1
|
Shan Q, Zhao D, Cao B, Zhu X, Wang C, Deng L, Li C, Zhang Y, Shi Q, Gong B. Jasmonic acid and nitric oxide orchestrate a hierarchical melatonin cascade for Botrytis cinerea resistance in tomato. PLANT PHYSIOLOGY 2025; 197:kiaf078. [PMID: 39977124 DOI: 10.1093/plphys/kiaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Tomato gray mold, caused by Botrytis cinerea (B. cinerea), poses a major challenge to tomato production. In plants, B. cinerea resistance is positively regulated by melatonin; however, the regulatory mechanism of melatonin biosynthesis during B. cinerea infection is not known. Here, we established the working model of jasmonic acid (JA) and nitric oxide (NO) on melatonin biosynthesis in the state of B. cinerea infection. NO responded to B. cinerea infection earlier than JA. In the early stage of infection, tomato caffeic acid O-methyltransferase 2 (SlCOMT2) was S-nitrosylated by NO at Cys344, enhancing the stability of SlCOMT2 and preventing its degradation via the 26S proteasome. In the late stage of infection, JA-triggered SlMYC2 bound to SlCOMT1 and SlCOMT2 promoters for their transcription. NO and JA synergistically enhanced COMT-mediated melatonin biosynthesis during B. cinerea infection via post-translational modification and transcriptional activation. The accumulation of melatonin in tomato leaves inhibited cell death by scavenging reactive oxygen species, thereby preventing B. cinerea from establishing infection sites. We propose that SlCOMT2Cys344 is a genetic manipulation site or biological breeding target that can be used to enhance melatonin synthesis and B. cinerea resistance in tomato.
Collapse
Affiliation(s)
- Qing Shan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Dan Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xueying Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
2
|
Wei JW, Liu M, Zhao D, Du P, Yan L, Liu D, Shi Q, Yang C, Qin G, Gong B. Melatonin confers saline-alkali tolerance in tomato by alleviating nitrosative damage and S-nitrosylation of H+-ATPase 2. THE PLANT CELL 2025; 37:koaf035. [PMID: 39928568 PMCID: PMC11845906 DOI: 10.1093/plcell/koaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/12/2025]
Abstract
Soil salinization and alkalization disrupt redox homeostasis, impairing plant survival and crop production. Disruption of redox homeostasis can cause accumulation of reactive nitrogen species, such as nitric oxide (NO), which causes nitrosative damage in which the properties of biomacromolecules are altered. It is unclear whether melatonin regulates NO homeostasis, thereby affecting plant saline-alkali tolerance. In tomato (Solanum lycopersicum), excess NO caused by saline-alkali stress resulted in nitrosative damage, which was alleviated by S-nitrosoglutathione reductase (GSNOR). Moreover, saline-alkali stress-triggered NO stimulated caffeic acid O-methyltransferase (COMT) transcription and melatonin biosynthesis to scavenge excess NO and alleviate nitrosative damage at the proteome level. Under saline-alkali stress, plasma membrane-localized H+-ATPase 2 (HA2) was S-nitrosylated at Cys206, impairing its interaction with 14-3-3 protein 1 (TFT1). HA2 S-nitrosylation resulted in reduced HA activity, H+ efflux, and saline-alkali tolerance. Conversely, COMT-generated melatonin alleviated HA2 S-nitrosylation, recovering its function and tomato saline-alkali tolerance. Therefore, we propose that melatonin and NO are redox switches of HA2 S-nitrosylation for saline-alkali tolerance. Under natural saline-alkali conditions, tomato productivity was improved by grafting with COMT-, GSNOR-, or HA2-overexpression rootstocks, or by generating nonnitrosylated HA2C206S mutants. By establishing the melatonin-NO-HA2 module, this study illuminates a molecular function of melatonin and suggests possible genetic engineering strategies to improve agriculture.
Collapse
Affiliation(s)
- Jin-Wei Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Dan Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Pengmeng Du
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Lu Yan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Derui Liu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Changxian Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
3
|
Lutter F, Brenner W, Krajinski-Barth F, Safavi-Rizi V. Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response. PLANT SIGNALING & BEHAVIOR 2024; 19:2329841. [PMID: 38521996 PMCID: PMC10962617 DOI: 10.1080/15592324.2024.2329841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Nitric oxide (NO) and cytokinins (CKs) are known for their crucial contributions to plant development, growth, senescence, and stress response. Despite the importance of both signals in stress responses, their interaction remains largely unexplored. The interplay between NO and CKs emerges as particularly significant not only regarding plant growth and development but also in addressing plant stress response, particularly in the context of extreme weather events leading to yield loss. In this review, we summarize NO and CKs metabolism and signaling. Additionally, we emphasize the crosstalk between NO and CKs, underscoring its potential impact on stress response, with a focus on hypoxia tolerance. Finally, we address the most urgent questions that demand answers and offer recommendations for future research endeavors.
Collapse
Affiliation(s)
- Felix Lutter
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Wolfram Brenner
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Franziska Krajinski-Barth
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
| | - Vajiheh Safavi-Rizi
- Institute of Biology, Department of General and Applied Botany, University of Leipzig, Leipzig, Germany
- Institute of Biology, Department of Plant physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Pan C, Li X, Jian C, Zhou Y, Wang A, Xiao D, Zhan J, He L. AhGSNOR1 negatively regulates Al-induced programmed cell death by regulating intracellular NO and redox levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112275. [PMID: 39341375 DOI: 10.1016/j.plantsci.2024.112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The toxicity of aluminum (Al) in acidic soil inhibits plant development and reduces crop yields. Programmed cell death (PCD) is one of the important mechanisms in the plant response to Al toxicity. However, it is yet unknown if S-nitrosoglutathione reductase (GSNOR) provides Al-PCD. Here, transcription and protein expression of AhGSNOR1 were both induced by Al stress. AhGSNOR1-overexpressing transgenic tobacco plants reduced Al-induced nitric oxide (NO) and S-nitrosothiol accumulation, the inhibitory effect of Al stress on root elongation and the degree of cell death, and enhanced antioxidant enzyme activity to effectively remove hydrogen peroxide. In addition, AhGSNOR1 directly interacted with AhTRXh in vivo. Expression of Trxh3 in AhGSNOR1-overexpressing transgenic plants was significantly upregulated, indicating that AhGSNOR1 positively regulated the transcriptional level of Trxh3. Together, these results suggested that AhGSNOR1 was a negative regulatory factor of Al-induced PCD and improved plant Al-tolerance by modulating intracellular NO and redox homeostasis.
Collapse
Affiliation(s)
- Chunliu Pan
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; Guangxi Botanical Garden of Medicinal Plants, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changge Jian
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunyi Zhou
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530004, China
| | - Aiqin Wang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China
| | - Dong Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China
| | - Jie Zhan
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China.
| | - Longfei He
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Liu Y, Liu Z, Wu X, Fang H, Huang D, Pan X, Liao W. Role of protein S-nitrosylation in plant growth and development. PLANT CELL REPORTS 2024; 43:204. [PMID: 39080060 DOI: 10.1007/s00299-024-03290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
In plants, nitric oxide (NO) has been widely accepted as a signaling molecule that plays a role in different processes. Among the most relevant pathways by which NO and its derivatives realize their biological functions, post-translational protein modifications are worth mentioning. Protein S-nitrosylation has been the most studied NO-dependent regulatory mechanism; it is emerging as an essential mechanism for transducing NO bioactivity in plants and animals. In recent years, the research of protein S-nitrosylation in plant growth and development has made significant progress, including processes such as seed germination, root development, photosynthetic regulation, flowering regulation, apoptosis, and plant senescence. In this review, we focus on the current state of knowledge on the role of S-nitrosylation in plant growth and development and provide a better understanding of its action mechanisms.
Collapse
Affiliation(s)
- Yayu Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
6
|
Liu W, Wei JW, Shan Q, Liu M, Xu J, Gong B. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. PLANT PHYSIOLOGY 2024; 195:1038-1052. [PMID: 38478428 DOI: 10.1093/plphys/kiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 06/02/2024]
Abstract
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Shan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jinghao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
7
|
Liu Z, Huang D, Yao Y, Pan X, Zhang Y, Huang Y, Ding Z, Wang C, Liao W. The Crucial Role of SlGSNOR in Regulating Postharvest Tomato Fruit Ripening. Int J Mol Sci 2024; 25:2729. [PMID: 38473974 DOI: 10.3390/ijms25052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) is a well-known regulator in controlling protein S-nitrosylation modification and nitric oxide (NO) homeostasis. Here, a GSNOR inhibitor N6022 and SlGSNOR silencing were applied to investigate the roles of SlGSNOR in tomato fruit postharvest ripening. We found that the application of N6022 and S-nitrosoglutathione (GSNO, a NO donor), and SlGSNOR silencing delayed the transition of fruit skin color by improving total chlorophyll level by 88.57%, 44.78%, and 91.03%, respectively. Meanwhile, total carotenoid and lycopene contents were reduced by these treatments. Concurrently, the activity of chlorophyll biosynthesis enzymes and the expression of related genes were upregulated, and the transcript abundances of total carotenoid bioproduction genes were downregulated, by N6022 and GSNO treatments and SlGSNOR silencing. In addition, fruit softening was postponed by N6022, GSNO, and SlGSNOR silencing, through delaying the decrease of firmness and declining cell wall composition; structure-related enzyme activity; and gene expression levels. Furthermore, N6022, GSNO, and SlGSNOR silencing enhanced the accumulation of titratable acid; ascorbic acid; total phenol; and total flavonoid, but repressed the content of soluble sugar and soluble protein accompanied with the expression pattern changes of nutrition-related genes. In addition, the endogenous NO contents were elevated by 197.55%; 404.59%; and 713.46%, and the endogenous SNOs contents were enhanced by 74.65%; 93.49%; and 94.85%; by N6022 and GSNO treatments and SlGSNOR silencing, respectively. Altogether, these results indicate that SlGSNOR positively promotes tomato postharvest fruit ripening, which may be largely on account of its negative roles in the endogenous NO level.
Collapse
Affiliation(s)
- Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yanqin Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yi Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zhiqi Ding
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
8
|
Zuccarelli R, Rodríguez-Ruiz M, Silva FO, Gomes LDL, Lopes-Oliveira PJ, Zsögön A, Andrade SCS, Demarco D, Corpas FJ, Peres LEP, Rossi M, Freschi L. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6349-6368. [PMID: 37157899 DOI: 10.1093/jxb/erad166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Fernanda O Silva
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Letícia D L Gomes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Patrícia J Lopes-Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Parveen N, Kandhol N, Sharma S, Singh VP, Chauhan DK, Ludwig-Müller J, Corpas FJ, Tripathi DK. Auxin Crosstalk with Reactive Oxygen and Nitrogen Species in Plant Development and Abiotic Stress. PLANT & CELL PHYSIOLOGY 2023; 63:1814-1825. [PMID: 36208156 DOI: 10.1093/pcp/pcac138] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone auxin acts as an important signaling molecule having regulatory functions during the growth and development of plants. Reactive oxygen species (ROS) are also known to perform signaling functions at low concentrations; however, over-accumulation of ROS due to various environmental stresses damages the biomolecules and cell structures and leads to cell death, and therefore, it can be said that ROS act as a double-edged sword. Nitric oxide (NO), a gaseous signaling molecule, performs a wide range of favorable roles in plants. NO displays its positive role in photomorphogenesis, root growth, leaf expansion, seed germination, stomatal closure, senescence, fruit maturation, mitochondrial activity and metabolism of iron. Studies have revealed the early existence of these crucial molecules during evolution. Moreover, auxin, ROS and NO together show their involvement in various developmental processes and abiotic stress tolerance. Redox signaling is a primary response during exposure of plants to stresses and shows a link with auxin signaling. This review provides updated information related to crosstalk between auxin, ROS and NO starting from their evolution during early Earth periods and their interaction in plant growth and developmental processes as well as in the case of abiotic stresses to plants.
Collapse
Affiliation(s)
- Nishat Parveen
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj-211004, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, CMP, Degree Collage, University of Allahabad, Prayagraj-211002, India
| | - Devendra Kumar Chauhan
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Jutta Ludwig-Müller
- Department of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Professor Albareda, 1, Granada 18008, Spain
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| |
Collapse
|
10
|
Wang C, Wei L, Zhang J, Hu D, Gao R, Liu Y, Feng L, Gong W, Liao W. Nitric Oxide Enhances Salt Tolerance in Tomato Seedlings by Regulating Endogenous S-nitrosylation Levels. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:275-293. [PMID: 0 DOI: 10.1007/s00344-021-10546-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
|
11
|
Pavlů J, Kerchev P, Černý M, Novák J, Berka M, Jobe TO, López Ramos JM, Saiz-Fernández I, Rashotte AM, Kopriva S, Brzobohatý B. Cytokinin modulates the metabolic network of sulfur and glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7417-7433. [PMID: 36226742 DOI: 10.1093/jxb/erac391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - José Maria López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aaron Michael Rashotte
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
12
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|