1
|
Feng YCA, Chen WJ, Lin MC, Hsu JS, Cheng CF, Liu CM, Hwu HG, Huang YT, Lu TP, Wang SH. Paternal age, de novo mutation, and age at onset among co-affected schizophrenia sib-pairs: whole-genome sequencing in multiplex families. Mol Psychiatry 2025:10.1038/s41380-025-02942-0. [PMID: 40038545 DOI: 10.1038/s41380-025-02942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Whether delaying fatherhood leads to more mutations, thereby resulting in adverse psychiatric outcomes in offspring, remains under debate. No study has directly examined the role of de novo mutations (DNMs) between paternal age and offspring psychiatric outcomes. This study aimed to explore the association between paternal age, the number of DNMs, and age at onset of schizophrenia by sequencing the whole genome of multiplex schizophrenia families. Whole-genome sequencing (30x) was performed in 5 Taiwanese families, each comprising 3 co-affected siblings and healthy parents. Causal mediation analyses were used to explore the mediating role of DNMs in the paternal age effect. Paternal age predicted increased DNMs (+1.50 DNMs/year, 95% CI: 0.81, 2.19, p < 0.0001) over maternal age (+0.09 DNMs/year, 95% CI: -1.01, 1.19, p = 0.87). The effect of paternal age on the number of DNMs varied across families. Each additional DNM resulted in a 0.16-year earlier onset age of schizophrenia (95% CI: 0.04, 0.27, p = 0.009). The estimated direct effect of paternal age on the onset of schizophrenia was -0.82 (95% CI: -0.90, -0.73), while the indirect effect through DNMs was -0.32 (95% CI: -0.47, -0.17). The proportion mediated via DNMs was 28.04% (95% CI: 18.19%, 37.89%). The mediation analyses showed that 30% of the observed association of paternal age with onset age of schizophrenia might be mediated through paternal age-related DNMs. Our study, the first to directly quantify the mediating effect of DNMs, provides support for a causal role of paternal age-related mutations in the increased psychiatric risk in offspring.
Collapse
Affiliation(s)
- Yen-Chen A Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Fung Cheng
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shi-Heng Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Dehghanbanadaki H, Jimbo M, Fendereski K, Kunisaki J, Horns JJ, Ramsay JM, Gross KX, Pastuszak AW, Hotaling JM. Transgenerational effects of paternal exposures: the role of germline de novo mutations. Andrology 2025; 13:101-118. [PMID: 38396220 DOI: 10.1111/andr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Germline de novo mutations (DNMs) refer to spontaneous mutations arising during gametogenesis, resulting in genetic changes within germ cells that are subsequently transmitted to the next generation. While the impact of maternal exposures on germline DNMs has been extensively studied, more recent studies have begun to highlight the increasing importance of the effects of paternal factors. In this review, we have summarized the existing literature on how various exposures experienced by fathers affect the germline DNM burden in their spermatozoa, as well as their consequences for semen analysis parameters, pregnancy outcomes, and offspring health. A growing body of literature supports the conclusion that advanced paternal age (APA) correlates with a higher germline DNM rate in offspring. Furthermore, lifestyle choices, environmental toxins, assisted reproductive techniques (ART), and chemotherapy are associated with the accumulation of paternal DNMs in spermatozoa, with deleterious consequences for pregnancy outcomes and offspring health. Ultimately, our review highlights the clear importance of the germline DNM mode of inheritance, and the current understanding of how this is affected by various paternal factors. In addition, we explore conflicting reports or gaps of knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Jason Kunisaki
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Horns
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Joemy M Ramsay
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kelli X Gross
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Wang SH, Lee JT, Lin MC, Wu CS, Thompson WK, Fan CC. Associations of paternal age with offspring under-five mortality and perinatal outcomes: a cohort study using claims data in Taiwan. BMJ PUBLIC HEALTH 2024; 2:e001113. [PMID: 40018562 PMCID: PMC11816320 DOI: 10.1136/bmjph-2024-001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/31/2024] [Indexed: 03/01/2025]
Abstract
Background The causal relationship between advanced paternal age and offspring health is unclear, owing to familial confounders. This study examined the association of paternal age with offspring's under-five mortality and perinatal outcomes, using sibling comparison analyses to account for familial confounding factors. Methods A nationwide birth cohort study was designed based on Taiwan's single-payer compulsory National Health Insurance programme. Individuals born between 2001 and 2015 were included, resulting in 2454 104 live-born singletons. Among them, 1513 222 individuals had full sibling(s) who were included in the sibling-comparison analyses. Logistic regression analyses were used to evaluate the main study cohort whereas conditional logistic regressions were used in the sibling-comparison analyses. Results In the main cohort, paternal age categories showed a U-shaped relationship with offspring's under-five mortality in the crude analysis, which attenuated towards the null hypothesis after accounting for the measured potential confounders. There was an increased risk of premature birth (gestational age <37 weeks), low birth weight (<2500 g), large for gestational age (90th percentile) and low 5 min Apgar Score (<7) in individuals with a paternal age of >35 years. Sibling-comparison analyses that accounted for unmeasured familial time-invariant confounders showed that younger siblings with older paternal age had a lower risk of under-five mortality, low birth weight, small for gestational age (10th percentile), congenital defects and low 5 min Apgar Score, and a higher risk of premature birth and large for gestational age. Conclusions Children with older fathers had lower risks of under-five mortality, low birth weight, small for gestational age, congenital defects and low 5 min Apgar Score.
Collapse
Affiliation(s)
- Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jian-Te Lee
- Department of Pediatrics, National Taiwan University Hospital Yun-Lin Branch, Douliou, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin Branch, Douliu, Taiwan
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Benonisdottir S, Straub VJ, Kong A, Mills MC. Genetics of female and male reproductive traits and their relationship with health, longevity and consequences for offspring. NATURE AGING 2024; 4:1745-1759. [PMID: 39672892 DOI: 10.1038/s43587-024-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Substantial shifts in reproductive behaviors have recently taken place in many high-income countries including earlier age at menarche, advanced age at childbearing, rising childlessness and a lower number of children. As reproduction shifts to later ages, genetic factors may become increasingly important. Although monogenic genetic effects are known, the genetics underlying human reproductive traits are complex, with both causal effects and statistical bias often confounded by socioeconomic factors. Here, we review genome-wide association studies (GWASs) of 44 reproductive traits of both female and male individuals from 2007 to early 2024, examining reproductive behavior, reproductive lifespan and aging, infertility and hormonal concentration. Using the GWAS Catalog as a basis, from 159 relevant studies, we isolate 37 genes that harbor association signals for four or more reproductive traits, more than half of which are linked to rare Mendelian disorders, including ten genes linked to reproductive-related disorders: FSHB, MCM8, DNAH2, WNT4, ESR1, IGSF1, THRB, BRWD1, CYP19A1 and PTPRF. We also review the relationship of reproductive genetics to related health and behavioral traits, aging and longevity and the effect of parental age on offspring outcomes as well as reflecting on limitations, open questions and challenges in this fast-moving field.
Collapse
Affiliation(s)
- Stefania Benonisdottir
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
- Institute of Physical Science, University of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vincent J Straub
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Augustine Kong
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Melinda C Mills
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK.
- Department of Genetics, University Medical Centre Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Kaltsas A, Zikopoulos A, Vrachnis D, Skentou C, Symeonidis EN, Dimitriadis F, Stavros S, Chrisofos M, Sofikitis N, Vrachnis N, Zachariou A. Advanced Paternal Age in Focus: Unraveling Its Influence on Assisted Reproductive Technology Outcomes. J Clin Med 2024; 13:2731. [PMID: 38792276 PMCID: PMC11122544 DOI: 10.3390/jcm13102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
As global demographics shift toward increasing paternal age, the realm of assisted reproductive technologies (ARTs), particularly in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), faces new challenges and opportunities. This study provides a comprehensive exploration of the implications of advanced paternal age on ART outcomes. Background research highlights the social, cultural, and economic factors driving men toward later fatherhood, with a focus on the impact of delayed paternity on reproductive outcomes. Methods involve a thorough review of existing literature, centering on changes in testicular function, semen quality, and genetic and epigenetic shifts associated with advancing age. Study results point to intricate associations between the father's age and ART outcomes, with older age being linked to diminished semen quality, potential genetic risks, and varied impacts on embryo quality, implantation rates, and birth outcomes. The conclusions drawn from the current study suggest that while advanced paternal age presents certain risks and challenges, understanding and mitigating these through strategies such as sperm cryopreservation, lifestyle modifications, and preimplantation genetic testing can optimize ART outcomes. Future research directions are identified to further comprehend the epigenetic mechanisms and long-term effects of the older father on offspring health. This study underscores the need for a comprehensive approach in navigating the intricacies of delayed fatherhood within the context of ART, aiming for the best possible outcomes for couples and their children.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.)
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Truro TR1 3LJ, UK;
| | - Dionysios Vrachnis
- Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chara Skentou
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (F.D.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (F.D.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.)
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
6
|
Wang SH, Lin MC, Wu CS, Chen PC, Thompson WK, Fan CC. Familial factors rather than paternal age contribute to the aetiology of epilepsy. Int J Epidemiol 2024; 53:dyad191. [PMID: 38199793 DOI: 10.1093/ije/dyad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Whether paternal age associated with offspring's epilepsy risk is a cause of de novo mutation as men age, or just an association due to confounding factors, is still unclear. METHODS We performed a population-based, multi-generation and sibling comparison study in Taiwan, which included 2 751 232 singletons born in 2001-17 who were followed until 2020. Of these, 819 371/826 087 with information on paternal/maternal grandparents were selected for multi-generation analyses and 1 748 382 with sibling(s) were selected for sibling comparison. Cox proportional hazard regression was used to estimate the hazard ratio (HR) and 95% confidence interval (CI). RESULTS In the total cohort, there was an increased risk of epilepsy in individuals with advanced paternal age, e.g. the HR for paternal age ≥50 was1.36 (95% CI: 1.15-1.61) compared with paternal age 25-29, and fathers older than mothers, e.g. the HR for parental age difference ≥15 years was 1.29 (95% CI: 1.16-1.43). When accounting for parental age difference, the association between paternal age and epilepsy in offspring was attenuated (HR for paternal age ≥50 was 1.11, 95% CI: 0.93-1.34). Multi-generation analyses did not support the association of advanced grand-paternal age at childbirth of the parent with offspring's risk of epilepsy. Sibling comparison analyses did not support the association of older paternal age with increased risk of epilepsy (HR was 0.96 for per year increase in paternal age, 95% CI: 0.96-0.97). CONCLUSIONS These results do not support the hypothesis that advanced paternal age is associated with epilepsy in offspring. Instead, familial factors may explain the observed paternal age association with the offspring's risk of epilepsy.
Collapse
Affiliation(s)
- Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin Branch, Douliu, Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Panier S, Wang S, Schumacher B. Genome Instability and DNA Repair in Somatic and Reproductive Aging. ANNUAL REVIEW OF PATHOLOGY 2024; 19:261-290. [PMID: 37832947 DOI: 10.1146/annurev-pathmechdis-051122-093128] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.
Collapse
Affiliation(s)
- Stephanie Panier
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Siyao Wang
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Kaltsas A, Dimitriadis F, Zachariou D, Zikopoulos A, Symeonidis EN, Markou E, Tien DMB, Takenaka A, Sofikitis N, Zachariou A. From Diagnosis to Treatment: Comprehensive Care by Reproductive Urologists in Assisted Reproductive Technology. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1835. [PMID: 37893553 PMCID: PMC10608107 DOI: 10.3390/medicina59101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Infertility is a global health concern, with male factors playing an especially large role. Unfortunately, however, the contributions made by reproductive urologists in managing male infertility under assisted reproductive technology (ART) often go undervalued. This narrative review highlights the important role played by reproductive urologists in diagnosing and treating male infertility as well as any barriers they face when providing services. This manuscript presents a comprehensive review of reproductive urologists' role in managing male infertility, outlining their expertise in diagnosing and managing male infertility as well as reversible causes and performing surgical techniques such as sperm retrieval. This manuscript investigates the barriers limiting urologist involvement such as limited availability, awareness among healthcare professionals, and financial constraints. This study highlights a decrease in male fertility due to lifestyle factors like sedentary behavior, obesity, and substance abuse. It stresses the significance of conducting an evaluation process involving both male and female partners to identify any underlying factors contributing to infertility and to identify patients who do not require any interventions beyond ART. We conclude that engaging urologists more effectively in infertility management is key to optimizing fertility outcomes among couples undergoing assisted reproductive technology treatments and requires greater education among healthcare providers regarding the role urologists and lifestyle factors that could have an effect on male fertility.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.D.); (E.N.S.)
| | - Dimitrios Zachariou
- Third Orthopaedic Department, National and Kapodestrian University of Athens, KAT General Hospital, 14561 Athens, Greece;
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.D.); (E.N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City 70000, Vietnam;
| | - Atsushi Takenaka
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| |
Collapse
|
9
|
Gourinat A, Mazeaud C, Hubert J, Eschwege P, Koscinski I. Impact of paternal age on assisted reproductive technology outcomes and offspring health: a systematic review. Andrology 2023; 11:973-986. [PMID: 36640151 DOI: 10.1111/andr.13385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND The increase in paternal age and the percentage of births after assisted reproductive technologies (ART) may have consequences on offspring and society's position regarding access to ART must be questioned. Most countries recommend limiting ART to men under 60 years. What is the rationale for this threshold? OBJECTIVE This systematic review assesses scientific arguments to establish links between paternal age, male fertility, and offspring health. MATERIAL AND METHODS Using the PRISMA guidelines, this systematic review of the literature analyzed 111 articles selected after screening PubMed, ScienceDirect, and Web of Science for articles published between January 1, 1995 and December 31, 2021. RESULTS A strong correlation was highlighted between advanced paternal age and a decrease of some sperm parameters (semen volume and sperm motility) and infant morbidity (exponentially increased incidence of achondroplasia and Apert syndrome, and more moderately increased incidence of autism and schizophrenia). The impact of paternal age on pregnancy and fetal aneuploidy rates is more controversial. No association was found with spontaneous abortion rates. DISCUSSION AND CONCLUSION The scientific parameters should be explained to older parents undergoing ART. And for countries that discuss a limit on paternal age for access to ART, the debate requires consideration of social and ethical arguments.
Collapse
Affiliation(s)
| | | | - Jacques Hubert
- Department of Urology, University Hospital, Nancy, France
| | | | | |
Collapse
|
10
|
Berteli TS, Wang F, McKerrow W, Navarro PA, Fenyo D, Boeke JD, Kohlrausch FB, Keefe DL. Transposon insertion profiling by sequencing (TIPseq) identifies novel LINE-1 insertions in human sperm. J Assist Reprod Genet 2023; 40:1835-1843. [PMID: 37310664 PMCID: PMC10371950 DOI: 10.1007/s10815-023-02852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
PURPOSE Long interspersed nuclear element-1 (LINE-1 or L1) comprises 17% of the human genome. Retrotransposons may perturb gene integrity or alter gene expression by altering regulatory regions in the genome. The germline employs a number of mechanisms, including cytosine methylation, to repress retrotransposon transcription throughout most of life. Demethylation during germ cell and early embryo development de-represses retrotransposons. Intriguingly, de novo genetic variation appearing in sperm has been implicated in a number of disorders in offspring, including autism spectrum disorder, schizophrenia, and bipolar disorder. We hypothesize that human sperm exhibit de novo retrotransposition and employ a new sequencing method, single cell transposon insertion profiling by sequencing (scTIPseq) to map them in small amounts of human sperm. METHODS Cross-sectional case-control study of sperm samples (n=10 men; ages 32-55 years old) from consenting men undergoing IVF at NYU Langone Fertility Center. scTIPseq identified novel LINE-1 insertions in individual sperm and TIPseqHunter, a custom bioinformatics pipeline, compared the architecture of sperm LINE-1 to known LINE-1 insertions from the European database of Human specific LINE-1 (L1Hs) retrotransposon insertions (euL1db). RESULTS scTIPseq identified 17 novel insertions in sperm. New insertions were mainly intergenic or intronic. Only one sample did not exhibit new insertions. The location or number of novel insertions did not differ by paternal age. CONCLUSION This study for the first time reports novel LINE-1 insertions in human sperm, demonstrating the feasibility of scTIPseq, and identifies new contributors to genetic diversity in the human germ line.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA.
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Fang Wang
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Paula A Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Fabiana B Kohlrausch
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA
- Biology Institute, Department of General Biology, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Ajayi AF, Onaolapo MC, Omole AI, Adeyemi WJ, Oluwole DT. Mechanism associated with changes in male reproductive functions during ageing process. Exp Gerontol 2023; 179:112232. [PMID: 37315721 DOI: 10.1016/j.exger.2023.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Ageing is a natural process with physiological changes in different body parts and has been associated with decreased reproductive capacity. Factors such as imbalance in the antioxidant defence system, vascular diseases, diabetes mellitus, accessory reproductive glands infection, obesity as well as buildup of toxic substances play a role in age-related male reproductive malfunction. Age is inversely proportional to volume of semen, sperm count, sperm progressive motility, sperm viability, normal sperm morphology. The observed negative correlation between ageing and semen indices contributes to male infertility and reproductive decline. Normal levels of ROS, plays crucial role in facilitating sperm function, such as capacitation, hyper-activation, acrosome reaction as well as sperm-oocyte fusion; however, a substantial elevation in the endogenous level of ROS, especially in reproductive tissues, usually instigates destruction of sperm cells and heightened male infertility. Contrarily, antioxidants, such as vitamins C and E, beta-carotene, and micronutrients like zinc and folate, have been found by researchers to facilitate normal semen quality and male reproductive function. Furthermore, the role of hormonal imbalance as a result of the compromised hypothalamic-pituitary-gonadal axis, Sertoli and Leydig cells disorder, and nitric oxide-medicated erectile dysfunction during ageing cannot be undermined.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria.
| | | | - Ayomide Isaac Omole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Crescent University, Abeokuta, Ogun-State, Nigeria
| |
Collapse
|
12
|
Wang S, Meyer DH, Schumacher B. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature 2023; 613:365-374. [PMID: 36544019 PMCID: PMC9834056 DOI: 10.1038/s41586-022-05544-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
How paternal exposure to ionizing radiation affects genetic inheritance and disease risk in the offspring has been a long-standing question in radiation biology. In humans, nearly 80% of transmitted mutations arise in the paternal germline1, but the transgenerational effects of ionizing radiation exposure has remained controversial and the mechanisms are unknown. Here we show that in sex-separated Caenorhabditis elegans strains, paternal, but not maternal, exposure to ionizing radiation leads to transgenerational embryonic lethality. The offspring of irradiated males displayed various genome instability phenotypes, including DNA fragmentation, chromosomal rearrangement and aneuploidy. Paternal DNA double strand breaks were repaired by maternally provided error-prone polymerase theta-mediated end joining. Mechanistically, we show that depletion of an orthologue of human histone H1.0, HIS-24, or the heterochromatin protein HPL-1, could significantly reverse the transgenerational embryonic lethality. Removal of HIS-24 or HPL-1 reduced histone 3 lysine 9 dimethylation and enabled error-free homologous recombination repair in the germline of the F1 generation from ionizing radiation-treated P0 males, consequently improving the viability of the F2 generation. This work establishes the mechanistic underpinnings of the heritable consequences of paternal radiation exposure on the health of offspring, which may lead to congenital disorders and cancer in humans.
Collapse
Affiliation(s)
- Siyao Wang
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Wang SH, Wu CS, Hsu LY, Lin MC, Chen PC, Thompson WK, Fan CC. Paternal age and 13 psychiatric disorders in the offspring: a population-based cohort study of 7 million children in Taiwan. Mol Psychiatry 2022; 27:5244-5254. [PMID: 36042285 PMCID: PMC11285795 DOI: 10.1038/s41380-022-01753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Although paternal age has been linked to certain psychiatric disorders, the nature of any causal relationship remains elusive. Here, we aimed to comprehensively assess the magnitude of a wide range of offspring's psychiatric risk conferred by paternal age, leveraging a pedigree inferred from covered-insurance relationship (accuracy >98%) in Taiwan's single-payer compulsory insurance program. We also examined whether there is an independent role of paternal age and explored the potential effect of parental age difference. A total cohort of 7,264,788 individuals born between 1980 and 2018 were included; 5,572,232 with sibling(s) were selected for sibling-comparison analyses and 1,368,942 and 1,044,420 children with information of paternal-grandparents and maternal-grandparents, respectively, were selected for multi-generation analyses. Using inpatient/outpatient claims data (1997-2018), we identified schizophrenia, autism, bipolar disorder (BPD), attention deficit-hyperactivity disorder (ADHD), major depressive disorder (MDD), eating disorder (ED), substance use disorder (SUD), mental retardation (MR), tic disorder, obsessive-compulsive disorder (OCD), anxiety, and somatoform disorder. We identified suicides using death certificates. Logistic regression analysis was used to estimate the paternal/maternal/grand-paternal age association with psychiatric risk in the offspring. The total cohort and sibling-comparison cohort resulted in similar estimates. Paternal age had a U-shaped relationship with offspring's MDD, ED, SUD, and anxiety. A very young maternal age (<20 years) was associated with markedly higher risk in offspring's SUD, MR, and suicide. Older paternal age (>25 years) was linearly associated with offspring's schizophrenia, autism, BPD, ADHD, MDD, ED, SUD, MR, OCD, anxiety, and suicide. Older grand-paternal age was linearly associated with offspring's schizophrenia, autism, ADHD, and MR. Dissimilar parental age was positively associated with offspring's ADHD, MDD, SUD, MR, anxiety, and suicide, and negatively associated with offspring's OCD. This comprehensive assessment provides solid evidence for the independent role of paternal age in psychiatric risk in the offspring and clarifies the significance of both early parenthood and delayed paternity.
Collapse
Affiliation(s)
- Shi-Heng Wang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan.
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
- Interdisciplinary Freshmen Program of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Le-Yin Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Graduate Program of Data Science, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Mei-Chen Lin
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
- Interdisciplinary Freshmen Program of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Pei-Chun Chen
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Fountoulakis KN, Panagiotidis P, Tegos T, Kimiskidis V, Nimatoudis I. Paternal age and specific neurological soft signs as reliable and valid neurobiological markers for the diagnosis of patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272:1087-1096. [PMID: 34842982 DOI: 10.1007/s00406-021-01357-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Advanced parental age at delivery and neurological soft signs (NSS) constitute risk factors for schizophrenia. The aim of the current study was to develop a neurobiological diagnostic index by combining them, and without the contribution of clinical symptomatology. The study sample included 133 patients suffering from schizophrenia according to DSM-IV-TR (77 males and 56 females; aged 33.55 ± 11.22 years old) and 122 normal controls (66 males and 56 females; aged 32.89 ± 9.91 years old). The assessment included the Neurological Evaluation Scale (NES), and a number of scales assessing the clinical symptoms and adverse effects. The statistical analysis included exploratory t-test, Pearson Correlation coefficient (R) and Discriminant Function Analysis (DFA). Exploratory t-tests and Pearson's R suggested that sex, parental age and NSS constitute independent components. On the basis of DFA results, the Psychotic Neurological Index was developed. At the cut-off PNI score of 8.5, sensitivity was equal to 94.74 and specificity to 93.44. The current is probably the first study to report on an easily obtainable diagnostic neurobiological marker with identifiable properties which is absolutely independent from the clinical manifestations and could serve in distinguishing between patients with schizophrenia and healthy controls with high efficacy.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Panagiotis Panagiotidis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Tegos
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Kimiskidis
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Khachadourian V, Zaks N, Lin E, Reichenberg A, Janecka M. Reprint of: Advanced paternal age and risk of schizophrenia in offspring - Review of epidemiological findings and potential mechanisms. Schizophr Res 2022; 247:84-91. [PMID: 36085274 DOI: 10.1016/j.schres.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
A large number of studies have examined the association between advanced paternal age (APA) and risk of schizophrenia in offspring. Here we present an overview of epidemiological studies on this subject published since 2000, and systematically summarize their methodologies and results. Next, we discuss evidence to elucidate the potential mechanisms contributing to the association between APA and offspring schizophrenia, considering paternal psychiatric morbidity and genetic liability, maternal factors, and findings from family design studies. We propose that multiple mechanisms, including causal and non-causal pathways, contribute to the observed relationship between APA and schizophrenia in offspring, and conclude by highlighting the need for multi-disciplinary studies in disentangling these complex, non-mutually exclusive mechanisms.
Collapse
Affiliation(s)
- Vahe Khachadourian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Nina Zaks
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Emma Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
16
|
Fico G, Oliva V, De Prisco M, Giménez-Palomo A, Sagué-Vilavella M, Gomes-da-Costa S, Garriga M, Solé E, Valentí M, Fanelli G, Serretti A, Fornaro M, Carvalho AF, Vieta E, Murru A. The U-shaped relationship between parental age and the risk of bipolar disorder in the offspring: A systematic review and meta-analysis. Eur Neuropsychopharmacol 2022; 60:55-75. [PMID: 35635997 DOI: 10.1016/j.euroneuro.2022.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/06/2023]
Abstract
Parenthood age may affect the risk for the development of different psychiatric disorders in the offspring, including bipolar disorder (BD). The present systematic review and meta-analysis aimed to appraise the relationship between paternal age and risk for BD and to explore the eventual relationship between paternal age and age at onset of BD. We searched the MEDLINE, Scopus, Embase, PsycINFO online databases for original studies from inception, up to December 2021. Random-effects meta-analyses were conducted. Sixteen studies participated in the qualitative synthesis, of which k = 14 fetched quantitative data encompassing a total of 13,424,760 participants and 217,089 individuals with BD. Both fathers [adjusted for the age of other parent and socioeconomic status odd ratio - OR = 1.29(95%C.I. = 1.13-1.48)] and mothers aged ≤ 20 years [(OR = 1.23(95%C.I. = 1.14-1.33)] had consistently increased odds of BD diagnosis in their offspring compared to parents aged 25-29 years. Fathers aged ≥ 45 years [adjusted OR = 1.29 (95%C.I. = 1.15-1.46)] and mothers aged 35-39 years [OR = 1.10(95%C.I. = 1.01-1.19)] and 40 years or older [OR = 1.2(95% C.I. = 1.02-1.40)] likewise had inflated odds of BD diagnosis in their offspring compared to parents aged 25-29 years. Early and delayed parenthood are associated with an increased risk of BD in the offspring. Mechanisms underlying this association are largely unknown and may involve a complex interplay between psychosocial, genetic and biological factors, and with different impacts according to sex and age range. Evidence on the association between parental age and illness onset is still tentative but it points towards a possible specific effect of advanced paternal age on early BD-onset.
Collapse
Affiliation(s)
- Giovanna Fico
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Vincenzo Oliva
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele De Prisco
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain; Department of Neuroscience, Section of Psychiatry, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Maria Sagué-Vilavella
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Susana Gomes-da-Costa
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Marina Garriga
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Eva Solé
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Marc Valentí
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele Fornaro
- Department of Neuroscience, Section of Psychiatry, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Andre F Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Vic., Australia 6 Perinatal Health Unit, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, Deakin University, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain.
| | - Andrea Murru
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, 170 Villarroel st, 12-0, Barcelona, Catalonia 08036, Spain
| |
Collapse
|
17
|
A multifactorial model for the etiology of neuropsychiatric disorders: the role of advanced paternal age. Pediatr Res 2022; 91:757-770. [PMID: 33674740 DOI: 10.1038/s41390-021-01435-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Mental or neuropsychiatric disorders are widespread within our societies affecting one in every four people in the world. Very often the onset of a mental disorder (MD) occurs in early childhood and substantially reduces the quality of later life. Although the global burden of MDs is rising, mental health care is still suboptimal, partly due to insufficient understanding of the processes of disease development. New insights are needed to respond to this worldwide health problem. Next to the growing burden of MDs, there is a tendency to postpone pregnancy for various economic and practical reasons. In this review, we describe the current knowledge on the potential effect from advanced paternal age (APA) on development of autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, bipolar disorder, obsessive-compulsive disorder, and Tourette syndrome. Although literature did not clearly define an age cut-off for APA, we here present a comprehensive multifactorial model for the development of MDs, including the role of aging, de novo mutations, epigenetic mechanisms, psychosocial environment, and selection into late fatherhood. Our model is part of the Paternal Origins of Health and Disease paradigm and may serve as a foundation for future epidemiological research designs. This blueprint will increase the understanding of the etiology of MDs and can be used as a practical guide for clinicians favoring early detection and developing a tailored treatment plan. Ultimately, this will help health policy practitioners to prevent the development of MDs and to inform health-care workers and the community about disease determinants. Better knowledge of the proportion of all risk factors, their interactions, and their role in the development of MDs will lead to an optimization of mental health care and management. IMPACT: We design a model of causation for MDs, integrating male aging, (epi)genetics, and environmental influences. It adds new insights into the current knowledge about associations between APA and MDs. In clinical practice, this comprehensive model may be helpful in early diagnosis and in treatment adopting a personal approach. It may help in identifying the proximate cause on an individual level or in a specific subpopulation. Besides the opportunity to measure the attributed proportions of risk factors, this model may be used as a blueprint to design prevention strategies for public health purposes.
Collapse
|
18
|
Raj CJ, Aishwarya CVS, Mounika KVSSN, Mishra B, Sumithra B, Vishal B, Mandal SK. Deciphering the Nexus Between Oxidative Stress and Spermatogenesis: A Compendious Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:1-16. [PMID: 36472813 DOI: 10.1007/978-3-031-12966-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS) and reactive oxygen species (ROS) are one of the main reasons for the multifactorial concern - male infertility. ROS are active components of cellular metabolism that are intrinsic to cellular functioning and are present at minimal and unreactive levels in normal cells. They are an integral component of the sperm developmental physiology, capacitation, and function. As said "anything in excess is poison," so is the case with ROS. These, when produced in excess to the antioxidants present in the seminal plasma, cause multiple malformations during the process of spermatogenesis such as lipid peroxidation, interfere with capacitation, sperm DNA fragmentation and damage to the membrane of the sperm which in turn reduces the motility of the sperm and its ability to fuse with the oocyte. Exposure of spermatozoa to oxidative stress is a major causative agent of male infertility. Thus, a delicate balance between the beneficial and detrimental effects of ROS for proper functions is of utter importance. In this chapter, the influence of ROS in OS which is a key player in male infertility along with the diagnosis, available treatment, and prevention of extensive ROS buildup within the spermatozoa are highlighted.
Collapse
Affiliation(s)
- Caleb Joel Raj
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
| | - C V S Aishwarya
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
| | - K V S S N Mounika
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
| | - B Sumithra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
| | - Bhushan Vishal
- School of Biological Sciences, Nanyang Technology University, Singapore, Singapore
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India.
| |
Collapse
|
19
|
Khachadourian V, Zaks N, Lin E, Reichenberg A, Janecka M. Advanced paternal age and risk of schizophrenia in offspring - Review of epidemiological findings and potential mechanisms. Schizophr Res 2021; 233:72-79. [PMID: 34242951 PMCID: PMC8380724 DOI: 10.1016/j.schres.2021.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
A large number of studies have examined the association between advanced paternal age (APA) and risk of schizophrenia in offspring. Here we present an overview of epidemiological studies on this subject published since 2000, and systematically summarize their methodologies and results. Next, we discuss evidence to elucidate the potential mechanisms contributing to the association between APA and offspring schizophrenia, considering paternal psychiatric morbidity and genetic liability, maternal factors, and findings from family design studies. We propose that multiple mechanisms, including causal and non-causal pathways, contribute to the observed relationship between APA and schizophrenia in offspring, and conclude by highlighting the need for multi-disciplinary studies in disentangling these complex, non-mutually exclusive mechanisms.
Collapse
Affiliation(s)
- Vahe Khachadourian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Nina Zaks
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Emma Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
20
|
Filatova S, Upadhyaya S, Luntamo T, Sourander A, Chudal R. Parental age and risk of depression: A nationwide, population-based case-control study. J Affect Disord 2021; 282:322-328. [PMID: 33421859 DOI: 10.1016/j.jad.2020.12.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The global prevalence of depression has increased in recent decades and so has the average age of parenthood. Younger and older parental age have been associated with several mental disorders in their offspring, but the associations for depression have been inconsistent. METHODS This study comprised 37,682 singleton births in Finland from 1987- 2007. The subjects were living in Finland at the end of 2012 and had a depressive disorder recorded in the Care Register for Health Care. We also randomly identified 148,795 controls from the Population Register. When missing obsevations excluded the sample was Ncases=18,708 and Ncontrols=77,243. The results were adjusted for the parents' psychiatric history, depression history, marital status and place of birth, the mothers' maternal socioeconomic status, smoking during pregnancy and previous births and the children's birth weight. RESULTS We found a U-shaped association between offspring depression and the age of both parents. The highest odds of depression occurred when the fathers were aged 50 plus years (adjusted Odds Ratio (ORa) 1.51, 95% CI 1.23-1.86) and the mothers were under 20 (ORa 1.44, 95% CI 1.29-1.60) compared to the reference category of parents aged 25-29 years. LIMITATIONS The study was limited to depression diagnosed by specialised health care services and had a relatively short follow-up period. Some data were missing and that could lead to risk estimation biases. CONCLUSION Diagnosed depression was higher among the offspring of younger and older parents. The results suggest that the age of the parent is etiologically associated with offspring depression.
Collapse
Affiliation(s)
| | - Subina Upadhyaya
- Research Centre for Child Psychiatry, University of Turku, Finland
| | - Terhi Luntamo
- Research Centre for Child Psychiatry, University of Turku, Finland; INVEST Research Flagship, University of Turku, Finland
| | - Andre Sourander
- Research Centre for Child Psychiatry, University of Turku, Finland; INVEST Research Flagship, University of Turku, Finland; Turku University Hospital, Turku, Finland
| | - Roshan Chudal
- Research Centre for Child Psychiatry, University of Turku, Finland
| |
Collapse
|
21
|
Kim KM, Choi YJ, Lim MH, Ha M, Kwon HJ. Parental age at childbirth and risk for attention-deficit/hyperactivity disorder in offspring. J Psychiatr Res 2020; 131:180-186. [PMID: 32979694 DOI: 10.1016/j.jpsychires.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 01/31/2023]
Abstract
This study investigated the association between parental age at birth and attention-deficit/hyperactivity disorder (ADHD) symptoms in their children. A total of 30,552 children aged 6-12 years participated in the study. ADHD symptoms were rated using the Korean version of the ADHD Rating Scale (K-ARS) by parents. K-ARS scores and odds ratio (OR) for children with high-risk ADHD presented a U-shape curve depending on the age of both parents at birth. The total K-ARS scores and OR for high-risk ADHD were highest in children of fathers and mothers belonging to the youngest age group (aged ≤20) (K-ARS = 12.33, OR = 2.89 vs K-ARS = 10.98, OR = 2.63) and second highest in children whose father's or mother's age at birth was the oldest (K-ARS = 9.63, OR = 1.65 vs K-ARS = 9.95, OR = 1.95). Our study identified that both spectrums of age-young and old of either parent-were associated with ADHD in children. These are new findings considering that old age of parents as the correlates of offspring ADHD is the inconsistent finding with previous studies and warrant future studies in other cultures that include more detailed information on ADHD symptoms of children and their parents are needed to confirm the present findings.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Psychiatry, Dankook University College of Medicine, Cheonan, Republic of Korea; Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea; Environmental Health Center, Dankook University Medical Center, Cheonan, Republic of Korea
| | - Yu Jung Choi
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
| | - Myung Ho Lim
- Environmental Health Center, Dankook University Medical Center, Cheonan, Republic of Korea; Department of Psychology, College of Public Human Resources, Dankook University, Cheonan, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Ho-Jang Kwon
- Environmental Health Center, Dankook University Medical Center, Cheonan, Republic of Korea; Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
22
|
Veldkamp SAM, Zondervan-Zwijnenburg MAJ, van Bergen E, Barzeva SA, Tamayo-Martinez N, Becht AI, van Beijsterveldt CEM, Meeus W, Branje S, Hillegers MHJ, Oldehinkel AJ, Hoijtink HJA, Boomsma DI, Hartman C. Parental Age in Relation to Offspring's Neurodevelopment. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY 2020; 50:632-644. [PMID: 32420762 DOI: 10.1080/15374416.2020.1756298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Advanced parenthood increases the risk of severe neurodevelopmental disorders like autism, Down syndrome and schizophrenia. Does advanced parenthood also negatively impact offspring's general neurodevelopment?Method: We analyzed child-, father-, mother- and teacher-rated attention-problems (N = 38,024), and standardized measures of intelligence (N = 10,273) and educational achievement (N = 17,522) of children from four Dutch population-based cohorts. The mean age over cohorts varied from 9.73-13.03. Most participants were of Dutch origin, ranging from 58.7%-96.7% over cohorts. We analyzed 50% of the data to generate hypotheses and the other 50% to evaluate support for these hypotheses. We aggregated the results over cohorts with Bayesian research synthesis.Results: We mostly found negative linear relations between parental age and attention-problems, meaning that offspring of younger parents tended to have more attention problems. Maternal age was positively and linearly related to offspring's IQ and educational achievement. Paternal age showed an attenuating positive relation with educational achievement and an inverted U-shape relation with IQ, with offspring of younger and older fathers at a disadvantage. Only the associations with maternal age remained after including SES. The inclusion of child gender in the model did not affect the relation between parental age and the study outcomes.Conclusions: Effects were small but significant, with better outcomes for children born to older parents. Older parents tended to be of higher SES. Indeed, the positive relation between parental age and offspring neurodevelopmental outcomes was partly confounded by SES.
Collapse
Affiliation(s)
- S A M Veldkamp
- Department of Biological Psychology, Vrije Universiteit Amsterdam
| | | | - Elsje van Bergen
- Department of Biological Psychology, Vrije Universiteit Amsterdam
| | - S A Barzeva
- Department of Psychiatry, University of Groningen, University Medical Center Groningen
| | - N Tamayo-Martinez
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center
| | - A I Becht
- Department of Youth & Family, Utrecht University.,Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam
| | | | - W Meeus
- Department of Youth & Family, Utrecht University
| | - S Branje
- Department of Youth & Family, Utrecht University
| | - M H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center
| | - A J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen
| | - H J A Hoijtink
- Department of Methodology & Statistics, Utrecht University
| | - D I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam
| | - C Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen
| |
Collapse
|
23
|
Weiser M, Fenchel D, Frenkel O, Fruchter E, Burshtein S, Yehuda AB, Yoffe R, Bergman-Levi T, Reichenberg A, Davidson M, Sandin S. Understanding the association between advanced paternal age and schizophrenia and bipolar disorder. Psychol Med 2020; 50:431-437. [PMID: 30827282 DOI: 10.1017/s0033291719000242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies reported an association between advanced paternal age at birth and increased risk for schizophrenia and bipolar disorder. While some hypothesize that this association is caused by de-novo mutations in paternal spermatozoa, others cite factors associated with psycho-social characteristics of fathers who have children at a late age. This study aims to test these hypotheses. METHODS A historical-prospective, population-based cohort study, performed by linking the Israeli Draft Board Registry and the Israeli National Psychiatric Hospitalization Registry (N = 916 439; 4488 with schizophrenia, 883 with bipolar disorder). Odds ratios (OR) and two-sided 95% confidence intervals (CI) were calculated by logistic regression models, using paternal age as predictor and risk for later hospitalizations for schizophrenia or bipolar disorder as outcome measure. Models were first fitted unadjusted, then adjusted for paternal age at birth of the first child. RESULTS In the unadjusted model, offspring of fathers aged 45 and above at birth had increased risk of schizophrenia (OR = 1.71, 95% CI 1.49-1.99) and bipolar disorder (OR = 1.63, 95% CI 1.16-2.24). However, taking into account paternal age at birth of first child, advanced paternal age was no longer associated with increased risk of schizophrenia (OR = 0.60, 95% CI 0.48-0.79) or bipolar disorder (OR = 1.03, 95% CI 0.56-1.90). CONCLUSIONS Controlling for paternal age at birth of the first offspring, advanced paternal age does not predict increased risk for schizophrenia or bipolar disorder. These data indicate that the association between advanced paternal age and having an offspring with schizophrenia and bipolar disorder is likely due to psychos-social factors, or common genetic variation associated with delayed initial fatherhood.
Collapse
Affiliation(s)
- Mark Weiser
- Department of Psychiatry, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Fenchel
- Department of Psychiatry, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Or Frenkel
- Department of Psychiatry, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Eyal Fruchter
- IDF Medical Corps, Israel
- Department of Psychiatry, Rambam Medical Center, Haifa, Israel
- Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shimon Burshtein
- Department of Psychiatry, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | | | - Rinat Yoffe
- Department of Mental Health, Ministry of Health, Israel
| | | | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at Mount Sinai, New York, NY, USA
| | - Michael Davidson
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Janeczko D, Hołowczuk M, Orzeł A, Klatka B, Semczuk A. Paternal age is affected by genetic abnormalities, perinatal complications and mental health of the offspring. Biomed Rep 2019; 12:83-88. [PMID: 32042416 DOI: 10.3892/br.2019.1266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Infertility and fecundity problems concern 10-18% of partners in their reproductive years compromising around one million females and males in Poland. Research and analysis of factors that affect male fertility are limited, especially, regarding the age of the father and determining the age at which quality of semen decreases. Age of the father has greater impact than maternal age, on cases of sporadic autosomal dominant congenital diseases such as Apert, Crouzon, Pfeiffer, Noonan and Costello syndromes, multiple endocrine neoplasia (types 2A and 2B) and achondroplasia. However, there are only a few reports taking paternal advanced age into consideration for pre-mature birth, low Apgar scores or admission to a neonatal intensive care department. Paternal age increases the frequency of congenital diseases such as heart malformations as well as oral, palate and lip cleft. Moreover, mental disorders (autism, schizophrenia, bipolar disorder, low IQ level as well as ADHD) also occur more frequently in advanced father's age. Advanced paternal age is defined differently in every research. It depends on disorders in offspring we are talking about. Paternal age has an impact on child's health and development and it is as significant as maternal age, when it comes to reproductive matters.
Collapse
Affiliation(s)
- Dominika Janeczko
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Magdalena Hołowczuk
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Anna Orzeł
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Barbara Klatka
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| | - Andrzej Semczuk
- Second Department of Gynecology, Medical University of Lublin, PL-20954 Lublin, Poland
| |
Collapse
|
25
|
Bergh C, Pinborg A, Wennerholm UB. Parental age and child outcomes. Fertil Steril 2019; 111:1036-1046. [PMID: 31155113 DOI: 10.1016/j.fertnstert.2019.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
This review summarizes the impact of parental age on children's health outcomes beyond the perinatal period. In the last decades, delayed parenthood with both men and women has become a public health issue. For women, in particular, the size of this delay is substantial. For a few medical conditions, older parental age has a pronounced effect on child morbidity. For most other outcomes, a more modest effect is evident. Although these effects might be limited on an individual level, they have a substantial impact at the level of population health.
Collapse
Affiliation(s)
- Christina Bergh
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Reproductive Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anja Pinborg
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulla-Britt Wennerholm
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sahlgrenska University Hospital East, Gothenburg, Sweden
| |
Collapse
|
26
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
27
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
28
|
Wang SH, Hsiao PC, Yeh LL, Liu CM, Liu CC, Hwang TJ, Hsieh MH, Chien YL, Lin YT, Huang YT, Chen CY, Chandler SD, Faraone SV, Neale B, Glatt SJ, Tsuang MT, Hwu HG, Chen WJ. Advanced Paternal Age and Early Onset of Schizophrenia in Sporadic Cases: Not Confounded by Parental Polygenic Risk for Schizophrenia. Biol Psychiatry 2019; 86:56-64. [PMID: 30926130 DOI: 10.1016/j.biopsych.2019.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Whether paternal age effect on schizophrenia is a causation or just an association due to confounding by selection into late parenthood is still debated. We investigated the association between paternal age and early onset of schizophrenia in offspring, controlling for both paternal and maternal predisposition to schizophrenia as empirically estimated using polygenic risk score (PRS) derived from the Psychiatric Genomics Consortium. METHODS Among 2923 sporadic schizophrenia cases selected from the Schizophrenia Trio Genomic Research in Taiwan project, 1649 had parents' genotyping data. The relationships of paternal schizophrenia PRS to paternal age at first birth (AFB) and of maternal schizophrenia PRS to maternal AFB were examined. A logistic regression model of patients' early onset of schizophrenia (≤18 years old) on paternal age was conducted. RESULTS Advanced paternal age over 20 years exhibited a trend of an increasing proportion of early onset of schizophrenia (odds ratio per 10-year increase in paternal age = 1.28, p = .007) after adjusting for maternal age, sex, and age. Older paternal AFB also exhibited an increasing trend of paternal schizophrenia PRS. Additionally, a U-shaped relationship between maternal AFB and maternal schizophrenia PRS was observed. After adjusting for both paternal and maternal schizophrenia PRS, the association of paternal age with patients' early onset of schizophrenia remained (odds ratio = 1.29, p = .04). CONCLUSIONS The association between paternal age and early onset of schizophrenia was not confounded by parental PRS for schizophrenia, which partially captures parental genetic vulnerability to schizophrenia. Our findings support an independent role of paternal age per se in increased risk of early onset of schizophrenia in offspring.
Collapse
Affiliation(s)
- Shi-Heng Wang
- Departments of Public Health and Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Po-Chang Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, Taipei, Taiwan
| | - Ling-Ling Yeh
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Yen Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sharon D Chandler
- Center for Behavioral Genomics, Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Stephen V Faraone
- Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Medical Genetics Research Center, State University of New York Upstate Medical University, Syracuse, New York
| | - Benjamin Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stephen J Glatt
- Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Medical Genetics Research Center, State University of New York Upstate Medical University, Syracuse, New York
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Hai-Gwo Hwu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Institute of Brain and Mind Sciences, College of Medicine, Taipei, Taiwan
| | - Wei J Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, Taipei, Taiwan; Department of Public Health, College of Public Health, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Soni S, Muthukrishnan SP, Samanchi R, Sood M, Kaur S, Sharma R. Pre-trial and pre-response EEG microstates in schizophrenia: An endophenotypic marker. Behav Brain Res 2019; 371:111964. [PMID: 31129232 DOI: 10.1016/j.bbr.2019.111964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 05/18/2019] [Indexed: 01/15/2023]
Abstract
Cognitive deficits in Schizophrenia interfere with everyday functioning and social functioning. Strong familial associations in schizophrenia might serve to establish cognitive impairments as endophenotypic markers. Therefore, visuo-spatial working memory simulating day-to-day activities at high memory load was assessed in patients with schizophrenia, their first-degree relatives and healthy controls to explore pre-trial and pre-response EEG microstates and their intracranial generators. Twenty-eight patients with schizophrenia, first-degree relatives and matched healthy controls participated in the study. Brain activity during visuo-spatial working memory task was recorded using 128-channel electroencephalography. Pre-trial and pre-response microstate maps of correct and error trials were clustered across groups according to their topography. Microstate map parameters and underlying cortical sources were compared among groups. Pre-trial (correct) microstate Map 1 was significantly different between controls and patients which could qualify it as a state marker with its intracranial generator localized to right inferior frontal gyrus (rIFG). Pre-response (correct) microstate map was significantly different between controls and first-degree relatives which could be considered an endophenotypic marker for schizophrenia. No significant differences were observed for error trials between groups. rIFG which is involved in the execution of multi-component behaviour and selective inhibitory control could distinguish patients with schizophrenia from their first-degree relatives and healthy controls. Further, microstate based biomarkers have the potential to facilitate diagnosis of schizophrenia at a preclinical stage resulting in efficient diagnosis and better prognosis.
Collapse
Affiliation(s)
- Sunaina Soni
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Rupesh Samanchi
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
30
|
Openshaw RL, Kwon J, McColl A, Penninger JM, Cavanagh J, Pratt JA, Morris BJ. JNK signalling mediates aspects of maternal immune activation: importance of maternal genotype in relation to schizophrenia risk. J Neuroinflammation 2019; 16:18. [PMID: 30691477 PMCID: PMC6350402 DOI: 10.1186/s12974-019-1408-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Important insight into the mechanisms through which gene-environmental interactions cause schizophrenia can be achieved through preclinical studies combining prenatal immune stimuli with disease-related genetic risk modifications. Accumulating evidence associates JNK signalling molecules, including MKK7/MAP2K7, with genetic risk. We tested the hypothesis that Map2k7 gene haploinsufficiency in mice would alter the prenatal immune response to the viral mimetic polyriboinosinic-polyribocytidylic acid (polyI:C), specifically investigating the impact of maternal versus foetal genetic variants. Methods PolyI:C was administered to dams (E12.5), and cytokine/chemokine levels were measured 6 h later, in maternal plasma, placenta and embryonic brain. Results PolyI:C dramatically elevated maternal plasma levels of most cytokines/chemokines. Induction of IL-1β, IL-2, IL-10, IL-12, TNF-α and CXCL3 was enhanced, while CCL5 was suppressed, in Map2k7 hemizygous (Hz) dams relative to controls. Maternal polyI:C administration also increased embryonic brain chemokines, influenced by both maternal and embryonic genotype: CCL5 and CXCL10 levels were higher in embryonic brains from Map2k7 dams versus control dams; for CCL5, this was more pronounced in Map2k7 Hz embryos. Placental CXCL10 and CXCL12 levels were also elevated by polyI:C, the former enhanced and the latter suppressed, in placentae from maternal Map2k7 Hzs relative to control dams receiving polyI:C. Conclusions The results demonstrate JNK signalling as a mediator of MIA effects on the foetus. Since both elevated CXCL10 and supressed CXCL12 compromise developing GABAergic interneurons, the results support maternal immune challenge contributing to schizophrenia-associated neurodevelopmental abnormalities. The influence of Map2k7 on cytokine/chemokine induction converges the genetic and environmental aspects of schizophrenia, and the overt influence of maternal genotype offers an intriguing new insight into modulation of embryonic neurodevelopment by genetic risk. Electronic supplementary material The online version of this article (10.1186/s12974-019-1408-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jaedeok Kwon
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alison McColl
- Institute of Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Josef M Penninger
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonathan Cavanagh
- Institute of Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
31
|
Uzuneser TC, Speidel J, Kogias G, Wang AL, de Souza Silva MA, Huston JP, Zoicas I, von Hörsten S, Kornhuber J, Korth C, Müller CP. Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats. Front Psychiatry 2019; 10:222. [PMID: 31057438 PMCID: PMC6465888 DOI: 10.3389/fpsyt.2019.00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood. In many species, synaptic pruning occurs during juvenile and adolescent periods and is mediated by microglia, which can be over-activated by an immune challenge, giving rise to overpruning. Therefore, we sought to investigate possible interactions between a transgenic DISC1 model (tgDISC1) and juvenile immune activation (JIA) by the bacterial cell wall endotoxin lipopolysaccharide on the induction of schizophrenia-related behavioral and neurochemical disruptions in adult female and male rats. We examined possible behavioral aberrations along three major symptom dimensions of schizophrenia including psychosis, social and emotional disruptions, and cognitive impairments. We detected significant gene-environment interactions in the amphetamine-induced locomotion in female animals and in the amphetamine-induced anxiety in male animals. Surprisingly, gene-environment interactions improved social memory in both male and female animals. JIA alone disrupted spatial memory and recognition memory, but only in male animals. DISC1 overexpression alone induced an improvement in sensorimotor gating, but only in female animals. Our neurochemical analyses detected sex- and manipulation-dependent changes in the postmortem monoamine content of animals. Taken together, we here report sex-specific effects of environment and genotype as well as their interaction on behavioral phenotypes and neurochemical profiles relevant for schizophrenia.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jil Speidel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Korth
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
32
|
Khan A, Liu Q, Wang K. iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics 2018; 19:501. [PMID: 30591030 PMCID: PMC6309067 DOI: 10.1186/s12859-018-2469-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A range of rare and common genetic variants have been discovered to be potentially associated with mental diseases, but many more have not been uncovered. Powerful integrative methods are needed to systematically prioritize both variants and genes that confer susceptibility to mental diseases in personal genomes of individual patients and to facilitate the development of personalized treatment or therapeutic approaches. METHODS Leveraging deep neural network on the TensorFlow framework, we developed a computational tool, integrated Mental-disorder GEnome Score (iMEGES), for analyzing whole genome/exome sequencing data on personal genomes. iMEGES takes as input genetic mutations and phenotypic information from a patient with mental disorders, and outputs the rank of whole genome susceptibility variants and the prioritized disease-specific genes for mental disorders by integrating contributions from coding and non-coding variants, structural variants (SVs), known brain expression quantitative trait loci (eQTLs), and epigenetic information from PsychENCODE. RESULTS iMEGES was evaluated on multiple datasets of mental disorders, and it achieved improved performance than competing approaches when large training dataset is available. CONCLUSION iMEGES can be used in population studies to help the prioritization of novel genes or variants that might be associated with the susceptibility to mental disorders, and also on individual patients to help the identification of genes or variants related to mental diseases.
Collapse
Affiliation(s)
- Atlas Khan
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
33
|
Soni S, Muthukrishnan SP, Sood M, Kaur S, Sharma R. Hyperactivation of left inferior parietal lobule and left temporal gyri shortens resting EEG microstate in schizophrenia. Schizophr Res 2018; 201:204-207. [PMID: 29925477 DOI: 10.1016/j.schres.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The momentary spatial configuration of the brain electric field at the scalp reflects quasi-stable "functional microstates" caused by activity of different intracranial generators. There is paucity in literature on the intracranial generators of resting state EEG microstate alterations in stable patients with schizophrenia. The present study aimed to investigate resting state microstate alterations and their neural generators in patients with schizophrenia and their first-degree relatives as compared to healthy controls in an attempt to establish state and trait marker. METHOD Thirty-four patients with schizophrenia (DSM-5 criteria), 29 first-degree relatives and 25 matched healthy controls participated in the study. Brain activity during eyes closed condition was recorded using 128 channel electroencephalography. Microstates were clustered into 5 maps across groups according to their topography. Microstate map parameters and their cortical sources were compared among groups. RESULTS Map 5 mean duration (χ2(2) = 7.617, p = 0.022) was significantly lower in patients compared to controls (U = 256, p = 0.010). Maximum activation was seen in left inferior parietal lobule (MNI coordinates: -65, -35, 25, Log-Fmax = 0.748). Suprathreshold cortical voxels with increased activations were found localized at left temporal gyri. CONCLUSION Hyperactivation in left inferior parietal lobule and temporal gyri might have shortened Map 5 duration at rest in patients with schizophrenia. This could imply microstate alterations as the potential state marker of schizophrenia.
Collapse
Affiliation(s)
- Sunaina Soni
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
34
|
Foldi CJ, Eyles DW, McGrath JJ, Burne THJ. Increasing paternal age alters anxiety-related behaviour in adult mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12522. [DOI: 10.1111/gbb.12522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Claire J. Foldi
- Queensland Brain Institute; The University of Queensland; St Lucia Queensland Australia
- Department of Physiology; Monash University; Clayton Victoria Australia
| | - Darryl W. Eyles
- Queensland Brain Institute; The University of Queensland; St Lucia Queensland Australia
- Queensland Centre for Mental Health Research; The Park Centre for Mental Health; Richlands Queensland Australia
| | - John J. McGrath
- Queensland Brain Institute; The University of Queensland; St Lucia Queensland Australia
- Queensland Centre for Mental Health Research; The Park Centre for Mental Health; Richlands Queensland Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute; The University of Queensland; St Lucia Queensland Australia
- Queensland Centre for Mental Health Research; The Park Centre for Mental Health; Richlands Queensland Australia
| |
Collapse
|
35
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
36
|
Churbanov A, Abrahamyan L. Preventing Common Hereditary Disorders through Time-Separated Twinning. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Widespread covariation of early environmental exposures and trait-associated polygenic variation. Proc Natl Acad Sci U S A 2017; 114:11727-11732. [PMID: 29078306 DOI: 10.1073/pnas.1707178114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although gene-environment correlation is recognized and investigated by family studies and recently by SNP-heritability studies, the possibility that genetic effects on traits capture environmental risk factors or protective factors has been neglected by polygenic prediction models. We investigated covariation between trait-associated polygenic variation identified by genome-wide association studies (GWASs) and specific environmental exposures, controlling for overall genetic relatedness using a genomic relatedness matrix restricted maximum-likelihood model. In a UK-representative sample (n = 6,710), we find widespread covariation between offspring trait-associated polygenic variation and parental behavior and characteristics relevant to children's developmental outcomes-independently of population stratification. For instance, offspring genetic risk for schizophrenia was associated with paternal age (R2 = 0.002; P = 1e-04), and offspring education-associated variation was associated with variance in breastfeeding (R2 = 0.021; P = 7e-30), maternal smoking during pregnancy (R2 = 0.008; P = 5e-13), parental smacking (R2 = 0.01; P = 4e-15), household income (R2 = 0.032; P = 1e-22), watching television (R2 = 0.034; P = 5e-47), and maternal education (R2 = 0.065; P = 3e-96). Education-associated polygenic variation also captured covariation between environmental exposures and children's inattention/hyperactivity, conduct problems, and educational achievement. The finding that genetic variation identified by trait GWASs partially captures environmental risk factors or protective factors has direct implications for risk prediction models and the interpretation of GWAS findings.
Collapse
|
38
|
Bustamante ML, Herrera L, Gaspar PA, Nieto R, Maturana A, Villar MJ, Salinas V, Silva H. Shifting the focus toward rare variants in schizophrenia to close the gap from genotype to phenotype. Am J Med Genet B Neuropsychiatr Genet 2017; 174:663-670. [PMID: 28901686 DOI: 10.1002/ajmg.b.32550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/25/2017] [Indexed: 01/16/2023]
Abstract
Schizophrenia (SZ) is a disorder with a high heritability and a complex architecture. Several dozen genetic variants have been identified as risk factors through genome-wide association studies including large population-based samples. However, the bulk of the risk cannot be accounted for by the genes associated to date. Rare mutations have been historically seen as relevant only for some infrequent, Mendelian forms of psychosis. Recent findings, however, show that the subset of patients that present a mutation with major effect is larger than expected. We discuss some of the molecular findings of these studies. SZ is clinically and genetically heterogeneous. To identify the genetic variation underlying the disorder, research should be focused on features that are more likely a product of genetic heterogeneity. Based on the phenotypical correlations with rare variants, cognition emerges as a relevant domain to study. Cognitive disturbances could be useful in selecting cases that have a higher probability of carrying deleterious mutations, as well as on the correct ascertainment of sporadic cases for the identification of de novo variants.
Collapse
Affiliation(s)
- M Leonor Bustamante
- Faculty of Medicine, Program of Human Genetics, Biomedical Sciences Institute, Universidad de Chile, Santiago de Chile, Chile.,Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago de Chile, Chile
| | - Luisa Herrera
- Faculty of Medicine, Program of Human Genetics, Biomedical Sciences Institute, Universidad de Chile, Santiago de Chile, Chile
| | - Pablo A Gaspar
- Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago de Chile, Chile.,Faculty of Medicine, Department of Neurosciences, Universidad de Chile, Santiago de Chile, Chile.,Biomedical Neurosciences Institute, Universidad de Chile, Santiago de Chile, Chile
| | - Rodrigo Nieto
- Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago de Chile, Chile.,Faculty of Medicine, Department of Neurosciences, Universidad de Chile, Santiago de Chile, Chile
| | - Alejandro Maturana
- Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago de Chile, Chile
| | - María José Villar
- Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago de Chile, Chile
| | - Valeria Salinas
- Faculty of Medicine, Program of Human Genetics, Biomedical Sciences Institute, Universidad de Chile, Santiago de Chile, Chile
| | - Hernán Silva
- Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago de Chile, Chile.,Faculty of Medicine, Department of Neurosciences, Universidad de Chile, Santiago de Chile, Chile.,Biomedical Neurosciences Institute, Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
39
|
Neary JL, Perez SM, Peterson K, Lodge DJ, Carless MA. Comparative analysis of MBD-seq and MeDIP-seq and estimation of gene expression changes in a rodent model of schizophrenia. Genomics 2017; 109:204-213. [PMID: 28365388 PMCID: PMC5526217 DOI: 10.1016/j.ygeno.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Abstract
We conducted a comparative study of multiplexed affinity enrichment sequence methodologies (MBD-seq and MeDIP-seq) in a rodent model of schizophrenia, induced by in utero methylazoxymethanol acetate (MAM) exposure. We also examined related gene expression changes using a pooled sample approach. MBD-seq and MeDIP-seq identified 769 and 1771 differentially methylated regions (DMRs) between F2 offspring of MAM-exposed rats and saline control rats, respectively. The assays showed good concordance, with ~56% of MBD-seq-detected DMRs being identified by or proximal to MeDIP-seq DMRs. There was no significant overlap between DMRs and differentially expressed genes, suggesting that DNA methylation regulatory effects may act upon more distal genes, or are too subtle to detect using our approach. Methylation and gene expression gene ontology enrichment analyses identified biological processes important to schizophrenia pathophysiology, including neuron differentiation, prepulse inhibition, amphetamine response, and glutamatergic synaptic transmission regulation, reinforcing the utility of the MAM rodent model for schizophrenia research.
Collapse
Affiliation(s)
- Jennifer L Neary
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Stephanie M Perez
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Kara Peterson
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Daniel J Lodge
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
40
|
Tang J, Fan Y, Li H, Xiang Q, Zhang DF, Li Z, He Y, Liao Y, Wang Y, He F, Zhang F, Shugart YY, Liu C, Tang Y, Chan RCK, Wang CY, Yao YG, Chen X. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia. J Genet Genomics 2017; 44:295-306. [PMID: 28645778 DOI: 10.1016/j.jgg.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022]
Abstract
Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive. We implemented whole-genome sequencing (WGS) analysis of 8 families with monozygotic (MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations (DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs (including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes (p.V24689I mutation in TTN, p.S2506T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function (LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations (CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.
Collapse
Affiliation(s)
- Jinsong Tang
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Hong Li
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qun Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Zongchang Li
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ying He
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yanhui Liao
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, and CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan He
- Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, and Center of Schizophrenia, Beijing Institute for Brain Disorders and Laboratory of Brain Disorders of the Ministry of Science and Technology, Capital Medical University, Beijing 100088, China
| | - Fengyu Zhang
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Intramural Research Programs, National Institute of Mental Health, NIH, Bethesda 20892, USA
| | - Chunyu Liu
- Institute of Human Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110122, China.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, and CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, and Center of Schizophrenia, Beijing Institute for Brain Disorders and Laboratory of Brain Disorders of the Ministry of Science and Technology, Capital Medical University, Beijing 100088, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiaogang Chen
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, and Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
41
|
Janecka M, Rijsdijk F, Rai D, Modabbernia A, Reichenberg A. Advantageous developmental outcomes of advancing paternal age. Transl Psychiatry 2017; 7:e1156. [PMID: 28632201 PMCID: PMC5537646 DOI: 10.1038/tp.2017.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Advanced paternal age (APA) at conception has been associated with negative outcomes in offspring, raising concerns about increasing age at fatherhood. Evidence from evolutionary and psychological research, however, suggests possible link between APA and a phenotypic advantage. We defined such advantage as educational success, which is positively associated with future socioeconomic status. We hypothesised that high IQ, strong focus on the subject of interest and little concern about 'fitting in' will be associated with such success. Although these traits are continuously distributed in the population, they cluster together in so-called 'geeks'. We used these measures to compute a 'geek index' (GI), and showed it to be strongly predictive of future academic attainment, beyond the independent contribution of the individual traits. GI was associated with paternal age in male offspring only, and mediated the positive effects of APA on education outcomes, in a similar sexually dimorphic manner. The association between paternal age and GI was partly mediated by genetic factors not correlated with age at fatherhood, suggesting contribution of de novo factors to the 'geeky' phenotype. Our study sheds new light on the multifaceted nature of the APA effects and explores the intricate links between APA, autism and talent.
Collapse
Affiliation(s)
- M Janecka
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - F Rijsdijk
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - D Rai
- Centre for Academic Mental Health, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - A Modabbernia
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Reichenberg
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
42
|
Parental Age and Offspring Psychopathology in the Philadelphia Neurodevelopmental Cohort. J Am Acad Child Adolesc Psychiatry 2017; 56:391-400. [PMID: 28433088 PMCID: PMC5458772 DOI: 10.1016/j.jaac.2017.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Increasing evidence implicates advanced paternal age at offspring birth in neuropsychiatric disorders. Advanced maternal age has also been associated with schizophrenia and other neurodevelopmental disorders, whereas younger maternal age has been linked with behavioral disorders. Few studies have considered the specificity of the associations with respect to comorbidity. In addition, most prior studies have been conducted in clinical samples or registries that may reflect more severe forms of psychopathology. The aim of this research is to examine the independent and joint associations of maternal and paternal age with specific subtypes of psychopathology in offspring in a pediatric sample of adolescents with emergent psychiatric syndromes. METHOD A total of 8,725 youths (aged 8-21 years) from the Philadelphia Neurodevelopmental Cohort were included in the analyses. Logistic regression models with parental age predicting offspring psychopathology were adjusted for sociodemographic factors and comorbid disorders. RESULTS We found that younger parental ages were generally associated with increased rates of offspring psychopathology. After controlling for sociodemographic characteristics and comorbidity, both younger maternal and paternal ages were associated with behavior syndromes and psychosis in youth, whereas advanced paternal age was associated with pervasive developmental disorders/autism spectrum disorder (PDD/ASD). CONCLUSION These findings suggest that both younger and older parental age at birth are associated with specific forms of psychopathology in offspring. The persistence of the influence of parental age after control for demographic factors and an index of social environment suggests that additional explanations for these findings should be examined in future studies.
Collapse
|
43
|
Janecka M, Haworth CM, Ronald A, Krapohl E, Happé F, Mill J, Schalkwyk LC, Fernandes C, Reichenberg A, Rijsdijk F. Paternal Age Alters Social Development in Offspring. J Am Acad Child Adolesc Psychiatry 2017; 56:383-390. [PMID: 28433087 PMCID: PMC5409803 DOI: 10.1016/j.jaac.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Advanced paternal age (APA) at conception has been linked with autism and schizophrenia in offspring, neurodevelopmental disorders that affect social functioning. The current study explored the effects of paternal age on social development in the general population. METHOD We used multilevel growth modeling to investigate APA effects on socioemotional development from early childhood until adolescence, as measured by the Strengths and Difficulties Questionnaire (SDQ) in the Twins Early Development Study (TEDS) sample. We also investigated genetic and environmental underpinnings of the paternal age effects on development, using the Additive genetics, Common environment, unique Environment (ACE) and gene-environment (GxE) models. RESULTS In the general population, both very young and advanced paternal ages were associated with altered trajectory of social development (intercept: p = .01; slope: p = .03). No other behavioral domain was affected by either young or advanced age at fatherhood, suggesting specificity of paternal age effects. Increased importance of genetic factors in social development was recorded in the offspring of older but not very young fathers, suggesting distinct underpinnings of the paternal age effects at these two extremes. CONCLUSION Our findings highlight that the APA-related deficits that lead to autism and schizophrenia are likely continuously distributed in the population.
Collapse
Affiliation(s)
- Magdalena Janecka
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York.
| | - Claire M.A. Haworth
- MRC Integrative Epidemiology Unit, School of Experimental Psychology and School of Social and Community Medicine, University of Bristol, UK
| | | | - Eva Krapohl
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| | - Jonathan Mill
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK,University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York
| | - Frühling Rijsdijk
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, King's College London, UK
| |
Collapse
|
44
|
Janecka M, Mill J, Basson MA, Goriely A, Spiers H, Reichenberg A, Schalkwyk L, Fernandes C. Advanced paternal age effects in neurodevelopmental disorders-review of potential underlying mechanisms. Transl Psychiatry 2017; 7:e1019. [PMID: 28140401 PMCID: PMC5299396 DOI: 10.1038/tp.2016.294] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- M Janecka
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Mill
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - M A Basson
- Department of Craniofacial and Stem Cell Biology, MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - A Goriely
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - H Spiers
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - A Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, UK
| | - C Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
45
|
Paternal Age Explains a Major Portion of De Novo Germline Mutation Rate Variability in Healthy Individuals. PLoS One 2016; 11:e0164212. [PMID: 27723766 PMCID: PMC5056704 DOI: 10.1371/journal.pone.0164212] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022] Open
Abstract
De novo mutations (DNM) are an important source of rare variants and are increasingly being linked to the development of many diseases. Recently, the paternal age effect has been the focus of a number of studies that attempt to explain the observation that increasing paternal age increases the risk for a number of diseases. Using disease-free familial quartets we show that there is a strong positive correlation between paternal age and germline DNM in healthy subjects. We also observed that germline CNVs do not follow the same trend, suggesting a different mechanism. Finally, we observed that DNM were not evenly distributed across the genome, which adds support to the existence of DNM hotspots.
Collapse
|
46
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
47
|
Janecka M, Manduca A, Servadio M, Trezza V, Smith R, Mill J, Schalkwyk LC, Reichenberg A, Fernandes C. Effects of advanced paternal age on trajectories of social behavior in offspring. GENES BRAIN AND BEHAVIOR 2016; 14:443-53. [PMID: 26096767 DOI: 10.1111/gbb.12227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/06/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
Our study is the first investigation of the effects of advanced paternal age (APA) on the developmental trajectory of social behavior in rodent offspring. Given the strong epidemiological association between APA and sexually dimorphic neurodevelopmental disorders that are characterized by abnormalities in social behavior (autism, schizophrenia), we assessed sociability in male and female inbred mice (C57BL/6J) across postnatal development (N = 104) in relation to paternal age. We found differences in early social behavior in both male and female offspring of older breeders, with differences in this social domain persisting into adulthood in males only. We showed that these social deficits were not present in the fathers of these offspring, confirming a de novo origin of an altered social trajectory in the offspring generation. Our results, highly novel in rodent research, support the epidemiological observations in humans and provide evidence for a causal link between APA, age-related changes in the paternal sperm DNA and neurodevelopmental disorders in their offspring.
Collapse
Affiliation(s)
- M Janecka
- Social, Genetic and Developmental Psychiatry MRC Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Manduca
- Department of Science, Roma Tre University, Rome, Italy
| | - M Servadio
- Department of Science, Roma Tre University, Rome, Italy
| | - V Trezza
- Department of Science, Roma Tre University, Rome, Italy
| | - R Smith
- Social, Genetic and Developmental Psychiatry MRC Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - J Mill
- Social, Genetic and Developmental Psychiatry MRC Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,University of Exeter Medical School, University of Exeter, Exeter, UK
| | - L C Schalkwyk
- Social, Genetic and Developmental Psychiatry MRC Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,School of Biological Sciences, University of Essex, Colchester, UK
| | - A Reichenberg
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Fernandes
- Social, Genetic and Developmental Psychiatry MRC Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
48
|
Perez SM, Aguilar DD, Neary JL, Carless MA, Giuffrida A, Lodge DJ. Schizophrenia-Like Phenotype Inherited by the F2 Generation of a Gestational Disruption Model of Schizophrenia. Neuropsychopharmacology 2016; 41:477-86. [PMID: 26068729 PMCID: PMC5130123 DOI: 10.1038/npp.2015.169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023]
Abstract
Both environmental and genetic factors contribute to schizophrenia; however, the exact etiology of this disorder is not known. Animal models are utilized to better understand the mechanisms associated with neuropsychiatric diseases, including schizophrenia. One of these involves gestational administration of methylazoxymethanol acetate (MAM) to induce a developmental disruption, which in turn produces a schizophrenia-like phenotype in post-pubertal rats. The mechanisms by which MAM produces this phenotype are not clear; however, we now demonstrate that MAM induces differential DNA methylation, which may be heritable. Here we demonstrate that a subset of both second (F2) and third (F3) filial generations of MAM-treated rats displays a schizophrenia-like phenotype and hypermethylation of the transcription factor, Sp5. Specifically, ventral tegmental area of dopamine neuron activity was examined using electrophysiology as a correlate for the dopamine hyperfunction thought to underlie psychosis in patients. Interestingly, only a subset of F2 and F3 MAM rats exhibited increases in dopamine neuron population activity, indicating that this may be a unique model with a susceptibility to develop a schizophrenia-like phenotype. An increase in dopamine system function in rodent models has been previously associated with decreases in hippocampal GABAergic transmission. In line with these observations, we found a significant correlation between hippocampal parvalbumin expression and dopamine neuron activity in F2 rats. These data therefore provide evidence that offspring born from MAM-treated rats possess a susceptibility to develop aspects of a schizophrenia-like phenotype and may provide a useful tool to investigate gene-environment interactions.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David D Aguilar
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jennifer L Neary
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Andrea Giuffrida
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel J Lodge
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
49
|
Milekic MH, Xin Y, O'Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, Moore H, Brunner D, Ge Y, Edwards J, Paul S, Haghighi FG, Gingrich JA. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry 2015; 20:995-1001. [PMID: 25092244 DOI: 10.1038/mp.2014.84] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/14/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022]
Abstract
Advanced paternal age (APA) has been shown to be a significant risk factor in the offspring for neurodevelopmental psychiatric disorders, such as schizophrenia and autism spectrum disorders. During aging, de novo mutations accumulate in the male germline and are frequently transmitted to the offspring with deleterious effects. In addition, DNA methylation during spermatogenesis is an active process, which is susceptible to errors that can be propagated to subsequent generations. Here we test the hypothesis that the integrity of germline DNA methylation is compromised during the aging process. A genome-wide DNA methylation screen comparing sperm from young and old mice revealed a significant loss of methylation in the older mice in regions associated with transcriptional regulation. The offspring of older fathers had reduced exploratory and startle behaviors and exhibited similar brain DNA methylation abnormalities as observed in the paternal sperm. Offspring from old fathers also had transcriptional dysregulation of developmental genes implicated in autism and schizophrenia. Our findings demonstrate that DNA methylation abnormalities arising in the sperm of old fathers are a plausible mechanism to explain some of the risks that APA poses to resulting offspring.
Collapse
Affiliation(s)
- M H Milekic
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - Y Xin
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - A O'Donnell
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - K K Kumar
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - M Bradley-Moore
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - D Malaspina
- 1] Department of Psychiatry, New York University, New York, NY, USA [2] Department of Psychiatry, New York University, and The NY OMH Creedmoor Psychiatric Center, New York, NY, USA
| | - H Moore
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - D Brunner
- 1] Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA [2] PsychoGenics, New York, NY, USA
| | - Y Ge
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - J Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - S Paul
- Helen & Robert Appel Institute for Alzheimer's Research, Mind and Brain Institute, Weill Cornell Medical School, New York, NY, USA
| | - F G Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J A Gingrich
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
50
|
Hui CLM, Chiu CPY, Li YK, Law CW, Chang WC, Chan SKW, Lee EHM, Sham P, Chen EYH. The Effect of Paternal Age on Relapse in First-Episode Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2015; 60:346-53. [PMID: 26454556 PMCID: PMC4542514 DOI: 10.1177/070674371506000803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/01/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Multiple etiological and prognostic factors have been implied in schizophrenia and its outcome. Advanced paternal age has been reported as a risk factor in schizophrenia. Whether this may affect schizophrenia outcome was not previously studied. We hypothesized that advanced paternal age may have a negative effect on the outcome of relapse in schizophrenia. METHOD We interviewed 191 patients with first-episode schizophrenia and their relatives for parental ages, sociodemographic factors at birth, birth rank, family history of psychotic disorders, and obstetric complications. The outcome measure was the presence of relapse at the end of the first year of treatment. RESULTS In the 1-year follow-up period, 42 (22%) patients experienced 1 or more relapses. The mean paternal age was 34.62 years (SD 7.69). Patients who relapsed had significantly higher paternal age, poorer medication adherence, were female, and were hospitalized at onset, compared with patients who did not relapse. A multivariate regression analysis showed that advanced paternal age (OR 1.05, 95% CI 1.01 to 1.10), medication nonadherence (OR 2.37, 95% CI 1.12 to 4.99), and female sex (OR 2.44, 95% CI 1.14 to 5.24) independently contributed to a higher risk of relapse. Analysis between different paternal age groups found a significantly higher relapse rate with paternal age over 40. CONCLUSIONS Advanced paternal age is found to be modestly but significantly related to more relapses, and such an effect is the strongest at a cut-off of paternal age of 40 years or older. The effect is less likely to be mediated through less effective parental supervision or nonadherence to medication. Other possible biological mechanisms need further explorations.
Collapse
Affiliation(s)
- Christy L M Hui
- Research Assistant Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cindy P Y Chiu
- Clinical Assistant Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuet-Keung Li
- Research Assistant, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi-Wing Law
- Associate Consultant, Department of Psychiatry, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Wing-Chung Chang
- Clinical Assistant Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sherry K W Chan
- Clinical Assistant Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Edwin H M Lee
- Clinical Assistant Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pak Sham
- Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China; Professor, State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric Y H Chen
- Professor, Department of Psychiatry, University of Hong Kong, Hong Kong Special Administrative Region, China; Professor, State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|