1
|
Kikuchi S, Kotaka T, Hanaki Y, Ueda M, Higaki T. Distinct actin microfilament localization during early cell plate formation through deep learning-based image restoration. PLANT CELL REPORTS 2025; 44:115. [PMID: 40335746 PMCID: PMC12058911 DOI: 10.1007/s00299-025-03498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025]
Abstract
KEY MESSAGE Using deep learning-based image restoration, we achieved high-resolution 4D imaging with minimal photodamage, revealing distinct localization and suggesting Lifeact-RFP-labeled actin microfilaments play a role in initiating cell plate formation. Phragmoplasts are plant-specific intracellular structures composed of microtubules, actin microfilaments (AFs), membranes, and associated proteins. Importantly, they are involved in the formation and the expansion of cell plates that partition daughter cells during cell division. While previous studies have revealed the important role of cytoskeletal dynamics in the proper functioning of the phragmoplast, the localization and the role of AFs in the initial phase of cell plate formation remain controversial. Here, we used deep learning-based image restoration to achieve high-resolution 4D imaging with minimal laser-induced damage, enabling us to investigate the dynamics of AFs during the initial phase of cell plate formation in transgenic tobacco BY-2 cells labeled with Lifeact-RFP or RFP-ABD2 (actin-binding domain 2). This computational approach overcame the limitation of conventional imaging, namely laser-induced photobleaching and phototoxicity. The restored images indicated that RFP-ABD2-labeled AFs were predominantly localized near the daughter nucleus, whereas Lifeact-RFP-labeled AFs were found not only near the daughter nucleus but also around the initial cell plate. These findings, validated by imaging with a long exposure time, highlight distinct localization patterns between the two AF probes and suggest that Lifeact-RFP-labeled AFs play a role in initiating cell plate formation.
Collapse
Affiliation(s)
- Suzuka Kikuchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Takumi Kotaka
- Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Yuga Hanaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takumi Higaki
- Faculty of Science, Kumamoto University, Kumamoto, Japan.
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Horiuchi R, Kamimura A, Hanaki Y, Matsumoto H, Ueda M, Higaki T. Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density. PROTOPLASMA 2025; 262:739-751. [PMID: 39692866 DOI: 10.1007/s00709-024-02019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding. In this study, we examined the utility of a deep learning-based segmentation method for accurate quantitative evaluation of cytoskeleton organization using confocal microscopic images of the cortical microtubules in tobacco BY-2 cells. The results showed that, although conventional methods sufficed for measurement of cytoskeleton angles and parallelness, the deep learning-based method significantly improved the accuracy of density measurements. To assess the versatility of the method, we extended our analysis to physiologically significant models in the context of changes in cytoskeleton density, namely Arabidopsis thaliana guard cells and zygotes. The deep learning-based method successfully improved the accuracy of cytoskeleton density measurements for quantitative evaluations of physiological changes in both stomatal movement in guard cells and intracellular polarization in elongating zygotes, confirming its utility in these applications. The results demonstrate the effectiveness of deep learning-based segmentation in providing precise and high-throughput measurements of cytoskeleton density, and has the potential to automate and expedite analyses of large-scale image datasets.
Collapse
Affiliation(s)
- Ryota Horiuchi
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Asuka Kamimura
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Yuga Hanaki
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Hikari Matsumoto
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, 619-0284, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
3
|
Ichita M, Yamamichi H, Higaki T. Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures. PLANT MOLECULAR BIOLOGY 2025; 115:29. [PMID: 39885095 PMCID: PMC11782351 DOI: 10.1007/s11103-025-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 01/11/2025] [Indexed: 02/01/2025]
Abstract
The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry. The model also accurately documented the shape of Arabidopsis pavement cells in both wild type and the bpp125 triple mutant, which has an altered pavement cell phenotype. Metrics such as cell area, circularity, and solidity obtained from virtual staining analyses were highly correlated with those obtained by manual measurements of cell features from microscopy images. Furthermore, the versatility of virtual staining was highlighted by its application to track chloroplast movement in Egeria densa. The method was also effective for classifying live and dead BY-2 cells using texture-based machine learning, suggesting that virtual staining can be applied beyond typical segmentation tasks. Although this method still has some limitations, its non-invasive nature and efficiency make it highly suitable for label-free, dynamic, and high-throughput analyses in quantitative plant cell biology.
Collapse
Affiliation(s)
- Manami Ichita
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Haruna Yamamichi
- Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
- Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
4
|
Wakabayashi K, Shibatsugu M, Hattori T, Soga K, Hoson T. Mechanisms Involved in Cell Wall Remodeling in Etiolated Rice Shoots Grown Under Osmotic Stress. Life (Basel) 2025; 15:196. [PMID: 40003605 PMCID: PMC11856063 DOI: 10.3390/life15020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Osmotic stress impacts the cell wall properties in plants. This study aimed to elucidate the mechanisms involved in cell wall remodeling in etiolated (dark-grown) rice (Oryza sativa L.) shoots grown under polyethylene glycol (PEG)-induced osmotic stress conditions. Shoot growth was inhibited by 70% by the treatment with 60 mM PEG for 2 days. However, when the stressed seedlings were transferred to a solution without PEG, their shoot growth rate increased significantly. A measurement of the cell wall mechanical properties revealed that the cell walls of the stressed shoots became looser and more extensible than those of unstressed shoots. Among the cell wall constituents, the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA), p-coumaric acid (p-CA), and diferulic acid (DFA), per shoot and per unit of matrix polysaccharide content were significantly reduced in the stressed shoots compared to those in the unstressed shoots. Concerning the formation of cell wall-bound phenolic acids, the activity of cell wall-bound peroxidase (CW-PRX) per unit of cell wall content, which is responsible for the coupling reaction of FA to produce DFA, was 3.5 times higher in stressed shoots than in unstressed shoots, while the activity was reduced by 20% on a shoot basis in stressed shoots compared to that in unstressed shoots. The expression levels of the major class III peroxidase genes in stressed shoots were either comparable to or slightly lower than those in unstressed shoots. Conversely, the phenylalanine ammonia-lyase (PAL) activity, which contributes to the biosynthesis of FA and p-CA, was reduced by 55% and 30% on a shoot and unit-of-protein-content basis, respectively, in stressed shoots compared to that in unstressed shoots. The expression levels of abundantly expressed PAL genes decreased by 14-46% under osmotic stress. Moreover, the gene expression levels of specific BAHD acyltransferases, which are responsible for the addition of FA and p-CA to form ester-linked moieties on cell wall constituents, decreased by 15-33% under osmotic stress. These results suggest that the downregulation of the expression of specific PAL and BAHD acyltransferase genes in osmotically stressed rice shoots is responsible for a reduction in the formation of cell wall-bound phenolic acid monomers. This, in turn, may result in a decrease in the levels of DFAs. The reduction in the formation of DFA-mediated cross-linking structures within the cell wall may contribute to an increase in the mechanical extensibility of the cell wall. The remodeling of cell walls in an extensible and loosened state could assist in maintaining the growth capacity of etiolated rice shoots grown under osmotic stress and contribute to rapid growth recovery following the alleviation of osmotic stress.
Collapse
Affiliation(s)
- Kazuyuki Wakabayashi
- Department of Biological Sciences, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan (K.S.)
| | - Motomi Shibatsugu
- Department of Biology, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takayuki Hattori
- Department of Biological Sciences, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan (K.S.)
| | - Kouichi Soga
- Department of Biological Sciences, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan (K.S.)
| | - Takayuki Hoson
- Department of Biological Sciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Bidhendi AJ, Lampron O, Gosselin FP, Geitmann A. Cell geometry regulates tissue fracture. Nat Commun 2023; 14:8275. [PMID: 38092784 PMCID: PMC10719271 DOI: 10.1038/s41467-023-44075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
In vascular plants, the epidermal surfaces of leaves and flower petals often display cells with wavy geometries forming intricate jigsaw puzzle patterns. The prevalence and diversity of these complex epidermal patterns, originating from simple polyhedral progenitor cells, suggest adaptive significance. However, despite multiple efforts to explain the evolutionary drivers behind these geometrical features, compelling validation remains elusive. Employing a multidisciplinary approach that integrates microscopic and macroscopic fracture experiments with computational fracture mechanics, we demonstrate that wavy epidermal cells toughen the plants' protective skin. Through a multi-scale framework, we demonstrate that this energy-efficient patterning mechanism is universally applicable for toughening biological and synthetic materials. Our findings reveal a tunable structural-mechanical strategy employed in the microscale design of plants to protect them from deleterious surface fissures while facilitating and strategically directing beneficial ones. These findings hold implications for targeted plant breeding aimed at enhancing resilience in fluctuating environmental conditions. From an engineering perspective, our work highlights the sophisticated design principles the plant kingdom offers to inspire metamaterials.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
- EERS Global Technologies, Montreal, Canada.
| | - Olivier Lampron
- Laboratoire de Mécanique Multi-échelles, Département de génie mécanique, École Polytechnique de Montréal, Montreal, Québec, H3C 3A7, Canada
| | - Frédérick P Gosselin
- Laboratoire de Mécanique Multi-échelles, Département de génie mécanique, École Polytechnique de Montréal, Montreal, Québec, H3C 3A7, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
6
|
Nakajima K, Higaki T, Ueda T, Inami M. Gaining New Insights in Plant Biology through Human-Machine Collaboration. PLANT & CELL PHYSIOLOGY 2023; 64:1257-1261. [PMID: 37952100 DOI: 10.1093/pcp/pcad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Takumi Higaki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto, 860-8555 Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Masahiko Inami
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Tokyo, 153-8904 Japan
| |
Collapse
|