1
|
Swindell J, Dos Santos PC. Interactions with sulfur acceptors modulate the reactivity of cysteine desulfurases and define their physiological functions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119794. [PMID: 39033933 DOI: 10.1016/j.bbamcr.2024.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Sulfur-containing biomolecules such as [FeS] clusters, thiamin, biotin, molybdenum cofactor, and sulfur-containing tRNA nucleosides are essential for various biochemical reactions. The amino acid l-cysteine serves as the major sulfur source for the biosynthetic pathways of these sulfur-containing cofactors in prokaryotic and eukaryotic systems. The first reaction in the sulfur mobilization involves a class of pyridoxal-5'-phosphate (PLP) dependent enzymes catalyzing a Cys:sulfur acceptor sulfurtransferase reaction. The first half of the catalytic reaction involves a PLP-dependent CS bond cleavage, resulting in a persulfide enzyme intermediate. The second half of the reaction involves the subsequent transfer of the thiol group to a specific acceptor molecule, which is responsible for the physiological role of the enzyme. Structural and biochemical analysis of these Cys sulfurtransferase enzymes shows that specific protein-protein interactions with sulfur acceptors modulate their catalytic reactivity and restrict their biochemical functions.
Collapse
Affiliation(s)
- Jimmy Swindell
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America.
| |
Collapse
|
2
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Selles B, Moseler A, Caubrière D, Sun SK, Ziesel M, Dhalleine T, Hériché M, Wirtz M, Rouhier N, Couturier J. The cytosolic Arabidopsis thaliana cysteine desulfurase ABA3 delivers sulfur to the sulfurtransferase STR18. J Biol Chem 2022; 298:101749. [PMID: 35189141 PMCID: PMC8931425 DOI: 10.1016/j.jbc.2022.101749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain–containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain–containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD–Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3–STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.
Collapse
Affiliation(s)
| | - Anna Moseler
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - Sheng-Kai Sun
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | | | | | | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, Nancy, France; Institut Universitaire de France, France.
| |
Collapse
|
4
|
Oikawa T, Okajima K, Yamanaka K, Kato S. First enzymological characterization of selenocysteine β-lyase from a lactic acid bacterium, Leuconostoc mesenteroides. Amino Acids 2022; 54:787-798. [PMID: 35122135 DOI: 10.1007/s00726-022-03133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
We succeeded in expressing selenocysteine β-lyase (SCL) from a lactic acid bacterium, Leuconostoc mesenteroides LK-151 (Lm-SCL), in the soluble fractions of Escherichia coli Rosetta (DE3) using a novel expression vector of pET21malb constructed by ourselves that has both maltose binding protein (MBP)- and 6 × His-tag. Lm-SCL acted on L-selenocysteine, L-cysteine, and L-cysteine sulfinic acid but showed a high preference for L-selenocysteine. The kcat and kcat/Km values of Lm-SCL were determined to be 108 (min-1) and 42.0 (min-1・mM-1), respectively, and this was enough catalytic efficiency to suggest that Lm-SCL might also be involved in supplying elemental selenium from L-selenocysteine to selenoproteins like other SCLs. The optimum temperature and optimum pH of Lm-SCL were determined to be 37 °C and pH 6.5, respectively. Lm-SCL was stable at 37-45 °C and pH 6.5-7.5. Lm-SCL was completely inhibited by the addition of hydroxylamine, semicarbazide, and iodoacetic acid. The enzyme activity of Lm-SCL was decreased in the presence of various metal ions, especially Cu2+. The quaternary structure of Lm-SCL is a homodimer with a subunit molecular mass of 47.5 kDa. The similarity of the primary structure of Lm-SCL to other SCLs from Citrobacter freundii, Escherichia coli, humans, or mouse was calculated to be 47.0, 48.0, 12.5, or 24.0%, respectively. Unlike Ec-SCL, our mutational and molecular docking simulation studies revealed that C362 of Lm-SCL might also catalyze the deselenation of L-selenocysteine in addition to the desulfuration of L-cysteine.
Collapse
Affiliation(s)
- Tadao Oikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka-Fu, 564-8680, Japan.
| | - Kouhei Okajima
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka-Fu, 564-8680, Japan
| | - Kazuya Yamanaka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka-Fu, 564-8680, Japan
| | - Shiro Kato
- International Institute of Rare Sugar Research and Education, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
5
|
Karunakaran G, Yang Y, Tremblay V, Ning Z, Martin J, Belaouad A, Figeys D, Brunzelle J, Giguere PM, Stintzi A, Couture JF. Structural analysis of Atopobium parvulum SufS cysteine desulfurase linked to Crohn's disease. FEBS Lett 2022; 596:898-909. [PMID: 35122247 DOI: 10.1002/1873-3468.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Crohn's Disease (CD) is characterized by the chronic inflammation of the gastrointestinal tract. A dysbiotic microbiome and a defective immune system are linked to CD, where hydrogen sulfide (H2 S) microbial producers positively correlate with the severity of the disease. Atopobium parvulum is a key H2 S producer from the microbiome of CD patients. In this study, the biochemical characterization of two Atopobium parvulum cysteine desulfurases, ApSufS and ApCsdB, show that the enzymes are allosterically regulated. Structural analyses reveal that ApSufS forms a dimer with conserved characteristics observed in type II cysteine desulfurases. Four residues surrounding the active site are essential to catalyze cysteine desulfurylation, and a segment of short-chain residues grant access for substrate binding. A better understanding of ApSufS will help future avenues for CD treatment.
Collapse
Affiliation(s)
- Gapisha Karunakaran
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Yidai Yang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Véronique Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Jade Martin
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Amine Belaouad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph Brunzelle
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, 60611, USA
| | - Patrick M Giguere
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
6
|
Zheng YY, Wu Y, Begley TJ, Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem Biol 2021; 2:990-1003. [PMID: 34458821 PMCID: PMC8341892 DOI: 10.1039/d1cb00038a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification location and cellular function, but the various sulfur modifications share common biosynthetic strategies across RNA species, cell types and domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobases with an emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating sulfur modifications is to aid the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapies. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- Department of Biological Science, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
7
|
Johnstone MA, Nelson SJ, O'Leary C, Self WT. Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase. Biochimie 2021; 182:166-176. [PMID: 33444662 DOI: 10.1016/j.biochi.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
Selenium is a vital micronutrient in many organisms. While traces are required for microbial utilization, excess amounts are toxic; thus, selenium can be regarded as a biological double-edged sword. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. We have identified SclA, a NifS-like protein in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for l-selenocysteine over l-cysteine. It is known that Asp-146 is required for selenocysteine specificity in the human selenocysteine lyase. Thus, using computational biology, we compared the bacterial and mammalian enzymes and identified His-100, an Asp-146 ortholog in SclA, and generated site-directed mutants in order to study the residue's potential role in the l-selenocysteine discrimination mechanism. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying Michaelis-Menten behavior towards l-selenocysteine, but His-100 was not found to be essential for this activity. Additionally, l-cysteine acted as a competitive inhibitor of all enzymes with higher affinity than l-selenocysteine. Finally, we discovered that SclA exhibited low activity with l-cysteine as a poor substrate regardless of mutations. We conclude that His-100 is not required for l-selenocysteine specificity, underscoring the inherent differences in discriminatory mechanisms between bacterial NifS-like proteins and mammalian selenocysteine lyases.
Collapse
Affiliation(s)
- Michael A Johnstone
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Samantha J Nelson
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Christine O'Leary
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - William T Self
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Abstract
Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid L-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform.
Collapse
Affiliation(s)
- Ashley M Edwards
- Department of Chemistry, Wake Forest University, Winston Salem, NC, USA
| | - Maame A Addo
- Department of Chemistry, Wake Forest University, Winston Salem, NC, USA
| | | |
Collapse
|
9
|
Hou X, Liu H, Shang Y, Mao S, Li S, Sang F, Deng H, Wang L, Kong L, Zhang C, Ding Z, Gao Y, Wei S, Chen Z. Paraflavitalea devenefica sp. nov., isolated from urban soil. Int J Syst Evol Microbiol 2020; 71. [PMID: 33275090 DOI: 10.1099/ijsem.0.004587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, mesophilic, milky white-pigmented, aerobic, non-spore-forming and non-flagellated bacterium, designated strain X16T, was isolated from urban soil of Zibo, Shandong, China. According to 16S rRNA gene sequence analysis, the isolate showed highest similarities with Paraflavitalea soli 5GH32-13T (97.6 %), Pseudoflavitalea soli KIS20-3T (96.2 %), Pseudobacter ginsenosidimutans Gsoil 221T (96.0 %) and Pseudoflavitalea rhizosphaerae T16R-265T (95.8 %). The neighbour-joining tree based on 16S rRNA gene sequences showed that strain X16T formed a subcluster with Paraflavitalea soli 5GH32-13T, and the subcluster was closely related to Pseudoflavitalea soli KIS20-3T, Pseudobacter ginsenosidimutans Gsoil 221T and Pseudoflavitalea rhizosphaerae T16R-265T. Strain X16T also formed a subcluster with Paraflavitalea soli 5GH32-13T in phylogenetic tree based on genomic sequences. The polar lipids are phosphatidylethanolamine, two unknown aminolipids, two unknown aminophospholipids, two unknown lipids and two unknown phospholipids. The major quinone of strain X16T is menaquinone-7 and the main fatty acids (>10 % of total fatty acids) of strain X16T are iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The genome length of strain X16T is 8.7 Mb with a DNA G+C content of 47.4 %. ANI values among strain X16T and strain Paraflavitalea soli 5GH32-13T, Pseudobacter ginsenosidimutans Gsoil 221T, and Pseudoflavitalea rhizosphaerae T16R-265T are 78.1, 70.7, 70.6 %, respectively. On the basis of the results of the polyphasic characterization presented in this study, it is concluded that strain X16T represents a novel species. Besides, strain X16T can detoxify high toxicity selenite [Se(IV)] to low toxicity elemental selenium [Se(0)], for which the name Paraflavitale devenefica sp. nov. is proposed. The type strain is X16T (=KACC 21698T=GDMCC1.1757T).
Collapse
Affiliation(s)
- Xiaoxiao Hou
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Hongliang Liu
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo, 255000, Shandong, PR China
| | - Yumang Shang
- Hengshui University, Hengshui, 053000, Hebei, PR China
| | - Sidi Mao
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Shucheng Li
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Feng Sang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Lijuan Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo, 255000, Shandong, PR China.,School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Ling Kong
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - ChunYang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Zhongfeng Ding
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong Province, PR China
| | - Yan Gao
- Zibo IT & Engineering School, Zibo, 255038, Shandong, PR China
| | - Shuzhen Wei
- Hengshui University, Hengshui, 053000, Hebei, PR China
| | - Zhiwei Chen
- Institute of Food and Nutrition Science, Shandong University of Technology, Zibo, 255000, PR China
| |
Collapse
|
10
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
11
|
Scortecci JF, Serrão VHB, Fernandes AF, Basso LG, Gutierrez RF, Araujo APU, Neto MO, Thiemann OH. Initial steps in selenocysteine biosynthesis: The interaction between selenocysteine lyase and selenophosphate synthetase. Int J Biol Macromol 2020; 156:18-26. [DOI: 10.1016/j.ijbiomac.2020.03.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
|
12
|
Baussier C, Fakroun S, Aubert C, Dubrac S, Mandin P, Py B, Barras F. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 2020; 76:1-39. [PMID: 32408945 DOI: 10.1016/bs.ampbs.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Collapse
Affiliation(s)
- Corentin Baussier
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Soufyan Fakroun
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Sarah Dubrac
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| |
Collapse
|
13
|
Gao F. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front Microbiol 2020; 11:165. [PMID: 32184761 PMCID: PMC7058544 DOI: 10.3389/fmicb.2020.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
Iron–sulfur (Fe–S) clusters are ancient and ubiquitous cofactors and are involved in many important biological processes. Unlike the non-photosynthetic bacteria, cyanobacteria have developed the sulfur utilization factor (SUF) mechanism as their main assembly pathway for Fe–S clusters, supplemented by the iron–sulfur cluster and nitrogen-fixing mechanisms. The SUF system consists of cysteine desulfurase SufS, SufE that can enhance SufS activity, SufBC2D scaffold complex, carrier protein SufA, and regulatory repressor SufR. The S source for the Fe–S cluster assembly mainly originates from L-cysteine, but the Fe donor remains elusive. This minireview mainly focuses on the biogenesis pathway of the Fe–S clusters in cyanobacteria and its relationship with iron homeostasis. Future challenges of studying Fe–S clusters in cyanobacteria are also discussed.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
14
|
Korshunov S, Imlay KRC, Imlay JA. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol Microbiol 2019; 113:22-39. [PMID: 31612555 PMCID: PMC7007315 DOI: 10.1111/mmi.14403] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
The structure of free cysteine makes it vulnerable to oxidation by molecular oxygen; consequently, organisms that live in oxic habitats have acquired the ability to import cystine as a sulfur source. We show that cystine imported into Escherichia coli can transfer disulfide bonds to cytoplasmic proteins. To minimize this problem, the imported cystine is rapidly reduced. However, this conversion of cystine to cysteine precludes product inhibition of the importer, so cystine import continues into cells that are already sated with cysteine. The burgeoning cysteine pool is itself hazardous, as cysteine promotes the formation of reactive oxygen species, triggers sulfide production and competitively inhibits a key enzyme in the isoleucine biosynthetic pathway. The Lrp transcription factor senses the excess cysteine and induces AlaE, an export protein that pumps cysteine back out of the cell until transcriptional controls succeed in lowering the amount of the importer. While it lasts, the overall phenomenon roughly doubles the NADPH demand of the cell. It comprises another example of the incompatibility of the reduced cytoplasms of microbes with the oxic world in which they dwell. It also reveals one natural source of cytoplasmic disulfide stress and sheds light on a role for broad-spectrum amino acid exporters.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
15
|
Nakamura R, Hikita M, Ogawa S, Takahashi Y, Fujishiro T. Snapshots of PLP‐substrate and PLP‐product external aldimines as intermediates in two types of cysteine desulfurase enzymes. FEBS J 2019; 287:1138-1154. [DOI: 10.1111/febs.15081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/11/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ryosuke Nakamura
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Saitama Japan
| | - Masahide Hikita
- Structural Biology Research Center, Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba Japan
| | - Shoko Ogawa
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Saitama Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Saitama Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Saitama Japan
| |
Collapse
|
16
|
Tanaka N, Yuda E, Fujishiro T, Hirabayashi K, Wada K, Takahashi Y. Identification of IscU residues critical for de novo iron-sulfur cluster assembly. Mol Microbiol 2019; 112:1769-1783. [PMID: 31532036 DOI: 10.1111/mmi.14392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
Abstract
IscU is a central component of the ISC machinery and serves as a scaffold for the de novo assembly of iron-sulfur (Fe-S) clusters prior to their delivery to target apo-Fe-S proteins. However, the molecular mechanism is not yet fully understood. In this study, we have conducted mutational analysis of E. coli IscU using the recently developed genetic complementation system of a mutant that can survive without Fe-S clusters. The Fe-S cluster ligands (C37, C63, H105, C106) and the proximal D39 and K103 residues are essential for in vivo function of IscU and could not be substituted with any other amino acids. Furthermore, we found that substitution of Y3, a strictly conserved residue among IscU homologs, abolished in vivo functions. Surprisingly, a second-site suppressor mutation in IscS (A349V) reverted the defect caused by IscU Y3 substitutions. Biochemical analysis revealed that IscU Y3 was crucial for functional interaction with IscS and sulfur transfer between the two proteins. Our findings suggest that the critical role of IscU Y3 is linked to the conformational dynamics of the flexible loop of IscS, which is required for the ingenious sulfur transfer to IscU.
Collapse
Affiliation(s)
- Naoyuki Tanaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Eiki Yuda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kei Hirabayashi
- Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
17
|
Selenocysteine β-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme. Antioxidants (Basel) 2019; 8:antiox8090357. [PMID: 31480609 PMCID: PMC6770646 DOI: 10.3390/antiox8090357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
The enzyme selenocysteine β-lyase (SCLY) was first isolated in 1982 from pig livers, followed by its identification in bacteria. SCLY works as a homodimer, utilizing pyridoxal 5'-phosphate as a cofactor, and catalyzing the specific decomposition of the amino acid selenocysteine into alanine and selenide. The enzyme is thought to deliver its selenide as a substrate for selenophosphate synthetases, which will ultimately be reutilized in selenoprotein synthesis. SCLY subcellular localization is unresolved, as it has been observed both in the cytosol and in the nucleus depending on the technical approach used. The highest SCLY expression and activity in mammals is found in the liver and kidneys. Disruption of the Scly gene in mice led to obesity, hyperinsulinemia, glucose intolerance, and hepatic steatosis, with SCLY being suggested as a participant in the regulation of energy metabolism in a sex-dependent manner. With the physiological role of SCLY still not fully understood, this review attempts to discuss the available literature regarding SCLY in animals and provides avenues for possible future investigation.
Collapse
|
18
|
Blahut M, Wise CE, Bruno MR, Dong G, Makris TM, Frantom PA, Dunkle JA, Outten FW. Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues. J Biol Chem 2019; 294:12444-12458. [PMID: 31248989 DOI: 10.1074/jbc.ra119.009471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are necessary for the proper functioning of numerous metalloproteins. Fe-S cluster (Isc) and sulfur utilization factor (Suf) pathways are the key biosynthetic routes responsible for generating these Fe-S cluster prosthetic groups in Escherichia coli Although Isc dominates under normal conditions, Suf takes over during periods of iron depletion and oxidative stress. Sulfur acquisition via these systems relies on the ability to remove sulfur from free cysteine using a cysteine desulfurase mechanism. In the Suf pathway, the dimeric SufS protein uses the cofactor pyridoxal 5'-phosphate (PLP) to abstract sulfur from free cysteine, resulting in the production of alanine and persulfide. Despite much progress, the stepwise mechanism by which this PLP-dependent enzyme operates remains unclear. Here, using rapid-mixing kinetics in conjunction with X-ray crystallography, we analyzed the pre-steady-state kinetics of this process while assigning early intermediates of the mechanism. We employed H123A and C364A SufS variants to trap Cys-aldimine and Cys-ketimine intermediates of the cysteine desulfurase reaction, enabling direct observations of these intermediates and associated conformational changes of the SufS active site. Of note, we propose that Cys-364 is essential for positioning the Cys-aldimine for Cα deprotonation, His-123 acts to protonate the Ala-enamine intermediate, and Arg-56 facilitates catalysis by hydrogen bonding with the sulfhydryl of Cys-aldimine. Our results, along with previous SufS structural findings, suggest a detailed model of the SufS-catalyzed reaction from Cys binding to C-S bond cleavage and indicate that Arg-56, His-123, and Cys-364 are critical SufS residues in this C-S bond cleavage pathway.
Collapse
Affiliation(s)
- Matthew Blahut
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtney E Wise
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Michael R Bruno
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487
| | - Guangchao Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Patrick A Frantom
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208.
| |
Collapse
|
19
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
20
|
Tobe R, Mihara H. Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim Biophys Acta Gen Subj 2018; 1862:2433-2440. [PMID: 29859962 DOI: 10.1016/j.bbagen.2018.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely. SCOPE OF REVIEW In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis. MAJOR CONCLUSIONS Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli. GENERAL SIGNIFICANCE Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled "Selenium research in biochemistry and biophysics - 200 year anniversary".
Collapse
Affiliation(s)
- Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
21
|
Dos Santos PC. B. subtilis as a Model for Studying the Assembly of Fe-S Clusters in Gram-Positive Bacteria. Methods Enzymol 2018; 595:185-212. [PMID: 28882201 DOI: 10.1016/bs.mie.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complexes of iron and sulfur (Fe-S clusters) are widely distributed in nature and participate in essential biochemical reactions. The biological formation of Fe-S clusters involves dedicated pathways responsible for the mobilization of sulfur, the assembly of Fe-S clusters, and the transfer of these clusters to target proteins. Genomic analysis of Bacillus subtilis and other Gram-positive bacteria indicated the presence of only one Fe-S cluster biosynthesis pathway, which is distinct in number of components and organization from previously studied systems. B. subtilis has been used as a model system for the characterization of cysteine desulfurases responsible for sulfur mobilization reactions in the biogenesis of Fe-S clusters and other sulfur-containing cofactors. Cysteine desulfurases catalyze the cleavage of the C-S bond from the amino acid cysteine and subsequent transfer of sulfur to acceptor molecules. These reactions can be monitored by the rate of alanine formation, the first product in the reaction, and sulfide formation, a byproduct of reactions performed under reducing conditions. The assembly of Fe-S clusters on protein scaffolds and the transfer of these clusters to target acceptors are determined through a combination of spectroscopic methods probing the rate of cluster assembly and transfer. This chapter provides a description of reactions promoting the assembly of Fe-S clusters in bacteria as well as methods used to study functions of each biosynthetic component and identify mechanistic differences employed by these enzymes across different pathways.
Collapse
|
22
|
Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D. Eine einfache Methode zur Produktion von Selenoproteinen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Anastasia Sevostyanova
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Tateki Suzuki
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|
23
|
Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D. A Facile Method for Producing Selenocysteine-Containing Proteins. Angew Chem Int Ed Engl 2018; 57:7215-7219. [PMID: 29631320 DOI: 10.1002/anie.201713215] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Indexed: 01/14/2023]
Abstract
Selenocysteine (Sec, U) confers new chemical properties on proteins. Improved tools are thus required that enable Sec insertion into any desired position of a protein. We report a facile method for synthesizing selenoproteins with multiple Sec residues by expanding the genetic code of Escherichia coli. We recently discovered allo-tRNAs, tRNA species with unusual structure, that are as efficient serine acceptors as E. coli tRNASer . Ser-allo-tRNA was converted into Sec-allo-tRNA by Aeromonas salmonicida selenocysteine synthase (SelA). Sec-allo-tRNA variants were able to read through five UAG codons in the fdhF mRNA coding for E. coli formate dehydrogenase H, and produced active FDHH with five Sec residues in E. coli. Engineering of the E. coli selenium metabolism along with mutational changes in allo-tRNA and SelA improved the yield and purity of recombinant human glutathione peroxidase 1 (to over 80 %). Thus, our allo-tRNAUTu system offers a new selenoprotein engineering platform.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Anastasia Sevostyanova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
24
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
25
|
Yuda E, Tanaka N, Fujishiro T, Yokoyama N, Hirabayashi K, Fukuyama K, Wada K, Takahashi Y. Mapping the key residues of SufB and SufD essential for biosynthesis of iron-sulfur clusters. Sci Rep 2017; 7:9387. [PMID: 28839209 PMCID: PMC5571166 DOI: 10.1038/s41598-017-09846-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 01/21/2023] Open
Abstract
Biogenesis of iron-sulfur (Fe-S) clusters is an indispensable process in living cells. In Escherichia coli, the SUF biosynthetic system consists of six proteins among which SufB, SufC and SufD form the SufBCD complex, which serves as a scaffold for the assembly of nascent Fe-S cluster. Despite recent progress in biochemical and structural studies, little is known about the specific regions providing the scaffold. Here we present a systematic mutational analysis of SufB and SufD and map their critical residues in two distinct regions. One region is located on the N-terminal side of the β-helix core domain of SufB, where biochemical studies revealed that Cys254 of SufB (SufBC254) is essential for sulfur-transfer from SufE. Another functional region resides at an interface between SufB and SufD, where three residues (SufBC405, SufBE434, and SufDH360) appear to comprise the site for de novo cluster formation. Furthermore, we demonstrate a plausible tunnel in the β-helix core domain of SufB through which the sulfur species may be transferred from SufBC254 to SufBC405. In contrast, a canonical Fe-S cluster binding motif (CxxCxxxC) of SufB is dispensable. These findings provide new insights into the mechanism of Fe-S cluster assembly by the SufBCD complex.
Collapse
Affiliation(s)
- Eiki Yuda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Naoyuki Tanaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.,Innovation Medical Research Institute, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Nao Yokoyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kei Hirabayashi
- Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keiichi Fukuyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
26
|
Bühning M, Friemel M, Leimkühler S. Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1. Biochemistry 2017; 56:4592-4605. [PMID: 28766335 DOI: 10.1021/acs.biochem.7b00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron-sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human l-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of ∼60%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm5s2U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.
Collapse
Affiliation(s)
- Martin Bühning
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| | - Martin Friemel
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| |
Collapse
|
27
|
Molecular basis of function and the unusual antioxidant activity of a cyanobacterial cysteine desulfurase. Biochem J 2017; 474:2435-2447. [PMID: 28592683 DOI: 10.1042/bcj20170290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022]
Abstract
Cysteine desulfurases, which supply sulfur for iron-sulfur cluster biogenesis, are broadly distributed in all phyla including cyanobacteria, the progenitors of plant chloroplasts. The SUF (sulfur utilization factor) system is responsible for Fe-S cluster biosynthesis under stress. The suf operon from cyanobacterium Anabaena PCC 7120 showed the presence of a cysteine desulfurase, sufS (alr2495), but not the accessory sulfur-accepting protein (SufE). However, an open reading frame (alr3513) encoding a SufE-like protein (termed AsaE, Anabaena sulfur acceptor E) was found at a location distinct from the suf operon. The purified SufS protein existed as a pyridoxal 5' phosphate (PLP)-containing dimer with a relatively low desulfurase activity. Interestingly, in the presence of the AsaE protein, the catalytic efficiency of this reaction increased 10-fold. In particular, for sulfur mobilization, the AsaE protein partnered only SufS and not other cysteine desulfurases from Anabaena. The SufS protein was found to physically interact with the AsaE protein, demonstrating that AsaE was indeed the missing partner of Anabaena SufS. The conserved cysteine of the SufS or the AsaE protein was essential for activity but not for their physical association. Curiously, overexpression of the SufS protein in Anabaena caused reduced formation of reactive oxygen species on exposure to hydrogen peroxide (H2O2), resulting in superior oxidative stress tolerance to the oxidizing agent when compared with the wild-type strain. Overall, the results highlight the functional interaction between the two proteins that mediate sulfur mobilization, in the cyanobacterial SUF pathway, and further reveal that overexpression of SufS can protect cyanobacteria from oxidative stress.
Collapse
|
28
|
|
29
|
Abstract
Selenocysteine is a naturally occurring analog of cysteine in which the sulfur atom of the latter is replaced with selenium. This seleno-amino acid occurs as a specific component of various selenoproteins and selenium-dependent enzymes. Incorporation of selenocysteine into these proteins occurs cotranslationally as directed by the UGA codon. For this process, a special tRNA having an anticodon complimentary to UGA, tRNASec, is utilized. In Escherichia coli and related bacteria, this tRNA first is amino acylated with serine, and the seryl-tRNASec is converted to selenocysteyl-tRNASec. The specific incorporation of selenocysteine into proteins directed by the UGA codon depends on the synthesis of selenocysteyl-tRNASec. Included in the selenium delivery protein category are rhodaneses that mobilize selenium from inorganic sources and NIFS-like proteins that liberate elemental selenium from selenocysteine. The NIFS protein from Azotobacter vinelandii was found to serve as an efficient catalyst in vitro for delivery of selenium from free selenocysteine to Escherichia coli selenophosphate synthetase for selenophosphate formation. The widespread distribution of selenocysteine lyase in numerous bacterial species was reported and the bacterial enzymes, like the pig liver enzyme, required pyridoxal phosphate as cofactor. Three NIFS-like genes were isolated from E. coli by Esaki and coworkers and the expressed gene products were isolated and characterized. One of these NIFS-like proteins also exhibited a high preference for selenocysteine over cysteine. M. vannielii, an anaerobic methane-producing organism, that grows in a mineral medium containing formate as sole organic carbon source, synthesizes several specific selenoenzymes required for growth and energy production under these conditions.
Collapse
|
30
|
Abstract
This review describes the two main systems, namely the Isc (iron-sulfur cluster) and Suf (sulfur assimilation) systems, utilized by Escherichia coli and Salmonella for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In E. coli, fdx gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in E. coli and Salmonella. Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.
Collapse
|
31
|
Dai Y, Kim D, Dong G, Busenlehner LS, Frantom PA, Outten FW. SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase. Biochemistry 2015; 54:4824-33. [PMID: 26171726 DOI: 10.1021/acs.biochem.5b00663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many essential metalloproteins require iron-sulfur (Fe-S) cluster cofactors for their function. In vivo persulfide formation from l-cysteine is a key step in the biogenesis of Fe-S clusters in most organisms. In Escherichia coli, the SufS cysteine desulfurase mobilizes persulfide from l-cysteine via a PLP-dependent ping-pong reaction. SufS requires the SufE partner protein to transfer the persulfide to the SufB Fe-S cluster scaffold. Without SufE, the SufS enzyme fails to efficiently turn over and remains locked in the persulfide-bound state. Coordinated protein-protein interactions mediate sulfur transfer from SufS to SufE. Multiple studies have suggested that SufE must undergo a conformational change to extend its active site Cys loop during sulfur transfer from SufS. To test this putative model, we mutated SufE Asp74 to Arg (D74R) to increase the dynamics of the SufE Cys51 loop. Amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) analysis of SufE D74R revealed an increase in solvent accessibility and dynamics in the loop containing the active site Cys51 used to accept persulfide from SufS. Our results indicate that the mutant protein has a stronger binding affinity for SufS than that of wild-type SufE. In addition, SufE D74R can still enhance SufS desulfurase activity and did not show saturation at higher SufE D74R concentrations, unlike wild-type SufE. These results show that dynamic changes may shift SufE to a sulfur-acceptor state that interacts more strongly with SufS.
Collapse
Affiliation(s)
- Yuyuan Dai
- †Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dokyong Kim
- ‡Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guangchao Dong
- †Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Laura S Busenlehner
- ‡Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Patrick A Frantom
- ‡Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - F Wayne Outten
- †Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
32
|
Niehaus TD, Gerdes S, Hodge-Hanson K, Zhukov A, Cooper AJL, ElBadawi-Sidhu M, Fiehn O, Downs DM, Hanson AD. Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family. BMC Genomics 2015; 16:382. [PMID: 25975565 PMCID: PMC4433059 DOI: 10.1186/s12864-015-1584-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/27/2015] [Indexed: 12/03/2022] Open
Abstract
Background It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions. Results Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate. Conclusions Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| | | | - Aleksey Zhukov
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Mona ElBadawi-Sidhu
- Metabolomics Core, UC Davis Genome Center, University of California Davis, Davis, CA, 95616, USA.
| | - Oliver Fiehn
- Metabolomics Core, UC Davis Genome Center, University of California Davis, Davis, CA, 95616, USA.
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
33
|
Parent A, Elduque X, Cornu D, Belot L, Le Caer JP, Grandas A, Toledano MB, D'Autréaux B. Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols. Nat Commun 2015; 6:5686. [PMID: 25597503 DOI: 10.1038/ncomms6686] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 10/28/2014] [Indexed: 02/08/2023] Open
Abstract
Friedreich's ataxia is a severe neurodegenerative disease caused by the decreased expression of frataxin, a mitochondrial protein that stimulates iron-sulfur (Fe-S) cluster biogenesis. In mammals, the primary steps of Fe-S cluster assembly are performed by the NFS1-ISD11-ISCU complex via the formation of a persulfide intermediate on NFS1. Here we show that frataxin modulates the reactivity of NFS1 persulfide with thiols. We use maleimide-peptide compounds along with mass spectrometry to probe cysteine-persulfide in NFS1 and ISCU. Our data reveal that in the presence of ISCU, frataxin enhances the rate of two similar reactions on NFS1 persulfide: sulfur transfer to ISCU leading to the accumulation of a persulfide on the cysteine C104 of ISCU, and sulfur transfer to small thiols such as DTT, L-cysteine and GSH leading to persulfuration of these thiols and ultimately sulfide release. These data raise important questions on the physiological mechanism of Fe-S cluster assembly and point to a unique function of frataxin as an enhancer of sulfur transfer within the NFS1-ISD11-ISCU complex.
Collapse
Affiliation(s)
- Aubérie Parent
- Institut de Chimie des Substances Naturelles, UPR2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la terrasse, 91191 Gif Sur Yvette, France
| | - Xavier Elduque
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Marti i Franques 1-11, E-08028 Barcelona, Spain
| | - David Cornu
- Plateforme IMAGIF, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de le terrasse, 91191 Gif Sur Yvette, France
| | - Laura Belot
- Institut de Chimie des Substances Naturelles, UPR2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la terrasse, 91191 Gif Sur Yvette, France
| | - Jean-Pierre Le Caer
- Institut de Chimie des Substances Naturelles, UPR2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la terrasse, 91191 Gif Sur Yvette, France
| | - Anna Grandas
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Marti i Franques 1-11, E-08028 Barcelona, Spain
| | - Michel B Toledano
- Laboratoire Stress Oxydant et Cancer, Service de Biologie Intégrative et de Génétique Moléculaire, Institut de Biologie et de Technologie de Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-91191 Gif Sur Yvette, France
| | - Benoit D'Autréaux
- Institut de Chimie des Substances Naturelles, UPR2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la terrasse, 91191 Gif Sur Yvette, France
| |
Collapse
|
34
|
Blanc B, Gerez C, Ollagnier de Choudens S. Assembly of Fe/S proteins in bacterial systems: Biochemistry of the bacterial ISC system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1436-47. [PMID: 25510311 DOI: 10.1016/j.bbamcr.2014.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/20/2014] [Accepted: 12/08/2014] [Indexed: 12/26/2022]
Abstract
Iron/sulfur clusters are key cofactors in proteins involved in a large number of conserved cellular processes, including gene expression, DNA replication and repair, ribosome biogenesis, tRNA modification, central metabolism and respiration. Fe/S proteins can perform a wide range of functions, from electron transfer to redox and non-redox catalysis. In all living organisms, Fe/S proteins are first synthesized in an apo-form. However, as the Fe/S prosthetic group is required for correct folding and/or protein stability, Fe/S clusters are inserted co-translationally or immediately after translation by specific assembly machineries. These systems have been extensively studied over the last decade, both in prokaryotes and eukaryotes. The present review covers the basic principles of the bacterial housekeeping Fe/S biogenesis ISC system, and related recent molecular advances. Some of the most exciting recent highlights relating to this system include structural and functional characterization of binary and ternary complexes involved in Fe/S cluster formation on the scaffold protein IscU. These advances enhance our understanding of the Fe/S cluster assembly mechanism by revealing essential interactions that could never be determined with isolated proteins and likely are closer to an in vivo situation. Much less is currently known about the molecular mechanism of the Fe/S transfer step, but a brief account of the protein-protein interactions involved is given. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- B Blanc
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France
| | - C Gerez
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France
| | - S Ollagnier de Choudens
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France.
| |
Collapse
|
35
|
Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1470-80. [PMID: 25447671 DOI: 10.1016/j.bbamcr.2014.10.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/07/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
Abstract
Cysteine desulfurases utilize a PLP-dependent mechanism to catalyze the first step of sulfur mobilization in the biosynthesis of sulfur-containing cofactors. Sulfur activation and integration into thiocofactors involve complex mechanisms and intricate biosynthetic schemes. Cysteine desulfurases catalyze sulfur-transfer reactions from l-cysteine to sulfur acceptor molecules participating in the biosynthesis of thio-cofactors, including Fe-S clusters, thionucleosides, thiamin, biotin, and molybdenum cofactor. The proposed mechanism of cysteine desulfurases involves the PLP-dependent cleavage of the C-S bond from l-cysteine via the formation of a persulfide enzyme intermediate, which is considered the hallmark step in sulfur mobilization. The subsequent sulfur transfer reaction varies with the class of cysteine desulfurase and sulfur acceptor. IscS serves as a mecca for sulfur incorporation into a network of intertwined pathways for the biosynthesis of thio-cofactors. The involvement of a single enzyme interacting with multiple acceptors, the recruitment of shared-intermediates partaking roles in multiple pathways, and the participation of Fe-S enzymes denote the interconnectivity of pathways involving sulfur trafficking. In Bacillus subtilis, the occurrence of multiple cysteine desulfurases partnering with dedicated sulfur acceptors partially deconvolutes the routes of sulfur trafficking and assigns specific roles for these enzymes. Understanding the roles of promiscuous vs. dedicated cysteine desulfurases and their partnership with shared-intermediates in the biosynthesis of thio-cofactors will help to map sulfur transfer events across interconnected pathways and to provide insight into the hierarchy of sulfur incorporation into biomolecules. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
|
36
|
Boyd ES, Thomas KM, Dai Y, Boyd JM, Outten FW. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway. Biochemistry 2014; 53:5834-47. [PMID: 25153801 PMCID: PMC4172210 DOI: 10.1021/bi500488r] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Iron–sulfur (Fe–S)
cluster metalloproteins conduct
essential functions in nearly all contemporary forms of life. The
nearly ubiquitous presence of Fe–S clusters and the fundamental
requirement for Fe–S clusters in both aerobic and anaerobic
Archaea, Bacteria, and Eukarya suggest that these clusters were likely
integrated into central metabolic pathways early in the evolution
of life prior to the widespread oxidation of Earth’s atmosphere.
Intriguingly, Fe–S cluster-dependent metabolism is sensitive
to disruption by oxygen because of the decreased bioavailability of
ferric iron as well as direct oxidation of sulfur trafficking intermediates
and Fe–S clusters by reactive oxygen species. This fact, coupled
with the ubiquity of Fe–S clusters in aerobic organisms, suggests
that organisms evolved with mechanisms that facilitate the biogenesis
and use of these essential cofactors in the presence of oxygen, which
gradually began to accumulate around 2.5 billion years ago as oxygenic
photosynthesis proliferated and reduced minerals that buffered against
oxidation were depleted. This review highlights the most ancient of
the Fe–S cluster biogenesis pathways, the Suf system, which
likely was present in early anaerobic forms of life. Herein, we use
the evolution of the Suf pathway to assess the relationships between
the biochemical functions and physiological roles of Suf proteins,
with an emphasis on the selective pressure of oxygen toxicity. Our
analysis suggests that diversification into oxygen-containing environments
disrupted iron and sulfur metabolism and was a main driving force
in the acquisition of accessory Suf proteins (such as SufD, SufE,
and SufS) by the core SufB–SufC scaffold complex. This analysis
provides a new framework for the study of Fe–S cluster biogenesis
pathways and Fe–S cluster-containing metalloenzymes and their
complicated patterns of divergence in response to oxygen.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Immunology, Montana State University , 109 Lewis Hall, Bozeman, Montana 59717, United States
| | | | | | | | | |
Collapse
|
37
|
The cysteine desulfurase IscS of Mycobacterium tuberculosis is involved in iron-sulfur cluster biogenesis and oxidative stress defence. Biochem J 2014; 459:467-78. [PMID: 24548275 DOI: 10.1042/bj20130732] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex multiprotein systems for the assembly of protein-bound iron-sulfur (Fe-S) clusters are well defined in Gram-negative model organisms. However, little is known about Fe-S cluster biogenesis in other bacterial species. The ISC (iron-sulfur cluster) operon of Mycobacterium tuberculosis lacks several genes known to be essential for the function of this system in other organisms. However, the cysteine desulfurase IscSMtb (Rv number Rv3025c; Mtb denotes M. tuberculosis) is conserved in this important pathogen. The present study demonstrates that deleting iscSMtb renders the cells microaerophilic and hypersensitive to oxidative stress. Moreover, the ∆iscSMtb mutant shows impaired Fe-S cluster-dependent enzyme activity, clearly indicating that IscSMtb is associated with Fe-S cluster assembly. An extensive interaction network of IscSMtb with Fe-S proteins was identified, suggesting a novel mechanism of sulfur transfer by direct interaction with apoproteins. Interestingly, the highly homologous IscS of Escherichia coli failed to complement the ∆iscSMtb mutant and showed a less diverse protein-interaction profile. To identify a structural basis for these observations we determined the crystal structure of IscSMtb, which mirrors adaptations made in response to an ISC operon devoid of IscU-like Fe-S cluster scaffold proteins. We conclude that in M. tuberculosis IscS has been redesigned during evolution to compensate for the deletion of large parts of the ISC operon.
Collapse
|
38
|
Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis. J Bacteriol 2014; 196:1238-49. [PMID: 24415728 DOI: 10.1128/jb.01160-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.
Collapse
|
39
|
Selbach BP, Pradhan PK, Dos Santos PC. Protected sulfur transfer reactions by the Escherichia coli Suf system. Biochemistry 2013; 52:4089-96. [PMID: 23672190 DOI: 10.1021/bi4001479] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first step in sulfur mobilization for the biosynthesis of Fe-S clusters under oxidative stress and iron starvation in Escherichia coli involves a cysteine desulfurase SufS. Its catalytic reactivity is dependent on the presence of a sulfur acceptor protein, SufE, which acts as the preferred substrate for this enzyme. Kinetic analysis of the cysteine:SufE sulfurtransferase reaction of the E. coli SufS that is partially protected from reducing agents, such as dithiothreitol and glutathione, was conducted. Under these conditions, the reaction displays a biphasic profile in which the first phase involves a fast sulfur transfer reaction from SufS to SufE. The accumulation of persulfurated/polysulfurated forms of SufE accounts for a second phase of the slow catalytic turnover rate. The presence of the SufBCD complex enhances the activity associated with the second phase, while modestly inhibiting the activity associated with the initial sulfur transfer from SufS to SufE. Thus, the rate of sulfur transfer from SufS to the final proposed SufBCD Fe-S cluster scaffold appears to be dependent on the availability of the final sulfur acceptor. The use of a stronger reducing agent [tris(2-carboxyethyl)phosphine hydrochloride] elicited the maximal activity of the SufS-SufE reaction and surpassed the stimulatory effect of SufBCD. This concerted sulfur trafficking path involving sequential transfer from SufS to SufE to SufBCD guarantees the protection of intermediates at a controlled flux to meet cellular demands encountered under conditions detrimental to thiol chemistry and Fe-S cluster metabolism.
Collapse
Affiliation(s)
- Bruna P Selbach
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | |
Collapse
|
40
|
Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:923-37. [PMID: 23660107 DOI: 10.1016/j.bbabio.2013.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
41
|
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:455-69. [PMID: 23298813 DOI: 10.1016/j.bbabio.2012.12.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Béatrice Roche
- Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
42
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
43
|
Dai Y, Outten FW. The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. FEBS Lett 2012; 586:4016-22. [PMID: 23068614 DOI: 10.1016/j.febslet.2012.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/25/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
During oxidative stress in Escherichiacoli, the SufABCDSE stress response pathway mediates iron-sulfur (Fe-S) cluster biogenesis rather than the Isc pathway. To determine why the Suf pathway is favored under stress conditions, the stress response SufS-SufE sulfur transfer pathway and the basal housekeeping IscS-IscU pathway were directly compared. We found that SufS-SufE cysteine desulfurase activity is significantly higher than IscS-IscU at physiological cysteine concentrations and after exposure to H(2)O(2). Mass spectrometry analysis demonstrated that IscS-IscU is more susceptible than SufS-SufE to oxidative modification by H(2)O(2). These important results provide biochemical insight into the stress resistance of the Suf pathway.
Collapse
Affiliation(s)
- Yuyuan Dai
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | | |
Collapse
|
44
|
Turowski VR, Busi MV, Gomez-Casati DF. Structural and functional studies of the mitochondrial cysteine desulfurase from Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:1001-10. [PMID: 22511606 DOI: 10.1093/mp/sss037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AtNfs1 is the Arabidopsis thaliana mitochondrial homolog of the bacterial cysteine desulfurases NifS and IscS, having an essential role in cellular Fe-S cluster assembly. Homology modeling of AtNfs1m predicts a high global similarity with E. coli IscS showing a full conservation of residues involved in the catalytic site, whereas the chloroplastic AtNfs2 is more similar to the Synechocystis sp. SufS. Pull-down assays showed that the recombinant mature form, AtNfs1m, specifically binds to Arabidopsis frataxin (AtFH). A hysteretic behavior, with a lag phase of several minutes, was observed and hysteretic parameters were affected by pre-incubation with AtFH. Moreover, AtFH modulates AtNfs1m kinetics, increasing V(max) and decreasing the S(0.5) value for cysteine. Results suggest that AtFH plays an important role in the early steps of Fe-S cluster formation by regulating AtNfs1 activity in plant mitochondria.
Collapse
Affiliation(s)
- Valeria R Turowski
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | | | |
Collapse
|
45
|
Esbelin J, Jouanneau Y, Duport C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC Microbiol 2012; 12:125. [PMID: 22731107 PMCID: PMC3520743 DOI: 10.1186/1471-2180-12-125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/11/2012] [Indexed: 11/15/2022] Open
Abstract
Background Bacillus cereus is a facultative anaerobe that causes diarrheal disease in humans. Diarrheal syndrome may result from the secretion of various virulence factors including hemolysin BL and nonhemolytic enterotoxin Nhe. Expression of genes encoding Hbl and Nhe is regulated by the two redox systems, ResDE and Fnr, and the virulence regulator PlcR. B. cereus Fnr is a member of the Crp/Fnr family of iron-sulfur (Fe-S) proteins. Only its apo-form has so far been studied. A major goal in deciphering the Fnr-dependent regulation of enterotoxin genes is thus to obtain and characterize holoFnr. Results Fnr has been subjected to in vitro Fe-S cluster reconstitution under anoxic conditions. UV-visible and EPR spectroscopic analyses together with the chemical estimation of the iron content indicated that Fnr binds one [4Fe-4S]2+ cluster per monomer. Atmospheric O2 causes disassembly of the Fe-S cluster, which exhibited a half-life of 15 min in air. Holo- and apoFnr have similar affinities for the nhe and hbl promoter regions, while holoFnr has a higher affinity for fnr promoter region than apoFnr. Both the apo- and holo-form of Fnr interact with ResD and PlcR to form a ternary complex. Conclusions Overall, this work shows that incorporation of the [4Fe-4S]2+ cluster is not required for DNA binding of Fnr to promoter regions of hbl and nhe enterotoxin genes or for the formation of a ternary complex with ResD and PlcR. This points to some new unusual properties of Fnr that may have physiological relevance in the redox regulation of enterotoxin gene regulation.
Collapse
Affiliation(s)
- Julia Esbelin
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale, F-84000, Avignon, France
| | | | | |
Collapse
|
46
|
Johansson AL, Collins R, Arnér ESJ, Brzezinski P, Högbom M. Biochemical discrimination between selenium and sulfur 2: mechanistic investigation of the selenium specificity of human selenocysteine lyase. PLoS One 2012; 7:e30528. [PMID: 22291978 PMCID: PMC3266904 DOI: 10.1371/journal.pone.0030528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
Selenium is an essential trace element incorporated into selenoproteins as selenocysteine. Selenocysteine (Sec) lyases (SCLs) and cysteine (Cys) desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys, respectively, and generally accept both substrates. Intriguingly, human SCL (hSCL) is specific for Sec even though the only difference between Sec and Cys is a single chalcogen atom. The crystal structure of hSCL was recently determined and gain-of-function protein variants that also could accept Cys as substrate were identified. To obtain mechanistic insight into the chemical basis for its substrate discrimination, we here report time-resolved spectroscopic studies comparing the reactions of the Sec-specific wild-type hSCL and the gain-of-function D146K/H389T variant, when given Cys as a substrate. The data are interpreted in light of other studies of SCL/CD enzymes and offer mechanistic insight into the function of the wild-type enzyme. Based on these results and previously available data we propose a reaction mechanism whereby the Sec over Cys specificity is achieved using a combination of chemical and physico-mechanical control mechanisms.
Collapse
Affiliation(s)
- Ann-Louise Johansson
- Arrhenius Laboratories for Natural Sciences C4, Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ruairi Collins
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Brzezinski
- Arrhenius Laboratories for Natural Sciences C4, Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Högbom
- Arrhenius Laboratories for Natural Sciences C4, Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
47
|
Collins R, Johansson AL, Karlberg T, Markova N, van den Berg S, Olesen K, Hammarström M, Flores A, Schüler H, Schiavone LH, Brzezinski P, Arnér ESJ, Högbom M. Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. PLoS One 2012; 7:e30581. [PMID: 22295093 PMCID: PMC3266270 DOI: 10.1371/journal.pone.0030581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022] Open
Abstract
Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism.
Collapse
Affiliation(s)
- Ruairi Collins
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ann-Louise Johansson
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
| | - Tobias Karlberg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Natalia Markova
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Susanne van den Berg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kenneth Olesen
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Alex Flores
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Herwig Schüler
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Brzezinski
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Högbom
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
48
|
Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Biochem J 2012; 441:823-32. [DOI: 10.1042/bj20111170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys430, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys430. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys206, was identified. Furthermore, the active-site Cys430 was found to be located on top of a loop structure, formed by the two flanking residues Cys428 and Cys435, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys428 and Cys435 are within disulfide bond distance and that a persulfide transfer from Cys430 to Cys206 is indeed possible.
Collapse
|
49
|
Hidese R, Mihara H, Esaki N. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 2011; 91:47-61. [DOI: 10.1007/s00253-011-3336-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/29/2022]
|
50
|
Yoshimura T, Mihara H, Ohshima T, Tanizawa K. Kenji Soda--researching enzymes with the spirit of an alpinist. J Biochem 2011; 148:371-9. [PMID: 20924059 DOI: 10.1093/jb/mvq095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like an alpinist continuously seeking virgin peaks to climb, Kenji Soda has investigated a variety of unique enzymes for which there was little or no information available; and by doing so he opened up a variety of new fields in enzyme science and technology. In particular, he has promoted the study of enzymes requiring vitamin B-derived cofactors such as FAD, NAD(P) and pyridoxal 5'-phosphate, shedding light on their reaction mechanisms, enzymological properties, crystal structures and potential practical applications. Highlighted in this review are the studies of enzymes acting on d-amino acids and sulphur/selenium-containing amino acids and those from thermophilic and psychrophilic bacteria.
Collapse
Affiliation(s)
- Toru Yoshimura
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | | | | | | |
Collapse
|