1
|
Lira BS, Gramegna G, Amaral P, Dos Reis Moreira J, Wu RTA, Vicente MH, Nogueira FTS, Freschi L, Rossi M. Phytol recycling: essential, yet not limiting for tomato fruit tocopherol accumulation under normal growing conditions. PLANT MOLECULAR BIOLOGY 2023; 111:365-378. [PMID: 36587296 DOI: 10.1007/s11103-022-01331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Tocopherols are potent membrane-bound antioxidant molecules that are paramount for plant physiology and also important for human health. In the past years, chlorophyll catabolism was identified as the primary source of phytyl diphosphate for tocopherol synthesis by the action of two enzymes, PHYTOL KINASE (VTE5) and PHYTHYL PHOSPHATE KINASE (VTE6) that are able to recycle the chlorophyll-derived phytol. While VTE5 and VTE6 were proven essential for tocopherol metabolism in tomato fruits, it remains unknown whether they are rate-limiting steps in this pathway. To address this question, transgenic tomato plants expressing AtVTE5 and AtVTE6 in a fruit-specific manner were generated. Although ripe transgenic fruits exhibited higher amounts of tocopherol, phytol recycling revealed a more intimate association with chlorophyll than with tocopherol content. Interestingly, protein-protein interactions assays showed that VTE5 and VTE6 are complexed, channeling free phytol and phytyl-P, thus mitigating their cytotoxic nature. Moreover, the analysis of tocopherol accumulation dynamics in roots, a chlorophyll-devoid organ, revealed VTE5-dependent tocopherol accumulation, hinting at the occurrence of shoot-to-root phytol trafficking. Collectively, these results demonstrate that phytol recycling is essential for tocopherol biosynthesis, even in chlorophyll-devoid organs, yet it is not the rate-limiting step for this pathway under normal growth conditions.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Paula Amaral
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Juliene Dos Reis Moreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Mateus Henrique Vicente
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil.
| |
Collapse
|
2
|
Zhang Z, Yang S, Wang Q, Yu H, Zhao B, Wu T, Tang K, Ma J, Yang X, Feng X. Soybean GmHY2a encodes a phytochromobilin synthase that regulates internode length and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6646-6662. [PMID: 35946571 PMCID: PMC9629791 DOI: 10.1093/jxb/erac318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.
Collapse
Affiliation(s)
- Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Alvarez ME, Savouré A, Szabados L. Proline metabolism as regulatory hub. TRENDS IN PLANT SCIENCE 2022; 27:39-55. [PMID: 34366236 DOI: 10.1016/j.tplants.2021.07.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 05/21/2023]
Abstract
Proline is a multifunctional amino acid that is accumulated in high concentrations in plants under various stress conditions. Proline accumulation is intimately connected to many cellular processes, such as osmotic pressure, energy status, nutrient availability, changes in redox balance, and defenses against pathogens. Proline biosynthesis and catabolism is linked to photosynthesis and mitochondrial respiration, respectively. Proline can function as a signal, modulating gene expression and certain metabolic processes. We review important findings on proline metabolism and function of the last decade, giving a more informative picture about the function of this unusual amino acid in maintaining cellular homeostasis, modulating plant development, and promoting stress acclimation.
Collapse
Affiliation(s)
- María E Alvarez
- CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary.
| |
Collapse
|
4
|
Hu L, Liu P, Jin Z, Sun J, Weng Y, Chen P, Du S, Wei A, Li Y. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2639-2652. [PMID: 34091695 DOI: 10.1007/s00122-021-03849-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The elongated hypocotyl1 (elh1) mutant in cucumber is due to a mutation in CsHY2, which is a homolog of the Arabidopsis HY2 encoding the phytochromobilin (PΦB) synthase for phytochrome biosynthesis Hypocotyl length is a critical determinant in establishing high quality seedlings for successful cucumber production, but knowledge on the molecular regulation of hypocotyl growth in cucumber is very limited. Here, we reported identification and characterization of a cucumber elongated hypocotyl 1 (elh1) mutant. We found that the longer hypocotyl in elh1 was due to longitudinal growth of hypocotyl cells. With fine mapping, the elh1 locus was delimited to a 20.9-kb region containing three annotated genes; only one polymorphism was identified in this region between two parental lines, which was a non-synonymous SNP (G28153633A) in the third exon of CsHY2 (CsGy1G030000) that encodes a phytochromobilin (PΦB) synthase. Uniqueness of the mutant allele at CsHY2 was verified in natural cucumber populations. Ectopic expression of CsHY2 in Arabidopsis hy2-1 long-hypocotyl mutant led to reduced hypocotyl length. The PΦB protein was targeted to the chloroplast. The expression levels of CsHY2 and five phytochrome genes CsPHYA1, CsPHYA2, CsPHYB, CsPHYC and CsPHYE were all significantly down-regulated while several cell elongation related genes were up-regulated in elh1 mutant compared to wild-type cucumber, which are correlated with dynamic hypocotyl elongation in the mutant. RNA-seq analysis in the WT and mutant revealed differentially expressed genes involved in porphyrin and chlorophyll metabolisms, cell elongation and plant hormone signal transduction pathways. This is the first report to characterize and clone the CsHY2 gene in cucumber. This work reveals the important of CsHY2 in regulating hypocotyl length and extends our understanding of the roles of CsHY2 in cucumber.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A & F University, Yangling, 712100, Shaanxi,, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
|
6
|
Sugishima M, Wada K, Fukuyama K, Yamamoto K. Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. J Biol Chem 2020; 295:771-782. [PMID: 31822504 DOI: 10.1074/jbc.ra119.011431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/08/2019] [Indexed: 11/06/2022] Open
Abstract
Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
7
|
Sugishima M, Wada K, Fukuyama K, Yamamoto K. Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49934-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
8
|
Gramegna G, Rosado D, Sánchez Carranza AP, Cruz AB, Simon-Moya M, Llorente B, Rodríguez-Concepcíon M, Freschi L, Rossi M. PHYTOCHROME-INTERACTING FACTOR 3 mediates light-dependent induction of tocopherol biosynthesis during tomato fruit ripening. PLANT, CELL & ENVIRONMENT 2019; 42:1328-1339. [PMID: 30362122 DOI: 10.1111/pce.13467] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/21/2023]
Abstract
Tocopherols are important antioxidants exclusively produced in plastids that protect the photosynthetic apparatus from oxidative stress. These compounds with vitamin E activity are also essential dietary nutrients for humans. Although the tocopherol biosynthetic pathway has been elucidated, the mechanisms that regulate tocopherol production and accumulation remain elusive. Here, we investigated the regulatory mechanism underlying tocopherol biosynthesis during ripening in tomato fruits, which are an important source of vitamin E. Our results show that ripening under light conditions increases tocopherol fruit content in a phytochrome-dependent manner by the transcriptional regulation of biosynthetic genes. Moreover, we show that light-controlled expression of the GERANYLGERANYL DIPHOSPHATE REDUCTASE (SlGGDR) gene, responsible for the synthesis of the central tocopherol precursor phytyl diphosphate, is mediated by PHYTOCHROME-INTERACTING FACTOR 3 (SlPIF3). In the absence of light, SlPIF3 physically interacts with the promoter of SlGGDR, down-regulating its expression. By contrast, light activation of phytochromes prevents the interaction between SlPIF3 and the SlGGDR promoter, leading to transcriptional derepression and higher availability of the PDP precursor for tocopherol biosynthesis. The unraveled mechanism provides a new strategy to manipulate fruit metabolism towards improving tomato nutritional quality.
Collapse
Affiliation(s)
- Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Ana Paula Sánchez Carranza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Aline Bertinatto Cruz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Miguel Simon-Moya
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
- Department of Molecular Sciences, Macquarie University, 2109, New South Wales, Australia
- CSIRO Synthetic Biology Future Science Platform, 3004, Melbourne, Australia
| | - Manuel Rodríguez-Concepcíon
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| |
Collapse
|
9
|
Lupi ACD, Lira BS, Gramegna G, Trench B, Alves FRR, Demarco D, Peres LEP, Purgatto E, Freschi L, Rossi M. Solanum lycopersicum GOLDEN 2-LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner. PLoS One 2019; 14:e0212224. [PMID: 30753245 PMCID: PMC6372215 DOI: 10.1371/journal.pone.0212224] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
Plastids are organelles responsible for essential aspects of plant development, including carbon fixation and synthesis of several secondary metabolites. Chloroplast differentiation and activity are highly regulated by light, and several proteins involved in these processes have been characterised. Such is the case of the GOLDEN 2-LIKE (GLK) transcription factors, which induces the expression of genes related to chloroplast differentiation and photosynthesis. The tomato (Solanum lycopersicum) genome harbours two copies of this gene, SlGLK1 and SlGLK2, each with distinct expression patterns. While the former predominates in leaves, the latter is mainly expressed in fruits, precisely at the pedicel region. During tomato domestication, the selection of fruits with uniform ripening fixed the mutation Slglk2, nowadays present in most cultivated varieties, what penalised fruit metabolic composition. In this study, we investigated how SlGLK2 is regulated by light, auxin and cytokinin and determined the effect of SlGLK2 on tocopherol (vitamin E) and sugar metabolism, which are components of the fruit nutritional and industrial quality. To achieve this, transcriptional profiling and biochemical analysis were performed throughout fruit development and ripening from SlGLK2, Slglk2, SlGLK2-overexpressing genotypes, as well as from phytochrome and hormonal deficient mutants. The results revealed that SlGLK2 expression is regulated by phytochrome-mediated light perception, yet this gene can induce chloroplast differentiation even in a phytochrome-independent manner. Moreover, auxin was found to be a negative regulator of SlGLK2 expression, while SlGLK2 enhances cytokinin responsiveness. Additionally, SlGLK2 enhanced chlorophyll content in immature green fruits, leading to an increment in tocopherol level in ripe fruits. Finally, SlGLK2 overexpression resulted in higher total soluble solid content, possibly by the regulation of sugar metabolism enzyme-encoding genes. The results obtained here shed light on the regulatory network that interconnects SlGLK2, phytohormones and light signal, promoting the plastidial activity and consequently, influencing the quality of tomato fruit.
Collapse
Affiliation(s)
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna Trench
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lazaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ¨Luiz de Queiroz¨, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
10
|
Ganesan M, Lee HY, Kim JI, Song PS. Development of transgenic crops based on photo-biotechnology. PLANT, CELL & ENVIRONMENT 2017; 40:2469-2486. [PMID: 28010046 DOI: 10.1111/pce.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses.
Collapse
Affiliation(s)
- Markkandan Ganesan
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| |
Collapse
|
11
|
Kooß S, Lamparter T. Cyanobacterial origin of plant phytochromes. PROTOPLASMA 2017; 254:603-607. [PMID: 26869366 DOI: 10.1007/s00709-016-0951-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes are widely distributed photoreceptors with similar domain arrangements. The evolutionary origin of plant and green algal phytochromes is currently under debate. We used different algorithms to generate multiple phylogenetic trees for the N-terminal chromophore module and the C-terminal histidine kinase domains. The evolution of the chromophore module and the histidine kinase (like) regions follows different patterns, indicating several rearrangements between both parts of the protein. Out of 22 trees, 19 revealed a close relationship between cyanobacteria and Archaeplastida, the group encompassing plants and green algae. Opposed to other studies, a cyanobacterial origin of plant phytochromes is strongly supported by our results.
Collapse
Affiliation(s)
- Sandra Kooß
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, 76131, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, 76131, Karlsruhe, Germany.
| |
Collapse
|
12
|
|
13
|
Monteiro CC, Rolão MB, Franco MR, Peters LP, Cia MC, Capaldi FR, Carvalho RF, Gratão PL, Rossi ML, Martinelli AP, Peres LE, Azevedo RA. Biochemical and histological characterization of tomato mutants. ACTA ACUST UNITED AC 2012; 84:573-85. [DOI: 10.1590/s0001-37652012005000022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
Abstract
Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H2O2) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.
Collapse
|
14
|
Yoshida S, Mandel T, Kuhlemeier C. Stem cell activation by light guides plant organogenesis. Genes Dev 2011; 25:1439-50. [PMID: 21724835 DOI: 10.1101/gad.631211] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.
Collapse
Affiliation(s)
- Saiko Yoshida
- Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland
| | | | | |
Collapse
|
15
|
Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsögön A, Lima JE, Benedito VA, Peres LEP. Convergence of developmental mutants into a single tomato model system: 'Micro-Tom' as an effective toolkit for plant development research. PLANT METHODS 2011; 7:18. [PMID: 21714900 PMCID: PMC3146949 DOI: 10.1186/1746-4811-7-18] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/29/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. RESULTS We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. CONCLUSIONS The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Collapse
Affiliation(s)
- Rogério F Carvalho
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Marcelo L Campos
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Lilian E Pino
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
- Center for Nuclear Energy in Agriculture (CENA), USP, Av. Centenário, 303, CEP 13400-970 Piracicaba, SP, Brazil
| | - Simone L Crestana
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Agustin Zsögön
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Joni E Lima
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
- Center for Nuclear Energy in Agriculture (CENA), USP, Av. Centenário, 303, CEP 13400-970 Piracicaba, SP, Brazil
| | - Vagner A Benedito
- Genetics and Developmental Biology Program, Plant and Soil Sciences Division, West Virginia University, 2090 Agricultural Sciences Building, Morgantown, WV 26506, USA
| | - Lázaro EP Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| |
Collapse
|
16
|
Zhang L, Wei Q, Wu W, Cheng Y, Hu G, Hu F, Sun Y, Zhu Y, Sakamoto W, Huang J. Activation of the heterotrimeric G protein alpha-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:1041-53. [PMID: 19228339 DOI: 10.1111/j.1365-313x.2009.03843.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G protein knock-out mutants have no phenotypic defect in chloroplast development, and the connection between the G protein signaling pathway and chloroplast development has only been inferred from pharmaceutical evidence. Thus, whether G protein signaling plays a role in chloroplast development remains an open question. Here, we present genetic evidence, using the leaf-variegated mutant thylakoid formation 1 (thf1), indicating that inactivation or activation of the endogenous G protein alpha-subunit (GPA1) affects chloroplast development, as does the ectopic expression of the constitutively active Galpha-subunit (cGPA1). Molecular biological and genetic analyses showed that FtsH complexes, which are composed of type-A (FtsH1/FtsH5) and type-B (FtsH2/FtsH8) subunits, are required for cGPA1-promoted chloroplast development in thf1. Furthermore, the ectopic expression of cGPA1 rescues the leaf variegation of ftsh2. Consistent with this finding, microarray analysis shows that ectopic expression of cGPA1 partially corrects mis-regulated gene expression in thf1. This overlooked function of G proteins provides new insight into our understanding of the integrative signaling network, which dynamically regulates chloroplast development and function in response to both intracellular and extracellular signals.
Collapse
Affiliation(s)
- Lingang Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Cell Res 2008; 18:949-60. [DOI: 10.1038/cr.2008.271] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
18
|
Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ. The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. FEBS J 2006; 273:2594-606. [PMID: 16817889 DOI: 10.1111/j.1742-4658.2006.05264.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pcd1 mutant of pea lacks heme oxygenase (HO) activity required for the synthesis of the phytochrome chromophore and is consequently severely deficient in all responses mediated by the phytochrome family of plant photoreceptors. Here we describe the isolation of the gene encoding pea heme oxygenase 1 (PsHO1) and confirm the presence of a mutation in this gene in the pcd1 mutant. PsHO1 shows a high degree of sequence homology to other higher plant HOs, in particular with those from other legume species. Expression of PsHO1 increased in response to white light, but did not respond strongly to narrow band light treatments. Analysis of the biochemical activity of PsHO1 expressed in Escherichia coli demonstrated requirements for reduced ferredoxin, a secondary reductant such as ascorbate and an iron chelator for maximum enzyme activity. Using the crystal structure data from homologous animal and bacterial HOs we have modelled the structure of PsHO1 and demonstrated a high degree of structural conservation despite limited primary sequence homology. However, the catalytic site of PsHO1 is larger than that of animal HOs indicating that it may accommodate an ascorbate molecule in close proximity to the heme. This could provide an explanation for why plant HOs show a strong and saturable dependence on this reductant.
Collapse
Affiliation(s)
- Philip J Linley
- School of Biological Sciences, University of Southampton, UK
| | | | | | | | | |
Collapse
|
19
|
Emborg TJ, Walker JM, Noh B, Vierstra RD. Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:856-68. [PMID: 16428602 PMCID: PMC1400562 DOI: 10.1104/pp.105.074211] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The oxidative cleavage of heme by heme oxygenases (HOs) to form biliverdin IXalpha (BV) is the committed step in the biosynthesis of the phytochrome (phy) chromophore and thus essential for proper photomorphogenesis in plants. Arabidopsis (Arabidopsis thaliana) contains four possible HO genes (HY1, HO2-4). Genetic analysis of the HY1 locus showed previously that it is the major source of BV with hy1 mutant plants displaying long hypocotyls and decreased chlorophyll accumulation consistent with a substantial deficiency in photochemically active phys. More recent analysis of HO2 suggested that it also plays a role in phy assembly and photomorphogenesis but the ho2 mutant phenotype is more subtle than that of hy1 mutants. Here, we define the functions of HO3 and HO4 in Arabidopsis. Like HY1, the HO3 and HO4 proteins have the capacity to synthesize BV from heme. Through a phenotypic analysis of T-DNA insertion mutants affecting HO3 and HO4 in combination with mutants affecting HY1 or HO2, we demonstrate that both of the encoded proteins also have roles in photomorphogenesis, especially in the absence of HY1. Disruption of HO3 and HO4 in the hy1 background further desensitizes seedlings to red and far-red light and accelerates flowering time, with the triple mutant strongly resembling seedlings deficient in the synthesis of multiple phy apoproteins. The hy1/ho3/ho4 mutant can be rescued phenotypically and for the accumulation of holo-phy by feeding seedlings BV. Taken together, we conclude that multiple members of the Arabidopsis HO family are important for synthesizing the bilin chromophore used to assemble photochemically active phys.
Collapse
Affiliation(s)
- Thomas J Emborg
- Department of Genetics, University of Wisconsin, Madison, 53706, USA
| | | | | | | |
Collapse
|
20
|
Hagiwara Y, Sugishima M, Takahashi Y, Fukuyama K. Crystal structure of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin IXalpha, a key enzyme in the biosynthesis of phycocyanobilin. Proc Natl Acad Sci U S A 2006; 103:27-32. [PMID: 16380422 PMCID: PMC1324987 DOI: 10.1073/pnas.0507266103] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Indexed: 11/18/2022] Open
Abstract
Phytobilins (light harvesting and photoreceptor pigments in higher plants, algae, and cyanobacteria) are synthesized from biliverdin IXalpha (BV) by ferredoxin-dependent bilin reductases (FDBRs). Phycocyanobilin:ferredoxin oxidoreductase (PcyA), one such FDBR, is a new class of radical enzymes that require neither cofactors nor metals and serially reduces the vinyl group of the D-ring and A-ring of BV using four electrons from ferredoxin to produce phycocyanobilin, one of the phytobilins. We have determined the crystal structure of PcyA from Synechocystis sp. PCC 6803 in complex with BV, revealing the first tertiary structure of an FDBR family member. PcyA is folded in a three-layer alpha/beta/alpha sandwich structure, in which BV in a cyclic conformation is positioned between the beta-sheet and C-terminal alpha-helices. The basic patch on the PcyA surface near the BV molecule may provide a binding site for acidic ferredoxin, allowing direct transfer of electrons to BV. The orientation of BV is definitely fixed in PcyA by several hydrophilic interactions and the shape of the BV binding pocket of PcyA. We propose the mechanism by which the sequential reduction of the D- and A-rings is controlled, where Asp-105, located between the two reduction sites, would play the central role by changing its conformation during the reaction. Homology modeling of other FDBRs based on the PcyA structure fits well with previous genetic and biochemical data, thereby providing a structural basis for the reaction mechanism of FDBRs.
Collapse
Affiliation(s)
- Yoshinori Hagiwara
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|