1
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
2
|
Yu ZC, Wang TQ, Luo YN, Zheng XT, He W, Chen LB, Peng CL. Overexpression of the V-ATPase c subunit gene from Antarctic notothenioid fishes enhances freezing tolerance in transgenic Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:365-376. [PMID: 33550177 DOI: 10.1016/j.plaphy.2021.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/23/2021] [Indexed: 05/23/2023]
Abstract
Theoretical and experimental studies have demonstrated that temperature is an important environmental factor that affects the regional distribution of plants. However, how to modify the distribution pattern of plants in different regions is a focus of current research. Obtain the information of cold tolerance genes from cold tolerance species, cloning genes with real cold tolerance effects is one of the most important ways to find the genes related to cold tolerance. In this study, we investigated whether transferring the VHA-c gene from Antarctic notothenioid fishes into Arabidopsis enhances freezing tolerance of Arabidopsis. The physiological response and molecular changes of VHA-c overexpressing pedigree and wildtype Arabidopsis were studied at -20 °C. The results showed that the malondialdehyde (MDA) and membrane leakage rates of WT plants were significantly higher than those of VHA-c8 and VHA-c11 plants, but the soluble sugar, soluble protein, proline and ATP contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. The survival rate, VHA-c gene expression level and VHA-c protein contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. Correlation analysis showed that ATP content was significantly negatively correlated with MDA and membrane leakage rate, and positively correlated with soluble sugar, soluble protein and proline content under -20 °C freezing treatment. These results demonstrated that overexpression of the VHA-c gene provided strong freezing tolerance to Arabidopsis by increasing the synthesis of ATP and improved the adaptability of plants in low temperature environment.
Collapse
Affiliation(s)
- Zheng-Chao Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ting-Qin Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yan-Na Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiao-Ting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liang-Biao Chen
- Internal Joint Research Center for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Chang-Lian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Wang P, Guo Y, Wang Y, Gao C. Vacuolar membrane H +-ATPase c`` subunit gene (ThVHAc``1) from Tamarix hispida Willd improves salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:370-378. [PMID: 33190056 DOI: 10.1016/j.plaphy.2020.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/29/2020] [Indexed: 05/15/2023]
Abstract
The plant vacuolar H+-ATPase (V-ATPase) is a multisubunit complex. In addition to performing basic housekeeping functions, this complex is also involved in abiotic stress resistance in plants. In this study, a V-ATPase c`` subunit gene (ThVHAc``1) from Tamarix hispida Willd was cloned with a 534-bp ORF. Sequence analysis showed that the ThVHAc``1 protein contains four transmembrane helices and lacks a signal peptide. qRT-PCR results showed that ThVHAc``1 was primarily induced by treatments of NaCl, NaHCO3, PEG6000, CdCl2 or ABA in roots, stems and leaves of T. hispida. The expression pattern of ThVHAc``1 was significantly different from that of ThVHAc1 (a V-ATPase c subunit in T. hispida). Furthermore, the cell survival rates and density (OD600) results showed that the transgenic yeast overexpressing ThVHAc``1 exhibited increased tolerance to the above-mentioned abiotic stresses. In addition, the overexpression of ThVHAc``1 confers salt tolerance to transgenic Arabidopsis plants by improving the ROS content and decreasing the accumulation of O2- and H2O2. Similarly, the homologous transformation of the ThVHAc``1 gene into T. hispida also improved salt tolerance. Our results suggest that the ThVHAc``1 gene plays an important role in plant stress tolerance.
Collapse
Affiliation(s)
- Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yucong Guo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
4
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
5
|
Chen YM, Dong YH, Liang ZB, Zhang LH, Deng YZ. Enhanced vascular activity of a new chimeric promoter containing the full CaMV 35S promoter and the plant XYLOGEN PROTEIN 1 promoter. 3 Biotech 2018; 8:380. [PMID: 30148030 DOI: 10.1007/s13205-018-1379-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/28/2018] [Indexed: 01/09/2023] Open
Abstract
To develop a new strategy that controls vascular pathogen infections in economic crops, we examined a possible enhancer of the vascular activity of XYLOGEN PROTEIN 1 promoter (Px). This protein is specifically expressed in the vascular tissues of Arabidopsis thaliana and plays an important role in xylem development. Although Px is predicted as vascular-specific, its activity is hard to detect and highly susceptible to plant and environmental conditions. The cauliflower mosaic virus 35S promoter (35S) is highly active in directing transgene expression. To test if 35S could enhance Px activity, while vascular specificity of the promoter is retained, we examined the expression of the uidA reporter gene, which encodes β-glucuronidase (GUS), under the control of a chimeric promoter (35S-Px) or Px by generating 35S-Px-GUS and Px-GUS constructs, which were transformed into tobacco seedlings. Both 35S-Px and Px regulated gene expression in vascular tissues. However, GUS expression driven by 35S-Px was not detected in 30- and 60-day-old plants. Quantitative real-time PCR analysis showed that GUS gene expression regulated by 35S-Px was 6.2-14.9-fold higher in vascular tissues than in leaves. Histochemical GUS staining demonstrated that 35S-Px was strongly active in the xylem and phloem. Thus, fusion of 35S and Px might considerably enhance the strength of Px and increase its vascular specificity. In addition to confirming that 35S enhances the activity of a low-level tissue-specific promoter, these findings provide information for further improving the activity of such promoters, which might be useful for engineering new types of resistant genes against vascular infections.
Collapse
Affiliation(s)
- Yu-Mei Chen
- 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- 2Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
- 3Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642 China
| | - Yi-Hu Dong
- 4Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore City, 138673 Singapore
| | - Zhi-Bin Liang
- 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- 2Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
- 3Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642 China
| | - Lian-Hui Zhang
- 2Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
- 3Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642 China
| | - Yi-Zhen Deng
- 2Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
- 3Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
6
|
Xu Z, Ge Y, Zhang W, Zhao Y, Yang G. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC PLANT BIOLOGY 2018; 18:19. [PMID: 29357825 PMCID: PMC5778664 DOI: 10.1186/s12870-018-1231-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Vacuolar H+-ATPase (V-ATPase) is a vital protein complex involved in abiotic stress response in plants. The G subunit of Juglans regia (JrVHAG1) was previously identified as a drought tolerance-related gene involved in the ABA (abscisic acid)-signal pathway. Heavy metal stress is becoming a major detriment for plant growth, development, and production. In order to understand the role of JrVHAG1, the potential function mechanism of JrVHAG1 exposed to CdCl2 stress was confirmed in this study. RESULTS Transcription of JrVHAG1 was induced by ABA and increased to 58.89-fold (roots) and 7.38-fold (leaves) and by CdCl2 to 2.65- (roots) and 11.42-fold (leaves) relative to control, respectively. Moreover, when treated simultaneously with ABA and CdCl2 (ABA+CdCl2), JrVHAG1 was up-regulated to 110.13- as well as 165.42-fold relative to control in the roots and leaves, accordingly. Compared to the wild type (WT) Arabidopsis plants, the transgenic plants with overexpression of JrVHAG1 (G2, G6, and G9) exhibited increased seed germination rate, biomass accumulation, proline content, and activities of superoxide dismutase (SOD) and peroxidase (POD) under ABA, CdCl2, and ABA+CdCl2 treatments. In contrast, the reactive oxygen species (ROS) staining, malondialdehyde (MDA) content, hydrogen dioxide (H2O2) content, as well as electrolyte leakage (EL) rates of transgenic seedlings were all lower than those of WT exposed to ABA, CdCl2 and ABA+CdCl2 stresses. Furthermore, a 1200 bp promoter fragment of JrVHAG1 was isolated by analyzing the genome of J. regia, in which the cis-elements were identified. This JrVHAG1 promoter fragment showed expression activity that was enhanced significantly when subjected to the above treatments. Yeast one-hybrid assay and transient expression analysis demonstrated that JrMYB2 specifically bound to the MYBCORE motif and shared similar expression patterns with JrVHAG1 under ABA, CdCl2 and ABA+CdCl2 stress conditions. CONCLUSIONS Our results suggested that the JrVHAG1 gene functions as a CdCl2 stress response regulator by participating in ABA-signal pathway and MYB transcription regulation network. JrVHAG1 gene is a useful candidate gene for heavy metal stress tolerance in plant molecular breeding.
Collapse
Affiliation(s)
- Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, Changsha, Hunan Province 410004 China
- School of Material and Chemical Engineering, Hunan City University, 518 Yingbin Road, Yiyang, Hunan Province 413000 China
| | - Yu Ge
- College of Forestry, Hubei University for Nationalities, 39 Xueyuan Road, Enshi, Hubei 445000 China
| | - Wan Zhang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, Changsha, Hunan Province 410004 China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, Changsha, Hunan Province 410004 China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
7
|
Yang X, Gong P, Li K, Huang F, Cheng F, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2761-76. [PMID: 26994476 PMCID: PMC4861022 DOI: 10.1093/jxb/erw109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Leaf senescence is a programmed developmental process orchestrated by many factors, but its molecular regulation is not yet fully understood. In this study, a novel Oryza sativa premature leaf senescence mutant (ospls1) was examined. Despite normal development in early seedlings, the ospls1 mutant leaves displayed lesion-mimics and early senescence, and a high transpiration rate after tillering. The mutant also showed seed dormancy attributable to physical (defect of micropyle structure) and physiological (abscisic acid sensitivity) factors. Using a map-based cloning approach, we determined that a cytosine deletion in the OsPLS1 gene encoding vacuolar H(+)-ATPase subunit A1 (VHA-A1) underlies the phenotypic abnormalities in the ospls1 mutant. The OsPSL1/VHA-A1 transcript levels progressively declined with the age-dependent leaf senescence in both the ospls1 mutant and its wild type. The significant decrease in both OsPSL1/VHA-A1 gene expression and VHA enzyme activity in the ospls1 mutant strongly suggests a negative regulatory role for the normal OsPLS1/VHA-A1 gene in the onset of rice leaf senescence. The ospls1 mutant featured higher salicylic acid (SA) levels and reactive oxygen species (ROS) accumulation, and activation of signal transduction by up-regulation of WRKY genes in leaves. Consistent with this, the ospls1 mutant exhibited hypersensitivity to exogenous SA and/or H2O2 Collectively, these results indicated that the OsPSL1/VAH-A1 mutation played a causal role in premature leaf senescence through a combination of ROS and SA signals. To conclude, OsPLS1 is implicated in leaf senescence and seed dormancy in rice.
Collapse
Affiliation(s)
- Xi Yang
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Pan Gong
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kunyu Li
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
8
|
Yang G, Wang C, Wang Y, Guo Y, Zhao Y, Yang C, Gao C. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Sci Rep 2016; 6:18752. [PMID: 26744182 PMCID: PMC4705465 DOI: 10.1038/srep18752] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 01/03/2023] Open
Abstract
As one of the most toxic heavy metals in the environment, cadmium (Cd) poses a severe threat to plant growth. We previously reported that overexpression of the Tamarix hispida V-ATPase c subunit (ThVHAc1) improved the Cd tolerance of Saccharomyces cerevisiae. In the current study, we further explored the Cd tolerance conferred by ThVHAc1 in Arabidopsis and T. hispida. ThVHAc1 transgenic Arabidopsis had higher seed germination, biomass, and chlorophyll content under CdCl2 treatment. In Cd-stressed plants, overexpression of ThVHAc1 significantly improved V-ATPase activity and affected the expression of other V-ATPase subunit-encoding genes. Intriguingly, the lower level of ROS accumulation in ThVHAc1-overexpressing lines under CdCl2 treatment demonstrated that ThVHAc1 may modulate Cd stress tolerance by regulating ROS homeostasis. Transient expression of ThVHAc1 in T. hispida further confirmed these findings. Furthermore, promoter analysis and yeast one-hybrid assay revealed that the transcription factor ThWRKY7 can specifically bind to the WRKY cis-element in the ThVHAc1 promoter. ThWRKY7 exhibited similar expression patterns as ThVHAc1 under CdCl2 treatment and improved Cd tolerance, suggesting that ThWRKY7 may be an upstream regulatory gene of ThVHAc1. Therefore, our results show that the combination of ThVHAc1 and its upstream regulator could be used to improve Cd stress tolerance in woody plants.
Collapse
Affiliation(s)
- Guiyan Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucong Guo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yulin Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
9
|
Zhou A, Bu Y, Takano T, Zhang X, Liu S. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:271-83. [PMID: 25917395 PMCID: PMC11388952 DOI: 10.1111/pbi.12381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
In plant cells, the vacuolar-type H(+)-ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking.
Collapse
Affiliation(s)
- Aimin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| |
Collapse
|
10
|
Kabała K, Janicka-Russak M, Reda M, Migocka M. Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress. PHYSIOLOGIA PLANTARUM 2014; 150:32-45. [PMID: 23718549 DOI: 10.1111/ppl.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 05/11/2023]
Abstract
Two electrogenic proton pumps, vacuolar H(+) transporting ATPase (V-ATPase, EC 3.6.3.14) and vacuolar H(+) transporting inorganic pyrophosphatase (V-PPase, EC 3.6.1.1), co-exist in the vacuolar membrane of plant cells. In this work, all CsVHA and CsVHP genes encoding V-ATPase and V-PPase, respectively, were identified in the cucumber genome. Among them, three CsVHA-c genes for V-ATPase subunit c and two CsVHP1 genes for type I V-PPase were analyzed in detail. Individual isogenes were differentially regulated in plant tissues and during plant development as well as under changing environmental conditions. CsVHA-c1 and CsVHA-c2 showed similar tissue-specific expression patterns with the highest levels in stamens and old leaves. CsVHP1;1 was predominantly expressed in roots and female flowers. In contrast, both CsVHA-c3 and CsVHP1;2 remained in a rather constant ratio in all examined cucumber organs. Under heavy metal stress, the transcript amount of CsVHA-c1 and CsVHP1;1 showed a pronounced stress-dependent increase after copper and nickel treatment. CsVHA-c3 was upregulated by nickel only whereas CsVHA-c2 was induced by all metals with the most visible effect of copper. Additionally, CsVHP1;2 showed a tendency to be upregulated by copper and zinc. We propose that CsVHA-c1, CsVHA-c2 and CsVHP1;1 are essential elements of mechanisms involved in adaptation of cucumber plants to copper toxicity.
Collapse
Affiliation(s)
- Katarzyna Kabała
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, 50-328 , Wrocław, Poland
| | | | | | | |
Collapse
|
11
|
Dong QL, Wang CR, Liu DD, Hu DG, Fang MJ, You CX, Yao YX, Hao YJ. MdVHA-A encodes an apple subunit A of vacuolar H(+)-ATPase and enhances drought tolerance in transgenic tobacco seedlings. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:601-9. [PMID: 23399407 DOI: 10.1016/j.jplph.2012.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 05/04/2023]
Abstract
Vacuole H(+)-ATPases (VHAs) are plant proton pumps, which play a crucial role in plant growth and stress tolerance. In the present study, we demonstrated that the apple vacuolar H(+)-ATPase subunit A (MdVHA-A) is highly conserved with subunit A of VHA (VHA-A) proteins from other plant species. MdVHA-A was expressed in vegetative and reproductive organs. In apple in vitro shoot cultures, expression was induced by polyethylene glycol (PEG)-mediated osmotic stress. We further verified that over-expression of MdVHA-A conferred transgenic tobacco seedlings with enhanced vacuole H+-ATPase (VHA) activity and improved drought tolerance. The enhanced PEG-mimic drought response of transgenic tobacco seedlings was related to an extended lateral root system (dependent on auxin translocation) and more efficient osmotic adjustment. Our results indicate that MdVHA-A is a candidate gene for improving drought tolerance in plants.
Collapse
Affiliation(s)
- Qing-Long Dong
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:453-64. [PMID: 22284568 DOI: 10.1111/j.1467-7652.2012.00678.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1-expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and preparatory physiological responses. In addition to the increased accumulation of its own transcript, SaVHAc1 expression led to increased accumulation of messages of other native genes in rice, especially those involved in cation transport and ABA signalling. The SaVHAc1-expressing plants maintained higher relative water content under salt stress through early stage closure of the leaf stoma and reduced stomata density. The increased K(+) /Na(+) ratio and other cations established an ion homoeostasis in SaVHAc1-expressing plants to protect the cytosol from toxic Na(+) and thereby maintained higher chlorophyll retention than the WT plants under salt stress. Besides, the role of SaVHAc1 in cell wall expansion and maintenance of net photosynthesis was implicated by comparatively higher root and leaf growth and yield of rice expressing SaVHAc1 over WT under salt stress. The study indicated that the genes contributing toward natural variation in grass halophytes could be effectively manipulated for improving salt tolerance of field crops within related taxa.
Collapse
Affiliation(s)
- Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Mol Biol Rep 2010; 38:957-63. [DOI: 10.1007/s11033-010-0189-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|
14
|
Hanitzsch M, Schnitzer D, Seidel T, Golldack D, Dietz KJ. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-a, VHA-E and VHA-G inArabidopsis thaliana. Mol Membr Biol 2009; 24:507-18. [PMID: 17710654 DOI: 10.1080/09687680701447393] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of isogenes encoding V-ATPase subunits seems to be a characteristic for plants. Twenty-eight genes encode for the 13 different subunits in Arabidopsis thaliana, 23 genes each are known in tomato (Solanum lycopersicum) and can be identified in rice (Oryza sativa), respectively. In Arabidopsis the four subunits VHA-B, -E, -G and -a are encoded by three isogenes each. The transcript levels of these subunits were analysed by in silico evaluation of transcript pattern derived from the NASC-array database and exemplarily confirmed by semiquantitative RT-PCR. A tissue specifity was observed for the isoforms of VHA-E and VHA-G, whereas expression of VHA-a isoforms appeared independent of the tissue. Inflicting environmental stresses upon plants resulted in differentiated expression patterns of VHA-isoforms. Whereas salinity had minor effect on the expression of V-ATPase genes in A. thaliana, heat and drought stress led to alterations in transcript amount and preference of isoforms. Correlation analysis identified two clusters of isoforms, which were co-regulated on the transcript level.
Collapse
Affiliation(s)
- Miriam Hanitzsch
- Plant Biochemistry and Physiology, Faculty of Biology-W5, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
15
|
Tuteja N, Sopory SK. Chemical signaling under abiotic stress environment in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:525-36. [PMID: 19513246 PMCID: PMC2634487 DOI: 10.4161/psb.3.8.6186] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/24/2008] [Indexed: 05/18/2023]
Abstract
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca(2+)), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca(2+) is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca(2+) sensors detect the Ca(2+) signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.
Collapse
Affiliation(s)
- Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi, India
| | | |
Collapse
|
16
|
XIAO ZY. Overexpression of cotton, vacuolar H +-ATPase subunit C promotes cell elongation and regulates stress tolerance in fission yeast. YI CHUAN = HEREDITAS 2008; 30:495-500. [DOI: 10.3724/sp.j.1005.2008.00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 2006; 277:189-98. [PMID: 17089163 DOI: 10.1007/s00438-006-0183-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 10/14/2006] [Indexed: 10/24/2022]
Abstract
Abiotic stress-mediated gene expression is regulated via different transcription factors of which drought-responsive element-binding (DREB) proteins play an important role. There are two types of DREBs. Presently, the function of DREB1 type protein is well studied; however, much less information is available for DREB2. In this study, a cDNA with an open reading frame of 332 amino acids, encoding the transcription activation factor DREB2A, was cloned from Pennisetum glaucum, a stress tolerant food grain crop. Phylogenetic tree revealed that PgDREB2A is more close to DREBs isolated from monocots, though it forms an independent branch. The PgDREB2A transcript was up-regulated in response to drought within 1 h of the treatment, whereas the induction was delayed in response to cold and salinity stress. However, during cold stress, the transcript was induced more as compared to drought and salinity. The recombinant PgDREB2A protein having a molecular mass of 36.6 kDa was purified using Ni-NTA affinity chromatography. Gel mobility shift assays using the purified protein and two cis elements of rd29A (responsive to dehydration 29A) gene promoter of Arabidopsis revealed that PgDREB2A binds to drought-responsive element (DRE) ACCGAC and not to GCCGAC. PgDREB2A is a phosphoprotein, which has not been reported earlier. The phosphorylation of PgDREB2A in vitro by P. glaucum total cell extract occurred at threonine residue(s). The phosphorylated PgDREB2A did not bind to the DREs. The present data indicate that stress induction of genes could occur via post-translational modification by phosphorylation of DREB2A.
Collapse
Affiliation(s)
- Parinita Agarwal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110 067, India
| | | | | | | | | |
Collapse
|
18
|
Tyagi W, Singla-Pareek S, Nair S, Reddy MK, Sopory SK. A novel isoform of ATPase c subunit from pearl millet that is differentially regulated in response to salinity and calcium. PLANT CELL REPORTS 2006; 25:156-63. [PMID: 16404601 DOI: 10.1007/s00299-005-0055-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/01/2005] [Accepted: 08/20/2005] [Indexed: 05/06/2023]
Abstract
Vacuolar ATPases help in maintaining the pH of the vacuoles and thereby play a crucial role in the functioning of vacuolar sodium-proton antiporter. Though the various subunits that make V(1) and V(0) sector have been reported in plants their regulation is not understood completely. We have cloned three different isoforms of vacuolar ATPase subunit c (VHA-c) from Pennisetum glaucum with homologies among themselves varying from 38% to approximately 73% at the nucleic acid level. Using real-time PCR approach we have shown that the three isoforms are regulated in a tissue-specific manner under salinity stress. While isoform III is constitutively expressed in roots and shoots and does not respond to stress, isoform I is upregulated under stress. Isoform II is expressed mainly in roots; however, under salinity stress its expression is downregulated in roots and upregulated in shoots. Tissue specific expression under salinity stress of isoform II was also seen after exogenous application of calcium. This study for the first time shows the presence of three isoforms of PgVHA-c and their differential regulation during plant development, and also under abiotic stress.
Collapse
Affiliation(s)
- Wricha Tyagi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|