI: 10.3389/fphys.2020.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Groups of amino acids, and some selected amino acids, added to media used for culture of pre-implantation embryos have previously been shown to improve development in various ways including survival to the blastocyst stage, increased blastocyst cell number and improved hatching. In this study, we cultured 1-cell mouse embryos for 5 days to the hatching blastocyst stage in isosmotic medium (270 mOsm/kg) at high density (10 embryos/10 μL), where autocrine/paracrine support of development occurs, and low density (1 embryo/100 μL), where autocrine/paracrine support is minimized and development is compromised. When 400 μM L-Pro or 1 mM L-Gln was added to embryos at low density, the percentage of embryos reaching the blastocyst stage and the percentage hatching increased compared to low-density culture without these amino acids, and were now similar to those for embryos cultured at high density without amino acids. When L-Pro or L-Gln was added to embryos at high density, the percentage of embryos reaching the blastocyst stage didn’t change but hatching improved. Neither embryo culture density nor the presence of these amino acids had any effect on blastocyst cell number. D-Pro and the osmolytes Gly and Betaine did not improve embryo development in low- or high-density culture indicating the mechanism was stereospecific and not osmotic, respectively. L-Pro- and L-Gln-mediated improvement in development is observed from the 5-cell stage and persists to the blastocyst stage. Molar excess of Gly, Betaine or L-Leu over L-Pro eliminated improvement in development and hatching consistent with them acting as competitive inhibitors of transporter-mediated uptake across the plasma membrane. The L-Pro effect is dependent on mTORC1 signaling (rapamycin sensitive) while that for L-Gln is not. The addition of L-Pro leads to significant nuclear translocation of p-AktS473 at the 2- and 4-cell stages and of p-ERK1/2T202/Y204 nuclear translocation at the 2-, 4-, and 8-cell stages. L-Pro improvement in embryo development involves mechanisms analogous to those seen with Pro-mediated differentiation of mouse ES cells, which is also stereoselective, dependent on transporter uptake, and activates Akt, ERK, and mTORC1 signaling pathways.
Collapse
Affiliation(s)
- Michael B Morris
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sukran Ozsoy
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Zada
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mark Zada
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Radu C Zamfirescu
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mariana G Todorova
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Margot L Day
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Juneau CR, Tiegs AW, Franasiak JM, Goodman LR, Whitehead C, Patounakis G, Scott RT. Embryo's Natural Motion (enMotion): a paired randomized controlled trial evaluating a dynamic embryo culture system. Fertil Steril 2020; 113:578-586.e1. [PMID: 32044089 DOI: 10.1016/j.fertnstert.2019.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To determine if a dynamic embryo culture system affects the reproductive potential of human embryos resulting from in vitro fertilization (IVF). DESIGN Paired randomized controlled trial (RCT). SETTING IVF center. PATIENT(S) IVF patients with normal ovarian reserve eligible for two-embryo transfer. INTERVENTION IVF care was routine until fertilization was confirmed. Two-pronuclear embryos (2PNs) were then randomized: One-half of each patient's 2PNs were cultured in dynamic culture and one-half in static culture. Preimplantation genetic testing for embryonic aneuploidy was used to control for aneuploidy and allow for DNA fingerprinting. The best euploid blastocyst from each culture system was selected and patients underwent a frozen two-embryo transfer. If a singleton gestation resulted, DNA-fingerprinting was used to determine which of the two blastocysts implanted. The dynamic platform used was the NSSB-300 (Nepagene). MAIN OUTCOME MEASURE(S) The primary outcome was the proportion of usable blastocysts obtained. The secondary outcome was sustained implantation rate (SIR). RESULT(S) One hundred participants completed oocyte retrieval and blastocyst vitrification for frozen-thawed embryo transfer; 609 dynamic 2PNs and 615 static 2PNs were followed; and 304 blastocysts developed in dynamic culture and 333 blastocysts developed in static culture. In the paired analysis, the rate of usable blastulation was similar between dynamic and static culture (58.3% vs. 57.1%). In addition, there was no difference in the rate of aneuploidy (20.0% vs. 33.3%) or SIR (67.1% vs. 63.1%) between groups. CONCLUSION(S) In this paired RCT, dynamic culture did not improve usable blastulation rate or SIR. CLINICAL TRIAL REGISTRATION NUMBER NCT02467725.
Collapse
Affiliation(s)
| | - Ashley W Tiegs
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey
| | - Jason M Franasiak
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | - Richard T Scott
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Systematic Development, Validation and Optimization of a Human Embryo Culture System. REPRODUCTIVE MEDICINE 2020. [DOI: 10.3390/reprodmed1010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: To develop and validate a reliable in vitro culture system for human embryos. Design: Retrospective analyses of a series of four studies were conducted between 2006 and 2010 to assess the effect of incubator type (CO2 box versus Tri-gas minibox), media type, oil type, and hyaluronate supplementation. Optimization of in vitro blastocyst development was verified by assessing our National CDC/ART Surveillance reports between 2010 and 2016. Material and Methods: All patients experienced controlled ovarian hyperstimulation, followed by egg retrieval 35 h post-hCG. Cumulus-oocyte complexes were temporarily cultured in P1 or LG Fert medium plus HSA. Eggs were moved to a more complex media (G-medium or Global®-LG medium) containing a synthetic protein and embryo adhesion supplement (SPS and EAS, respectively; mLG) post-ICSI insemination. Zygotes were assigned to group culture in 25 µl droplets under oil (light mineral oil or paraffin oil; 37 °C) and embryo development was evaluated on Days 3, 5, and 6 and transferred on Day 3 to 5 depending on the number/quality of embryos available and the IVF history of the patient. Transfers were performed under ultrasound guidance, primarily using a Sureview-Wallace catheter, and enriched ET medium containing 500 µg/mL EAS. Results: Pilot study results (Expt. 1) showed that a mLG single-step medium could be effectively used in combination with Sanyo MCO-5 tri-gas (TG) incubators. Once adapted to SCIRS Lab in 2007 (Expt. 2), the latter culture system yielded improved blastocyst production and pregnancy outcomes compared to CO2 in air sequential incubation in P1/Multi-blast medium. In Expt. 3, the mLG/TG system yielded high levels of ≥2BB quality blastocysts (51 to 66%) across all age groups, and greater (p < 0.05) pregnancy success/live birth rates using fewer embryos transferred on Day 5 versus Day 3. After validating its clinical effectiveness, mLG was then prospectively compared to a new generation G-media (1.5 & 2.5; Expt. 4) and determined that the crossover treatment using paraffin oil (Ovoil™) allowed the mLG system to be optimized. Subsequently, a compilation of our Annual CDC/ART reported data over six years verified the overall viability of in vitro cultured and vitrified blastocysts produced in the mLG/TG system. Conclusion: By systematically evaluating and implementing various components of an embryo culture system we were able to optimize blastocyst development over the last decade. Our mLG/TG culture system modified an exceptionally well designed KSOMAA LG medium using endotoxin-free EAS and SPS additives to support cellular membrane wellness under stressful in vitro conditions (e.g., culture, cell biopsy, vitrification). Our use of the mLG/TG culture system has proven to be effective, creating reliably high blastocyst production, implantation, and healthy live births.
Collapse
|
21
|
Parameters of the Mouse Embryo Assay that affect detection of peroxides in mineral oil. Reprod Biomed Online 2019; 39:547-555. [DOI: 10.1016/j.rbmo.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
|
22
|
Colombo M, Morselli MG, Tavares MR, Apparicio M, Luvoni GC. Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions. Animals (Basel) 2019; 9:E329. [PMID: 31181674 PMCID: PMC6616943 DOI: 10.3390/ani9060329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023] Open
Abstract
Cryoinjuries severely affect the competence of vitrified oocytes (VOs) to develop into embryos after warming. The use of culture conditions that provide physical and chemical support and resemble the in vivo microenvironment in which oocytes develop, such as 3D scaffolds and coculture systems, might be useful to improve VOs outcomes. In this study, an enriched culture system of 3D barium alginate microcapsules was employed for the in vitro embryo production of domestic cat VOs. Cryotop vitrified-warmed oocytes were in vitro matured for 24 h in the 3D system with or without fresh cumulus-oocyte complexes (COCs) in coculture, whereas a control group of VOs was cultured in traditional 2D microdrops of medium. After in vitro fertilization, presumptive embryos were cultured in 3D or 2D systems according to the maturation conditions. Vitrified oocytes were able to mature and develop into embryos in 3D microcapsules (17.42 ± 11.83%) as well as in 2D microdrops (14.96 ± 8.80%), but the coculture with companion COCs in 3D resulted in similar proportions of VOs embryo development (18.39 ± 16.67%; p = 1.00), although COCs presence allowed for blastocyst formation (0.95 ± 2.52%). In conclusion, embryos until late developmental stages were obtained from cat VOs, and 3D microcapsules were comparable to 2D microdrops, but improvements in post-warming conditions are still needed.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| | - Maria Giorgia Morselli
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| | - Mariana Riboli Tavares
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil.
| | - Maricy Apparicio
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil.
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| |
Collapse
|
23
|
Kelley RL, Gardner DK. Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and post-implantation development. Reprod Biomed Online 2019; 39:3-18. [PMID: 31122833 DOI: 10.1016/j.rbmo.2019.03.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 12/30/2022]
Abstract
RESEARCH QUESTION Does single embryo culture under atmospheric or reduced oxygen alter preimplantation metabolism and post-implantation development compared with culture in groups? DESIGN Mouse embryos were cultured under 5% or 20% oxygen, individually or in groups of 10. Spent media were analysed after 48, 72 and 96 h of culture. Blastocysts were assessed by outgrowth assay or transferred to pseudo-pregnant recipients, and fetal and placental weight, length and morphology were assessed. RESULTS Compared with group culture, individually cultured blastocysts had lower net consumption of glucose and aspartate and higher glutamate production. Atmospheric oxygen reduced uptake of glucose and aspartate and increased production of glutamate and ornithine compared with 5% oxygen. Combining 20% oxygen and single culture resulted in further metabolic changes: decreased leucine, methionine and threonine consumption. Under 5% oxygen, individual culture decreased placental labyrinth area but had no other effects on fetal and placental development or outgrowth size compared with group culture. Under 20% oxygen, however, individual culture reduced outgrowth size and fetal and placental weight compared with group-cultured embryos. CONCLUSIONS Preimplantation metabolism of glucose and amino acids is altered by both oxygen and individual culture, and fetal weight is reduced by individual culture under atmospheric oxygen but not 5% oxygen. This study raises concerns regarding the increasing prevalence of single embryo culture in human IVF and adds to the existing evidence regarding the detrimental effects of atmospheric oxygen during embryo culture. Furthermore, these data demonstrate the cumulative nature of stress during embryo culture and highlight the importance of optimizing each element of the culture system.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of BioSciences, The University of Melbourne, Parkville Victoria 3010, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville Victoria 3010, Australia.
| |
Collapse
|
24
|
Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular Vesicles: Decoding a New Language for Cellular Communication in Early Embryonic Development. Front Cell Dev Biol 2018; 6:94. [PMID: 30211159 PMCID: PMC6121069 DOI: 10.3389/fcell.2018.00094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The blastocyst inner cell mass (ICM) that gives rise to a whole embryo in vivo can be derived and cultured in vitro as embryonic stem cells (ESCs), which retain full developmental potential. ICM cells receive, from diverse sources, complex molecular and spatiotemporal signals that orchestrate the finely-tuned processes associated with embryogenesis. Those instructions come, continuously, from themselves and from surrounding cells, such as those present in the trophectoderm and primitive endoderm (PrE). A key component of the ICM niche are the extracellular vesicles (EVs), produced by distinct cell types, that carry and transfer key molecules that regulate target cells and modulate cell renewal or cell fate. A growing number of studies have demonstrated the extracellular circulation of morphogens, a group of classical regulators of embryo development, are carried by EVs. miRNAs are also an important cargo of the EVs that have been implicated in tissue morphogenesis and have gained special attention due to their ability to regulate protein expression through post-transcriptional modulation, thereby influencing cell phenotype. This review explores the emerging evidence supporting the role of EVs as an additional mode of intercellular communication in early embryonic and ESCs differentiation.
Collapse
Affiliation(s)
- Lilian Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jenny A A Romero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
In Vitro Culture of Single Bovine Embryos with Microwell Plates Made of Poly(dimethylsiloxane) Cured under Low Pressure. Int J Biomater 2018; 2018:7546986. [PMID: 29977297 PMCID: PMC6011063 DOI: 10.1155/2018/7546986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/06/2018] [Indexed: 11/21/2022] Open
Abstract
Single embryo culture is useful for assessing the developmental competence of an embryo in detail. Recently, a device made of poly(dimethylsiloxane) (PDMS), which is biocompatible and nontoxic, has been widely used for culture various types of cells. However, PDMS plates are porous, causing the serious osmolality increment of the medium (over 600 mOsm/kg from Day 4 to Day 7). Here, we report that curing the PDMS under low pressure (LP-PDMS) greatly reduced the porosity, resulting in a constant osmolality of the medium. The blastocyst rate of single bovine embryos cultured with LP-PDMS microwell (MW) plates was the same as that of group-cultured embryos (25 embryos/50 μl droplet; control, P>0.05). These results indicate that MWs on a plate made of PDMS cured under low pressure can be successfully used for individual embryo culture.
Collapse
|
26
|
Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700197] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| | | | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| |
Collapse
|
27
|
Exogenous growth factors do not affect the development of individually cultured murine embryos. J Assist Reprod Genet 2017; 35:523-531. [PMID: 29270871 DOI: 10.1007/s10815-017-1103-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The objective of this study was to evaluate the effects of multiple growth factors on the development of individually cultured murine embryos. METHODS Embryos produced by in vitro fertilization using in vitro (IVM) or in vivo (IVO) matured oocytes from three strains of mice (CF1, Swiss Webster, B6D2F1) were cultured individually (10 μl) in the absence (control) or presence of growth factors (paf, epidermal growth factor [EGF], insulin-like growth factor 1 [IGF-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Blastocyst formation, hatching, and blastocyst cell numbers (trophectoderm, inner cell mass, and total) were evaluated on days 4 and 5 of culture. Post-hatching development of CF1 IVO embryos was also evaluated in vitro and in vivo. RESULTS The presence of growth factors did not improve the proportion of embryos forming blastocysts or initiating hatching for any of the types of embryos tested. The only significant (P < 0.05) effect of growth factors was a decrease in the proportion of embryos that formed blastocysts by day 5 in CF1 IVM embryos. The presence of growth factors also did not affect blastocyst cell numbers. For CF1 IVO embryos, the presence of growth factors during culture did not affect the proportion of embryos that attached to fibronectin-coated dishes, the size of the resulting outgrowths, or in vivo development following transfer. CONCLUSION Combinations of paf, EGF, GM-CSF, and IGF-1 did not improve development of murine embryos cultured individually in a sequential medium containing a defined protein source.
Collapse
|
28
|
Laskowski D, Båge R, Humblot P, Andersson G, Sirard MA, Sjunnesson Y. Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine day 8 blastocysts. Theriogenology 2017; 101:15-25. [DOI: 10.1016/j.theriogenology.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 01/07/2023]
|
29
|
Kelley RL, Gardner DK. Addition of interleukin-6 to mouse embryo culture increases blastocyst cell number and influences the inner cell mass to trophectoderm ratio. Clin Exp Reprod Med 2017; 44:119-125. [PMID: 29026717 PMCID: PMC5636923 DOI: 10.5653/cerm.2017.44.3.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/17/2017] [Accepted: 06/19/2017] [Indexed: 11/06/2022] Open
Abstract
Objective In vitro culture of preimplantation embryos is improved by grouping embryos together in a drop of media. Individually cultured embryos are deprived of paracrine factors; with this in mind, we investigated whether the addition of a single embryo-secreted factor, interleukin-6 (IL-6), could improve the development of individually cultured embryos. Methods Mouse embryos were cultured individually in 2 µL of G1/G2 media in 5% oxygen and supplemented with a range of doses of recombinant mouse or human IL-6. Results Mouse IL-6 increased hatching at doses of 0.01 and 10 ng/mL compared to the control (93% and 93% vs. 78%, p<0.05) and increased the total number of cells at a dose of 0.1 ng/mL compared to the control (101.95±3.36 vs. 91.31±3.33, p<0.05). In contrast, the highest dose of 100 ng/mL reduced the total number of cells (79.86±3.29, p<0.05). Supplementation with human IL-6 had a different effect, with no change in hatching or total cell numbers, but an increase in the percentage of inner cell mass per embryo at doses of 0.1, 1, and 100 ng/mL compared to the control (22.9%±1.1%, 23.3%±1.1%, and 23.1%±1.1% vs. 19.5%±1.0%, p<0.05). Conclusion These data show that IL-6 improved mouse embryo development when cultured individually in complex media; however, an excess of IL-6 may be detrimental. Additionally, these data indicate that there is some cross-species benefit of human IL-6 for mouse embryos, but possibly through a different mechanism than for mouse IL-6.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - David K Gardner
- School of Biosciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Ganeshan L, Jin XL, O'Neill C. The induction of tumour suppressor protein P53 limits the entry of cells into the pluripotent inner cell mass lineage in the mouse embryo. Exp Cell Res 2017; 358:227-233. [PMID: 28663058 DOI: 10.1016/j.yexcr.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Abstract
The early preimplantation embryo is susceptible to a range of exogenous stresses which result in their reduced long-term developmental potential. The P53 tumour suppressor protein is normally held at low levels in the preimplantation embryo and we show that culture stress induces the expression of a range of canonical P53-response genes (Mdm2, Bax and Cdkn1a). Culture stress caused a P53-dependent loss of cells from resulting blastocysts, and this was most evident within the inner cell mass population. Culture stress increased the proportion of cells expressing active caspase-3 and undergoing apoptosis, while inhibition of caspase-3 increased the number of cells within the inner cell mass. The P53-dependent loss of cells from the inner cell mass was accompanied by a loss of NANOG-positive epiblast progenitors. Pharmacological activation of P53 by the MDM2 inhibitor, Nutlin-3, also caused increased P53-dependent transcription and the loss of cells from the inner cell mass. This loss of cells could be ameliorated by simultaneous treatment with the P53 inhibitor, Pifithrin-α. Culture stress causes reduced signalling via the phosphatidylinositol-3-kinase signalling pathway, and blocking this pathway caused P53-dependent loss of cells from the inner cell mass. These results point to P53 acting to limit the accumulation and survival of cells within the pluripotent lineage of the blastocyst and provide a molecular framework for the further investigation of the factors determining the effects of stressors on the embryo's developmental potential.
Collapse
Affiliation(s)
- L Ganeshan
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - X L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - C O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia.
| |
Collapse
|
31
|
Catteeuw M, Wydooghe E, Mullaart E, Knijn HM, Van Soom A. In vitro production of bovine embryos derived from individual donors in the Corral ® dish. Acta Vet Scand 2017; 59:41. [PMID: 28619101 PMCID: PMC5472863 DOI: 10.1186/s13028-017-0309-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/08/2017] [Indexed: 11/11/2022] Open
Abstract
Background Since the identity of the embryo is of outmost importance during commercial in vitro embryo production, bovine oocytes and embryos have to be cultured strictly per donor. Due to the rather low yield of oocytes collected after ovum pick-up (OPU) per individual cow, oocyte maturation and embryo culture take place in small groups, which is often associated with inferior embryo development. The objective of this study was to improve embryonic development in small donor groups by using the Corral® dish. This commercial dish is designed for human embryo production. It contains two central wells that are divided into quadrants by a semi-permeable wall. In human embryo culture, one embryo is placed per quadrant, allowing individual follow-up while embryos are exposed to a common medium. In our study, small groups of oocytes and subsequently embryos of different bovine donors were placed in the Corral® dish, each donor group in a separate quadrant. Results In two experiments, the Corral® dish was evaluated during in vitro maturation (IVM) and/or in vitro culture (IVC) by grouping oocytes and embryos of individual bovine donors per quadrant. At day 7, a significantly higher blastocyst rate was noted in the Corral® dish used during IVM and IVC than when only used during IVM (12.9% ± 2.10 versus 22.8% ± 2.67) (P < 0.05). However, no significant differences in blastocyst yield were observed anymore between treatment groups at day 8 post insemination. Conclusions In the present study, the Corral® dish was used for in vitro embryo production (IVP) in cattle; allowing to allocate oocytes and/or embryos per donor. As fresh embryo transfers on day 7 have higher pregnancy outcomes, the Corral® dish offers an added value for commercial OPU/IVP, since a higher blastocyst development at day 7 is obtained when the Corral® dish is used during IVM and IVC.
Collapse
|
32
|
Abstract
The phenotype of the human embryo conceived through in vitro fertilization (IVF), that is its morphology, developmental kinetics, physiology and metabolism, can be affected by numerous components of the laboratory and embryo culture system (which comprise the laboratory environment). The culture media formulation is important in determining embryo phenotype, but this exists within a culture system that includes oxygen, temperature, pH and whether an embryo is cultured individually or in a group, all of which can influence embryo development. Significantly, exposure of an embryo to one suboptimal component of the culture system of laboratory typically predisposes the embryo to become more vulnerable to a second stressor, as has been well documented for atmospheric oxygen and individual culture, as well as for oxygen and ammonium. Furthermore, the inherent viability of the human embryo is derived from the quality of the gametes from which it is created. Patient age, aetiology, genetics, lifestyle (as well as ovarian stimulation in women) are all known to affect the developmental potential of gametes and hence the embryo. Thus, as well as considering the impact of the IVF laboratory environment, one needs to be aware of the status of the infertile couple, as this impacts how their gametes and embryos will respond to an in vitro environment. Although far from straight forward, analysing the interactions that exist between the human embryo and its environment will facilitate the creation of more effective and safer treatments for the infertile couple.
Collapse
|
33
|
Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish. Arch Gynecol Obstet 2017; 296:345-353. [PMID: 28551726 DOI: 10.1007/s00404-017-4403-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. METHODS Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. RESULTS Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p < 0.001; D3: 19.7 vs. 27.1 vs. 21.2%; p = 0.029; Group 1. vs. Group 2. vs. Group 3). Cell number on Day 3 differed between Groups 1 and 2 (6.8 ± 2.2; 7.3 ± 2.1; p = 0.004) and Groups 2 and 3 (7.3 ± 2.1 vs. 7.0 ± 2.0; p = 0.014). CONCLUSIONS Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.
Collapse
|
34
|
Kelley RL, Gardner DK. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media. Reprod Biomed Online 2017; 34:441-454. [PMID: 28268069 DOI: 10.1016/j.rbmo.2017.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 01/26/2023]
Abstract
Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P < 0.05). Reduction of media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P < 0.05), but not in 20% oxygen (55.2 ± 2.9 versus 57.1 ± 2.8). Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P < 0.05). Addition of embryo-conditioned media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P < 0.01). Single culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
35
|
Kelley RL, Gardner DK. Combined effects of individual culture and atmospheric oxygen on preimplantation mouse embryos in vitro. Reprod Biomed Online 2016; 33:537-549. [PMID: 27569702 DOI: 10.1016/j.rbmo.2016.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Embryos are routinely cultured individually, although this can reduce blastocyst development. Culture in atmospheric (20%) oxygen is also common, despite multiple detrimental effects on embryos. Although frequently occurring together, the consequences of this combination are unknown. Mouse embryos were cultured individually or grouped, under physiological (5%) or atmospheric (20%) oxygen. Embryos were assessed by time-lapse and blastocyst cell allocation. Compared with the control group (5% oxygen group culture), 5-cell cleavage (t5) was delayed in 5% oxygen individual culture and 20% oxygen group culture (59.91 ± 0.23, 60.70 ± 0.29, 63.06 ± 0.32 h post-HCG respectively, P < 0.05). Embryos in 20% oxygen individual culture were delayed earlier (3-cell cleavage), and at t5 cleaved later than embryos in other treatments (66.01 ± 0.40 h, P < 0.001), this delay persisting to blastocyst hatching. Compared with controls, hatching rate and cells per blastocyst were reduced in 5% oxygen single culture and 20% oxygen group culture (134.1 ± 3.4, 104.5 ± 3.2, 73.4 ± 2.2 cells, P < 0.001), and were further reduced in 20% oxygen individual culture (57.0 ± 2.8 cells, P < 0.001), as was percentage inner cell mass. These data indicate combining individual culture and 20% oxygen is detrimental to embryo development.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
36
|
Ledda S, Idda A, Kelly J, Ariu F, Bogliolo L, Bebbere D. A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. J Assist Reprod Genet 2016; 33:513-8. [PMID: 26852233 DOI: 10.1007/s10815-016-0666-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The aim of this work was to develop a microbioreactor using liquid marble (LM) as a novel system for oocyte in vitro maturation (IVM) in small volumes. METHODS Cumulus-oocyte complexes (COCs) obtained from slaughterhouse sheep ovaries were in vitro matured in a LM system prepared by placing a drop (30 μl containing 10 COCs) suspended in TCM 199 supplemented with 10 % (v/v) oestrus sheep serum (OSS) and 0.1 IU FSH and LH onto a polytetrafluoroethylene (PTFE) particle bed (LM group). As a control group (CTRL group), COCs were in vitro matured in standard volume and conditions (600 μl of IVM medium in a four-well dish). After 24-h culture at 38.5 °C in 5 % CO2 in air, COCs were released from LM and the following parameters were evaluated: (a) percentage of MII oocytes, (b) oocyte developmental competence following in vitro fertilization (IVF) or parthenogenetic activation (PA) and embryo culture for 8 days in synthetic oviductal fluid (SOF) medium at 38.5 °C in 5 % O2, 5 % CO2, and 90 % N2. RESULTS The results indicated similar percentage of MII oocytes in LM and CTRL groups (88.0 vs. 92.0 %). No differences were observed in blastocyst rate after IVF (LM 47.5 % vs. CTRL 50.2 %, P=0.637) or PA (LM 44.4 % vs. CTRL 48.3 %, P=0.426). CONCLUSIONS The results indicate that LM microbioreactor is a viable technique that provides a suitable microenvironment to induce oocyte in vitro maturation.
Collapse
Affiliation(s)
- S Ledda
- Department of Veterinary Medicine, University of Sassari via Vienna 2, 07100, Sassari, Italy.
| | - A Idda
- Department of Veterinary Medicine, University of Sassari via Vienna 2, 07100, Sassari, Italy
| | - J Kelly
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, 5350, Australia
| | - F Ariu
- Department of Veterinary Medicine, University of Sassari via Vienna 2, 07100, Sassari, Italy
| | - L Bogliolo
- Department of Veterinary Medicine, University of Sassari via Vienna 2, 07100, Sassari, Italy
| | - D Bebbere
- Department of Veterinary Medicine, University of Sassari via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
37
|
Thompson JG, Brown HM, Sutton-McDowall ML. Measuring embryo metabolism to predict embryo quality. Reprod Fertil Dev 2016; 28:41-50. [DOI: 10.1071/rd15340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Measuring the metabolism of early embryos has the potential to be used as a prospective marker for post-transfer development, either alone or in conjunction with other embryo quality assessment tools. This is necessary to maximise the opportunity of couples to have a healthy child from assisted reproduction technology (ART) and for livestock breeders to efficiently improve the genetics of their animals. Nevertheless, although many promising candidate substrates (e.g. glucose uptake) and methods (e.g. metabolomics using different spectroscopic techniques) have been promoted as viability markers, none has yet been widely used clinically or in livestock production. Herein we review the major techniques that have been reported; these are divided into indirect techniques, where measurements are made from the embryo’s immediate microenvironment, or direct techniques that measure intracellular metabolic activity. Both have strengths and weaknesses, the latter ruling out some from contention for use in human ART, but not necessarily for use in livestock embryo assessment. We also introduce a new method, namely multi- (or hyper-) spectral analysis, which measures naturally occurring autofluorescence. Several metabolically important molecules have fluorescent properties, which we are pursuing in conjunction with improved image analysis as a viable embryo quality assessment methodology.
Collapse
|
38
|
Wydooghe E, Vandaele L, Heras S, De Sutter P, Deforce D, Peelman L, De Schauwer C, Van Soom A. Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups? Biol Rev Camb Philos Soc 2015; 92:505-520. [PMID: 26608222 DOI: 10.1111/brv.12241] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023]
Abstract
In the absence of the maternal genital tract, preimplantation embryos can develop in vitro in culture medium where all communication with the oviduct or uterus is absent. In several mammalian species, it has been observed that embryos cultured in groups thrive better than those cultured singly. Here we argue that group-cultured embryos are able to promote their own development in vitro by the production of autocrine embryotropins that putatively serve as a communication tool. The concept of effective communication implies an origin, a signalling agent, and finally a recipient that is able to decode the message. We illustrate this concept by demonstrating that preimplantation embryos are able to secrete autocrine factors in several ways, including active secretion, passive outflow, or as messengers bound to a molecular vehicle or transported within extracellular vesicles. Likewise, we broaden the traditional view that inter-embryo communication is dictated mainly by growth factors, by discussing a wide range of other biochemical messengers including proteins, lipids, neurotransmitters, saccharides, and microRNAs, all of which can be exchanged among embryos cultured in a group. Finally, we describe how different classes of messenger molecules are decoded by the embryo and influence embryo development by triggering different pathways. When autocrine embryotropins such as insulin-like growth factor-I (IGF-I) or platelet activating factor (PAF) bind to their appropriate receptor, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway will be activated which is important for embryo survival. On the other hand, the mitogen-activated protein kinase (MAPK) pathway is activated when compounds such as hyaluronic acid and serotonin bind to their respective receptors, thereby acting as growth factors. By activating the peroxisome-proliferator-activated receptor family (PPAR) pathway, lipophilic autocrine factors such as prostaglandins or fatty acids have both survival and anti-apoptotic functions. In conclusion, considering different types of messenger molecules simultaneously will be crucial to understanding more comprehensively how embryos communicate with each other in group-culture systems. This approach will assist in the development of novel media for single-embryo culture.
Collapse
Affiliation(s)
- Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Leen Vandaele
- Animal Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), B-9090, Melle, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Petra De Sutter
- Department of Reproductive Medicine, University Hospital, Ghent University, B-9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000, Ghent, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| |
Collapse
|
39
|
Heitmann RJ, Tobler KJ, Gillette L, Tercero J, Burney RO. Dexamethasone attenuates the embryotoxic effect of endometriotic peritoneal fluid in a murine model. J Assist Reprod Genet 2015. [PMID: 26198138 DOI: 10.1007/s10815-015-0516-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The in vitro fertilization (IVF) pregnancy rate of women with advanced stage endometriosis is nearly half that of the general population, suggesting incomplete targeting of the pathophysiology underlying endometriosis-associated infertility. Compelling evidence highlights inflammation as the etiologic link between endometriosis and infertility and a potential target for adjunctive treatment. The objective of this study was to examine the effect of dexamethasone on murine embryos exposed to human endometriotic peritoneal fluid (PF) using the established murine embryo assay model. METHODS PF was obtained from women with and without severe endometriosis. Murine embryos were harvested and randomly allocated to five groups of culture media conditions: (1) human tubal fluid (HTF), (2) HTF and 10 % PF from women without endometriosis, (3) HTF and 10 % PF from women with endometriosis (PF-E), (4) HTF with PF-E and 0.01 mcg/mL dexamethasone, and (5) HTF with PF-E and 0.1 mcg/mL dexamethasone. Embryos were cultured in standard conditions and evaluated for blastocyst development. RESULTS A total of 266 mouse embryos were cultured. Baseline blastulation rates were 63.6 %. The addition of peritoneal fluid from women with endometriosis decreased the blastocyst development rate to 38.9 % (P = 0.008). The addition of 0.1 mcg/mL of dexamethasone to the culture media restored the blastulation rate to near baseline levels (61.2 %; P = 0.019). CONCLUSIONS The results of our in vitro study demonstrate the capacity of dexamethasone to mitigate the deleterious impact of endometriotic PF on embryo development. If confirmed in vivo, dexamethasone may prove a useful adjunct for the treatment of endometriosis-associated infertility.
Collapse
Affiliation(s)
- Ryan J Heitmann
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Kyle J Tobler
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Laurie Gillette
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Juan Tercero
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Richard O Burney
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA. .,Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA. .,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Healthcare Systems, ATTN: MCHJ-OG, 9040A Fitzsimmons Drive, Tacoma, WA, 98431-1100, USA.
| |
Collapse
|
40
|
Thongkittidilok C, Tharasanit T, Songsasen N, Sananmuang T, Buarpung S, Techakumphu M. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos. J Reprod Dev 2015; 61:269-76. [PMID: 25985792 PMCID: PMC4547984 DOI: 10.1262/jrd.2014-167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2–4-cell embryos, 8–16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group
or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages.
Collapse
Affiliation(s)
- Chommanart Thongkittidilok
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
41
|
Fullston T, Shehadeh H, Sandeman LY, Kang WX, Wu LL, Robker RL, McPherson NO, Lane M. Female offspring sired by diet induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells. J Assist Reprod Genet 2015; 32:725-35. [PMID: 25854657 PMCID: PMC4429434 DOI: 10.1007/s10815-015-0470-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 03/20/2015] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To investigate the impacts that a paternal high fat diet (HFD) has on embryology, ovarian/cumulus cell gene expression and COC metabolism from female offspring, using a mouse model. METHODS Founder male mice were either fed a control diet (CD) or a HFD for 12 weeks. The HFD induced obesity but not diabetes, and founder males were then mated to normal weight CD fed female mice. Female offspring were maintained on a CD, super-ovulated, mated and the resultant zygotes were cultured to the blastocyst stage for embryo morphology, blastocyst cell number and apoptosis assessment. Ovaries and cumulus cells from offspring were collected for gene expression analysis of selected genes that maintain chromatin remodeling and endoplasmic reticulum (ER), metabolic and inflammatory homeostasis. Cumulus/oocyte complexes were also investigated for glucose uptake and lipid accumulation. RESULTS Female offspring sired by obese fathers produced embryos with delayed development and impaired quality, displayed increases in ovarian expression of Glut1, Glut3 and Glut4, and an increase in cumulus cell expression of Glut4. Interestingly their COCs did take up more glucose, but did accumulate more lipid. CONCLUSIONS A paternal HFD is associated with subfertility in female offspring despite the offspring being fed a CD and this subfertility is concomitant with ovarian/cumulus cell molecular alterations and increased lipid accumulation.
Collapse
Affiliation(s)
- Tod Fullston
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Research Institute, Level 3 Medical School South, The University of Adelaide, Adelaide, South Australia, 5005, Australia,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kieslinger DC, Hao Z, Vergouw CG, Kostelijk EH, Lambalk CB, Le Gac S. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial. Fertil Steril 2015; 103:680-6.e2. [DOI: 10.1016/j.fertnstert.2014.12.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
43
|
Yuan Y, Paczkowski M, Wheeler MB, Krisher RL. Use of a novel polydimethylsiloxane well insert to successfully mature, culture and identify single porcine oocytes and embryos. Reprod Fertil Dev 2015; 26:375-84. [PMID: 23497913 DOI: 10.1071/rd12326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/10/2013] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to evaluate the efficacy of a novel polydimethylsiloxane (PDMS) well-insert system for oocyte in vitro maturation (IVM) and in vitro embryo culture (IVC) in pigs. The PDMS well inserts, consisting of multiple microwells with connecting microchannels, resulted in equivalent blastocyst development compared with standard microdrop culture for IVC. These PDMS well inserts were then evaluated for IVM or IVC in a rocking versus static environment. The rocking environment during both oocyte IVM and embryo culture had detrimental effects on oocyte and embryo development compared with a static environment. Importantly, blastocyst development of oocytes and embryos cultured in the PDMS well inserts in the static environment was equivalent to that of standard microdrops. Further analysis of transcript abundance in blastocysts produced from these different environments revealed that the PDMS well-insert system may produce more viable embryos. In conclusion, this PDMS well-insert system can successfully mature oocytes and culture embryos in an individually-identifiable manner without compromising, and perhaps enhancing, developmental potential.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Animal Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | - Melissa Paczkowski
- National Foundation for Fertility Research, 10290 Ridgegate Circle, Lone Tree, CO 80124, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | - Rebecca L Krisher
- Department of Animal Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Schiewe MC, Whitney JB, Anderson RE. Potential risk of monochorionic dizygotic twin blastocyst formation associated with early laser zona dissection of group cultured embryos. Fertil Steril 2015; 103:417-21. [DOI: 10.1016/j.fertnstert.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
45
|
Bedzhov I, Zernicka-Goetz M. Cell death and morphogenesis during early mouse development: are they interconnected? Bioessays 2015; 37:372-8. [PMID: 25640415 PMCID: PMC4409078 DOI: 10.1002/bies.201400147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
46
|
O’Neill C, Li Y, Jin X. Survival Signalling in the Preimplantation Embryo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:129-49. [DOI: 10.1007/978-1-4939-2480-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Minasi MG, Fabozzi G, Casciani V, Lobascio AM, Colasante A, Scarselli F, Greco E. Improved blastocyst formation with reduced culture volume: comparison of three different culture conditions on 1128 sibling human zygotes. J Assist Reprod Genet 2014; 32:215-20. [PMID: 25491125 DOI: 10.1007/s10815-014-0399-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The aim of the present randomized, comparative study was to evaluate the effect of reduced culture volumes on sibling human embryo development. METHODS Firstly, sibling injected oocytes obtained from 88 out of 165 consenting couples undergoing infertility treatment were cultured either in large (35 μl) or in small drops (15 μl) of culture medium. Secondly, sibling injected oocytes from 77 couples were cultured either in large (35 μl) or in mini drops (7 μl). Embryo quality on day-2 and day-3 and blastocyst formation rate on day-5 were evaluated. RESULTS No statistically significant difference in terms of embryo quality was detected comparing embryos cultured either in large (35 μl) or small (15 μl) drops until blastocyst stage. Similarly, no difference appeared between large (35 μl) or mini (7 μl) drops until day-3, however a significantly higher blastocyst formation rate was observed in mini (7 μl) drops on day-5. CONCLUSIONS Reduced culture volume seems not to influence early embryo development but a reduction of medium appears to positively affect blastocyst development. This supports the hypothesis that the pre-implantation embryo produces autocrine factors which exert a positive effect on embryo development when culture is performed in a reduced volume.
Collapse
Affiliation(s)
- Maria Giulia Minasi
- Centre For Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The UK Association of Clinical Embryologists held a workshop on Culture Systems for assisted conception in Sheffield on 22 May 2013. The meeting was organised in the light of the availability of numerous commercial products for the culture of human preimplantation embryos in vitro and the absence of data comparing the performance of these products. Expert opinions were presented, along with survey data provided by participating IVF Centres. The workshop highlighted the lack of a sound evidence base to support the selection of any one commercial product over another, and raised concerns over the lack of information defining precisely the composition of media, and the potential for adverse long-term effects of such products following their use in assisted conception.
Collapse
Affiliation(s)
- Virginia N Bolton
- Assisted Conception Unit, Guy's & St Thomas' NHS Foundation Trust, Guy's Hospital , Great Maze Pond, London , UK
| | | | | | | |
Collapse
|
49
|
Sun B, Yu W, Wang F, Song W, Jin H, Sun Y. Effects of group culture on the development of discarded human embryos and the construction of human embryonic stem cell lines. J Assist Reprod Genet 2014; 31:1369-76. [PMID: 25113620 DOI: 10.1007/s10815-014-0308-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To explore the effect of group culture on the developmental potential of discarded embryos in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles and establish the human embryonic stem cell lines for future research. METHORDS Fresh discarded embryos were collected from the IVF/ICSI-ET program in the reproductive medical center of the first affiliated hospital of Zhengzhou university in this study. All zygotes were individually cultured from Day 1 to Day 3. On Day 3, discard embryos were then cultured in group of 1-4 embryos per droplet (30 μl/droplets) with a constant culture medium until Day 5 or 6. Mechanical method was used to isolate the inner cell mass (ICM) of blastocyst from the embryo. Then we inoculated the ICM on feeder layer. After identification of those cells, the human embryonic stem cell lines (hESCs) were established. RESULTS In this study, we collected 1,223 fresh discarded embryos and they were sequential cultured to the blastocysts (18.07 %, 221/1,223), in which good quality blastocysts were 61(4.98 %, 61/1,223). There was no significant difference in the patients. The embryos from 1PN, 2PN, 3PN were sequential cultured to the blastocyst s(39.31 %,92/234;12.87 %,64/497;13.21 %,65/492),in which good quality blastocysts was 13.6 %(32/92),2.61 %(13/64), 3.04 %(15/65).1PN embryo's blastulation rate and quality embryo formation rate was significantly higher than the 2PN and 3PN embryos' (P <0.05). Three embryos group cultivation has the highest blastulation rate and quality embryo formation rate (P <0.05). In total, we successfully established 4 hESCs lines. CONCLUSION The group culture of human discard embryos can improve the blastulation rate and blastocyst quality to some extent. Three embryos group cultivate is the better culture number. Human discard embryos are good source for establishment of hESCs.
Collapse
Affiliation(s)
- Bo Sun
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Constructive East Road, Zhengzhou, 450052, China
| | | | | | | | | | | |
Collapse
|
50
|
Jin XL, O’Neill C. Systematic analysis of the factors that adversely affect the rate of cell accumulation in mouse embryos during their culture in vitro. Reprod Biol Endocrinol 2014; 12:35. [PMID: 24885989 PMCID: PMC4036297 DOI: 10.1186/1477-7827-12-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/01/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Retarded embryo growth is a pervasive effect of culture in vitro. METHODS A systematic analysis of the interactions between media design, embryo culture density, oxygen tension, amino acids, trophic ligands and the genetic background of the mouse on embryo growth rates in vitro was performed. RESULTS Growth retardation of mouse zygotes was greater in 20% O2 than 5%, a sequential media design was superior to static simple media designs, but the supplementation of simple media with mixed amino acids mitigated this difference. There was a beneficial effect of communal culture in small volumes, and supplementation with a trophic ligand (Paf) further enhanced growth rates. For hybrid strain zygotes (B6CBF1) communal culture in KSOM media supplemented with amino acids, albumin and Paf under 5% O₂ resulted in complete rescue of their rate of accumulation of cells and blastocyst formation. Inbred strain (C57BL6/J) zygotes, however, still showed some retardation of development under these conditions. The additional supplementation of media with another trophic ligand (IGF1) showed a further additive beneficial effect on development of inbred strain embryos but they still showed a growth deficit of ~ 23% cell number. The results show that optimising the interactions between a range of culture conditions and media design can rescue hybrid strain embryos from a retarded rate of cell proliferation caused by culture in vitro, but this was incomplete for the B6 strain. CONCLUSIONS The results indicate that the growth requirement of embryos in vitro varies depending upon their genetic background and provide models for the further genetic analysis of embryo growth.
Collapse
Affiliation(s)
- Xing L Jin
- Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
| | - Chris O’Neill
- Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
| |
Collapse
|