1
|
Gould SB, Magiera J, García García C, Raval PK. Reliability of plastid and mitochondrial localisation prediction declines rapidly with the evolutionary distance to the training set increasing. PLoS Comput Biol 2024; 20:e1012575. [PMID: 39527633 PMCID: PMC11581415 DOI: 10.1371/journal.pcbi.1012575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondria and plastids import thousands of proteins. Their experimental localisation remains a frequent task, but can be resource-intensive and sometimes impossible. Hence, hundreds of studies make use of algorithms that predict a localisation based on a protein's sequence. Their reliability across evolutionary diverse species is unknown. Here, we evaluate the performance of common algorithms (TargetP, Localizer and WoLFPSORT) for four photosynthetic eukaryotes (Arabidopsis thaliana, Zea mays, Physcomitrium patens, and Chlamydomonas reinhardtii) for which experimental plastid and mitochondrial proteome data is available, and 171 eukaryotes using orthology inferences. The match between predictions and experimental data ranges from 75% to as low as 2%. Results worsen as the evolutionary distance between training and query species increases, especially for plant mitochondria for which performance borders on random sampling. Specificity, sensitivity and precision analyses highlight cross-organelle errors and uncover the evolutionary divergence of organelles as the main driver of current performance issues. The results encourage to train the next generation of neural networks on an evolutionary more diverse set of organelle proteins for optimizing performance and reliability.
Collapse
Affiliation(s)
- Sven B. Gould
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Jonas Magiera
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Carolina García García
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Parth K. Raval
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Kuntz M, Dimnet L, Pullara S, Moyet L, Rolland N. The Main Functions of Plastids. Methods Mol Biol 2024; 2776:89-106. [PMID: 38502499 DOI: 10.1007/978-1-0716-3726-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| | - Laura Dimnet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Sara Pullara
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| |
Collapse
|
3
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
5
|
Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 2021; 41:669-691. [PMID: 33525946 DOI: 10.1080/07388551.2021.1874280] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drought stress is one of the most adverse abiotic stresses that hinder plants' growth and productivity, threatening sustainable crop production. It impairs normal growth, disturbs water relations and reduces water-use efficiency in plants. However, plants have evolved many physiological and biochemical responses at the cellular and organism levels, in order to cope with drought stress. Photosynthesis, which is considered one of the most crucial biological processes for survival of plants, is greatly affected by drought stress. A gradual decrease in CO2 assimilation rates, reduced leaf size, stem extension and root proliferation under drought stress, disturbs plant water relations, reducing water-use efficiency, disrupts photosynthetic pigments and reduces the gas exchange affecting the plants adversely. In such conditions, the chloroplast, organelle responsible for photosynthesis, is found to counteract the ill effects of drought stress by its critical involvement as a sensor of changes occurring in the environment, as the first process that drought stress affects is photosynthesis. Beside photosynthesis, chloroplasts carry out primary metabolic functions such as the biosynthesis of starch, amino acids, lipids, and tetrapyroles, and play a central role in the assimilation of nitrogen and sulfur. Because the chloroplasts are central organelles where the photosynthetic reactions take place, modifications in their physiology and protein pools are expected in response to the drought stress-induced variations in leaf gas exchanges and the accumulation of ROS. Higher expression levels of various transcription factors and other proteins including heat shock-related protein, LEA proteins seem to be regulating the heat tolerance mechanisms. However, several aspects of plastid alterations, following a water deficit environment are still poorly characterized. Since plants adapt to various stress tolerance mechanisms to respond to drought stress, understanding mechanisms of drought stress tolerance in plants will lead toward the development of drought tolerance in crop plants. This review throws light on major droughts stress-induced molecular/physiological mechanisms in response to severe and prolonged drought stress and addresses the molecular response of chloroplasts in common vegetable crops. It further highlights research gaps, identifying unexplored domains and suggesting recommendations for future investigations.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Bhattacharya O, Ortiz I, Walling LL. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. PLANT METHODS 2020; 16:131. [PMID: 32983250 PMCID: PMC7513546 DOI: 10.1186/s13007-020-00667-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. RESULTS With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. CONCLUSIONS Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Irma Ortiz
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
7
|
Ambrosino L, Colantuono C, Diretto G, Fiore A, Chiusano ML. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. PLANTS 2020; 9:plants9050591. [PMID: 32384671 PMCID: PMC7285221 DOI: 10.3390/plants9050591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
- Correspondence: ; Tel.: +39-081-253-9492
| |
Collapse
|
8
|
Lande NV, Barua P, Gayen D, Kumar S, Chakraborty S, Chakraborty N. Proteomic dissection of the chloroplast: Moving beyond photosynthesis. J Proteomics 2019; 212:103542. [PMID: 31704367 DOI: 10.1016/j.jprot.2019.103542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023]
Abstract
Chloroplast, the photosynthetic machinery, converts photoenergy to ATP and NADPH, which powers the production of carbohydrates from atmospheric CO2 and H2O. It also serves as a major production site of multivariate pro-defense molecules, and coordinate with other organelles for cell defense. Chloroplast harbors 30-50% of total cellular proteins, out of which 80% are membrane residents and are difficult to solubilize. While proteome profiling has illuminated vast areas of biological protein space, a great deal of effort must be invested to understand the proteomic landscape of the chloroplast, which plays central role in photosynthesis, energy metabolism and stress-adaptation. Therefore, characterization of chloroplast proteome would not only provide the foundation for future investigation of expression and function of chloroplast proteins, but would open up new avenues for modulation of plant productivity through synchronizing chloroplastic key components. In this review, we summarize the progress that has been made to build new understanding of the chloroplast proteome and implications of chloroplast dynamicsing generate metabolic energy and modulating stress adaptation.
Collapse
Affiliation(s)
- Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
9
|
Salvi D, Bournais S, Moyet L, Bouchnak I, Kuntz M, Bruley C, Rolland N. AT_CHLORO: The First Step When Looking for Information About Subplastidial Localization of Proteins. Methods Mol Biol 2019; 1829:395-406. [PMID: 29987736 DOI: 10.1007/978-1-4939-8654-5_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Plastids contain several key subcompartments. The two limiting envelope membranes (inner and outer membrane of the plastid envelope with an intermembrane space between), an aqueous phase (stroma), and an internal membrane system terms (thylakoids) formed of flat compressed vesicles (grana) and more light structures (lamellae). The thylakoid vesicles delimit another discrete soluble compartment, the thylakoid lumen. AT_CHLORO ( http://at-chloro.prabi.fr/at_chloro/ ) is a unique database supplying information about the subplastidial localization of proteins. It was created from simultaneous proteomic analyses targeted to the main subcompartments of the chloroplast from Arabidopsis thaliana (i.e., envelope, stroma, thylakoid) and to the two subdomains of thylakoid membranes (i.e., grana and stroma lamellae). AT_CHLORO assembles several complementary information (MS-based experimental data, curated functional annotations and subplastidial localization, links to other public databases and references) which give a comprehensive overview of the current knowledge about the subplastidial localization and the function of chloroplast proteins, with a specific attention given to chloroplast envelope proteins.
Collapse
Affiliation(s)
- Daniel Salvi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Sylvain Bournais
- Laboratoire de Biologie à Grande Echelle, Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Christophe Bruley
- Laboratoire de Biologie à Grande Echelle, Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France.
| |
Collapse
|
10
|
Abstract
Plastids are semiautonomous organelles like mitochondria, and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France.
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| |
Collapse
|
11
|
Fristedt R. Chloroplast function revealed through analysis of GreenCut2 genes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2111-2120. [PMID: 28369575 DOI: 10.1093/jxb/erx082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chloroplasts are the green plastids responsible for light-powered photosynthetic reactions and carbon assimilation in the plant cell. Our knowledge of chloroplast functions is constantly increasing and we now know this plastid is predicted to house around 3000 proteins. However, even with generous estimates, we do not know the function of more than 10-15% of these proteins. The next frontier in chloroplast research is to identify and characterize the function of the whole chloroplast proteome, a challenging task due to the inherent complexity a proteome possesses. A logical starting point is to identify and study proteins that have been determined experimentally to be localized in the chloroplast, conserved only among the photosynthetic lineage. These are the proteins with the most probable and important roles in chloroplast function. This review gives an introduction to the GreenCut2, a collection of proteins present only in photosynthetic organisms. By using recent large scale proteomics data, this cut was narrowed to include only those proteins experimentally verified to be localized in the chloroplast, and more specifically to the photosynthetic thylakoid membrane. By using highly informative bioinformatic approaches, the theoretical functional prediction for several of these uncharacterized GreenCut2 proteins is discussed.
Collapse
Affiliation(s)
- Rikard Fristedt
- Biophysics of Photosynthesis, Faculty of Sciences, VU University Amsterdam,Amsterdam,the Netherlands
| |
Collapse
|
12
|
Abstract
In sessile plants, the dynamic protein secretion pathways orchestrate the cellular responses to internal signals and external environmental changes in almost every aspect of plant developmental events. The cohort of plant proteins, secreted from the plant cells into the extracellular matrix, has been annotated as plant secretome. Therefore, the identification and characterization of secreted proteins will discover novel secretory potentials and establish the functional connection between cellular protein secretion and plant physiological phenomena. Noteworthy, an increasing number of bioinformatics databases and tools have been developed for computational predictions on either secreted proteins or secretory pathways. This chapter summarizes current accessible databases and tools for protein secretion analysis in Arabidopsis thaliana and higher plants, and provides feasible methodologies for bioinformatics analysis of secretome studies for the plant research community.
Collapse
Affiliation(s)
- Liyuan Chen
- RGC-AoE Centre for Organelle Biogenesis and Function, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
13
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
14
|
Shah M, Soares EL, Lima MLB, Pinheiro CB, Soares AA, Domont GB, Nogueira FCS, Campos FAP. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. J Proteomics 2016; 143:346-352. [PMID: 26924298 DOI: 10.1016/j.jprot.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/17/2023]
Abstract
UNLABELLED The inner integument of Jatropha curcas seeds is a non-photosynthetic tissue that acts primarily as a conduit for the delivery of nutrients to the embryo and endosperm. In this study we performed a histological and transmission electron microscopy analysis of the inner integument in stages prior to fertilization to 25days after pollination, to establish the structural changes associated with the plastid to gerontoplast transition. This study showed that plastids are subjected to progressive changes, which include the dismantling of the internal membrane system, matrix degradation and the formation of stromule-derived vesicles. A proteome analysis of gerontoplasts isolated from the inner integument at 25days after pollination, resulted in the identification of 1923 proteins, which were involved in a myriad of metabolic functions, such as synthesis of amino acids and fatty acids. Among the identified proteins, were also a number of hydrolases (peptidases, lipases and carbohydrases), which presumably are involved in the ordered dismantling of this organelle to provide additional sources of nutrients for the growing embryo and endosperm. The dataset we provide here may provide a foundation for the study of the proteome changes associated with the plastid to gerontoplast transition in non-photosynthetic tissues. SIGNIFICANCE We describe ultrastructural features of gerontoplasts isolated from the inner integument of developing seeds of Jatropha curcas, together with a deep proteome analysis of these gerontoplasts. This article explores a new aspect of the biology of plastids, namely the ultrastructural and proteome changes associated with the transition plastid to gerontoplast in a non-photosynthetic tissue.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Emanoella L Soares
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Magda L B Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Camila B Pinheiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Gilberto B Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil.
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil.
| |
Collapse
|
15
|
Suzuki M, Takahashi S, Kondo T, Dohra H, Ito Y, Kiriiwa Y, Hayashi M, Kamiya S, Kato M, Fujiwara M, Fukao Y, Kobayashi M, Nagata N, Motohashi R. Plastid Proteomic Analysis in Tomato Fruit Development. PLoS One 2015; 10:e0137266. [PMID: 26371478 PMCID: PMC4570674 DOI: 10.1371/journal.pone.0137266] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/15/2015] [Indexed: 02/01/2023] Open
Abstract
To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein) and HrBP1 (harpin binding protein-1) in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin) in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.
Collapse
Affiliation(s)
- Miho Suzuki
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Sachiko Takahashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Takanori Kondo
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Yumihiko Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Yoshikazu Kiriiwa
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Marina Hayashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Shiori Kamiya
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Masaya Kato
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Masayuki Fujiwara
- The Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma city, Nara, Japan
| | - Yoichiro Fukao
- The Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma city, Nara, Japan
| | - Megumi Kobayashi
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo, Japan
| | - Noriko Nagata
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo, Japan
| | - Reiko Motohashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| |
Collapse
|
16
|
Yin L, Vener AV, Spetea C. The membrane proteome of stroma thylakoids from Arabidopsis thaliana studied by successive in-solution and in-gel digestion. PHYSIOLOGIA PLANTARUM 2015; 154:433-446. [PMID: 25402197 DOI: 10.1111/ppl.12308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
From individual localization and large-scale proteomic studies, we know that stroma-exposed thylakoid membranes harbor part of the machinery performing the light-dependent photosynthetic reactions. The minor components of the stroma thylakoid proteome, regulating and maintaining the photosynthetic machinery, are in the process of being unraveled. In this study, we developed in-solution and in-gel proteolytic digestion methods, and used them to identify minor membrane proteins, e.g. transporters, in stroma thylakoids prepared from Arabidopsis thaliana (L.) Heynh Columbia-0 leaves. In-solution digestion with chymotrypsin yielded the largest number of peptides, but in combination with methanol extraction resulted in identification of the largest number of membrane proteins. Although less efficient in extracting peptides, in-gel digestion with trypsin and chymotrypsin led to identification of additional proteins. We identified a total of 58 proteins including 44 membrane proteins. Almost half are known thylakoid proteins with roles in photosynthetic light reactions, proteolysis and import. The other half, including many transporters, are not known as chloroplast proteins, because they have been either curated (manually assigned) to other cellular compartments or not curated at all at the plastid protein databases. Transporters include ATP-binding cassette (ABC) proteins, transporters for K(+) and other cations. Other proteins either have a role in processes probably linked to photosynthesis, namely translation, metabolism, stress and signaling or are contaminants. Our results indicate that all these proteins are present in stroma thylakoids; however, individual studies are required to validate their location and putative roles. This study also provides strategies complementary to traditional methods for identification of membrane proteins from other cellular compartments.
Collapse
Affiliation(s)
- Lan Yin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Alexander V Vener
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| |
Collapse
|
17
|
Huerta-Ocampo JA, Barrera-Pacheco A, Mendoza-Hernández CS, Espitia-Rangel E, Mock HP, Barba de la Rosa AP. Salt stress-induced alterations in the root proteome of Amaranthus cruentus L. J Proteome Res 2014; 13:3607-27. [PMID: 24942474 DOI: 10.1021/pr500153m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salt stress is one of the major factors limiting crop productivity worldwide. Amaranth is a highly nutritious pseudocereal with remarkable nutraceutical properties; it is also a stress-tolerant plant, making it an alternative crop for sustainable food production in semiarid conditions. A two-dimensional electrophoresis gel coupled with a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) approach was applied in order to analyze the changes in amaranth root protein accumulation in plants subjected to salt stress under hydroponic conditions during the osmotic phase (1 h), after recovery (24 h), and during the ionic phase of salt stress (168 h). A total of 101 protein spots were differentially accumulated in response to stress, in which 77 were successfully identified by LC-MS/MS and a database search against public and amaranth transcriptome databases. The resulting proteins were grouped into different categories of biological processes according to Gene Ontology. The identification of several protein isoforms with a change in pI and/or molecular weight reveals the importance of the salt-stress-induced posttranslational modifications in stress tolerance. Interestingly stress-responsive proteins unique to amaranth, for example, Ah24, were identified. Amaranth is a stress-tolerant alternative crop for sustainable food production, and the understanding of amaranth's stress tolerance mechanisms will provide valuable input to improve stress tolerance of other crop plants.
Collapse
Affiliation(s)
- José A Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. , Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P., México
| | | | | | | | | | | |
Collapse
|
18
|
Wittenberg G, Levitan A, Klein T, Dangoor I, Keren N, Danon A. Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1003-13. [PMID: 24684167 DOI: 10.1111/tpj.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 05/09/2023]
Abstract
A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild-type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non-photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild-type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light-regulated manner.
Collapse
Affiliation(s)
- Gal Wittenberg
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Tomizioli M, Lazar C, Brugière S, Burger T, Salvi D, Gatto L, Moyet L, Breckels LM, Hesse AM, Lilley KS, Seigneurin-Berny D, Finazzi G, Rolland N, Ferro M. Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 2014; 13:2147-67. [PMID: 24872594 DOI: 10.1074/mcp.m114.040923] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Photosynthesis has shaped atmospheric and ocean chemistries and probably changed the climate as well, as oxygen is released from water as part of the photosynthetic process. In photosynthetic eukaryotes, this process occurs in the chloroplast, an organelle containing the most abundant biological membrane, the thylakoids. The thylakoids of plants and some green algae are structurally inhomogeneous, consisting of two main domains: the grana, which are piles of membranes gathered by stacking forces, and the stroma-lamellae, which are unstacked thylakoids connecting the grana. The major photosynthetic complexes are unevenly distributed within these compartments because of steric and electrostatic constraints. Although proteomic analysis of thylakoids has been instrumental to define its protein components, no extensive proteomic study of subthylakoid localization of proteins in the BBY (grana) and the stroma-lamellae fractions has been achieved so far. To fill this gap, we performed a complete survey of the protein composition of these thylakoid subcompartments using thylakoid membrane fractionations. We employed semiquantitative proteomics coupled with a data analysis pipeline and manual annotation to differentiate genuine BBY and stroma-lamellae proteins from possible contaminants. About 300 thylakoid (or potentially thylakoid) proteins were shown to be enriched in either the BBY or the stroma-lamellae fractions. Overall, present findings corroborate previous observations obtained for photosynthetic proteins that used nonproteomic approaches. The originality of the present proteomic relies in the identification of photosynthetic proteins whose differential distribution in the thylakoid subcompartments might explain already observed phenomenon such as LHCII docking. Besides, from the present localization results we can suggest new molecular actors for photosynthesis-linked activities. For instance, most PsbP-like subunits being differently localized in stroma-lamellae, these proteins could be linked to the PSI-NDH complex in the context of cyclic electron flow around PSI. In addition, we could identify about a hundred new likely minor thylakoid (or chloroplast) proteins, some of them being potential regulators of the chloroplast physiology.
Collapse
Affiliation(s)
- Martino Tomizioli
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Cosmin Lazar
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Sabine Brugière
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Thomas Burger
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France; §§CNRS, FR3425, F-38054 Grenoble, France
| | - Daniel Salvi
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Laurent Gatto
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Lucas Moyet
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Lisa M Breckels
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Anne-Marie Hesse
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Kathryn S Lilley
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Daphné Seigneurin-Berny
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Giovanni Finazzi
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Norbert Rolland
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France;
| | - Myriam Ferro
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France;
| |
Collapse
|
20
|
Chen HB, Lien JY, Hwang CC, Chen YN. Long-lived quantum coherence and non-Markovianity of photosynthetic complexes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042147. [PMID: 24827232 DOI: 10.1103/physreve.89.042147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Indexed: 06/03/2023]
Abstract
Long-lived quantum coherence in photosynthetic pigment-protein complexes has recently been reported at physiological temperature. It has been pointed out that the discrete vibrational modes may be responsible for the long-lived coherence. Here, we propose an analytical non-Markovian model to explain the origin of the long-lived coherence in pigment-protein complexes. We show that the memory effect of the discrete vibrational modes produces a long oscillating tail in the coherence. We further use the recently proposed measure to quantify the non-Markovianity of the system and find out the prolonged coherence is highly correlated to it.
Collapse
Affiliation(s)
- Hong-Bin Chen
- Department of Physics and National Center for Theoretical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jiun-Yi Lien
- Department of Physics and National Center for Theoretical Sciences, National Cheng Kung University, Tainan 701, Taiwan and Department of Engineering Science and Supercomputing Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Chuan Hwang
- Department of Engineering Science and Supercomputing Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Yueh-Nan Chen
- Department of Physics and National Center for Theoretical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
21
|
Sakata K, Komatsu S. Plant proteomics: from genome sequencing to proteome databases and repositories. Methods Mol Biol 2014; 1072:29-42. [PMID: 24136512 DOI: 10.1007/978-1-62703-631-3_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Proteomic approaches are useful for the identification of functional proteins. These have been enhanced not only by the development of proteomic techniques but also in concert with genome sequencing. In this chapter, 30 databases and Web sites relating to plant proteomics are reviewed and recent technologies relating to data collection and annotation are surveyed.
Collapse
|
22
|
Kaundal R, Sahu SS, Verma R, Weirick T. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning. BMC Bioinformatics 2013; 14 Suppl 14:S7. [PMID: 24266945 PMCID: PMC3851450 DOI: 10.1186/1471-2105-14-s14-s7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. RESULTS In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, N(terminal)-Center-C(terminal) composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction accuracy for distinguishing plastid vs. non-plastids and only 20% in classifying various plastid-types, indicating the need and importance of machine learning algorithms. CONCLUSION The current work is a first attempt to develop a methodology for classifying various plastid-type proteins. The prediction modules have also been made available as a web tool, PLpred available at http://bioinfo.okstate.edu/PLpred/ for real time identification/characterization. We believe this tool will be very useful in the functional annotation of various genomes.
Collapse
|
23
|
Pinheiro CB, Shah M, Soares EL, Nogueira FCS, Carvalho PC, Junqueira M, Araújo GDT, Soares AA, Domont GB, Campos FAP. Proteome analysis of plastids from developing seeds of Jatropha curcas L. J Proteome Res 2013; 12:5137-45. [PMID: 24032481 DOI: 10.1021/pr400515b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we performed a proteomic analysis of plastids isolated from the endosperm of developing Jatropha curcas seeds that were in the initial stage of deposition of protein and lipid reserves. Proteins extracted from the plastids were digested with trypsin, and the peptides were applied to an EASY-nano LC system coupled inline to an ESI-LTQ-Orbitrap Velos mass spectrometer, and this led to the identification of 1103 proteins representing 804 protein groups, of which 923 proteins were considered as true identifications, and this considerably expands the repertoire of J. curcas proteins identified so far. Of the identified proteins, only five are encoded in the plastid genome, and none of them are involved in photosynthesis, evidentiating the nonphotosynthetic nature of the isolated plastids. Homologues for 824 out of 923 identified proteins were present in PPDB, SUBA, or PlProt databases while homologues for 13 proteins were not found in any of the three plastid proteins databases but were marked as plastidial by at least one of the three prediction programs used. Functional classification showed that proteins belonging to amino acids metabolism comprise the main functional class, followed by carbohydrate, energy, and lipid metabolisms. The small and large subunits of Rubisco were identified, and their presence in the plastids is considered to be an adaptive feature counterbalancing for the loss of one-third of the carbon as CO2 as a result of the conversion of carbohydrate to oil through glycolysis. While several enzymes involved in the biosynthesis of several precursors of diterpenoids were identified, we were unable to identify any terpene synthase/cyclase, which suggests that the plastids isolated from the endosperm of developing seeds do not synthesize phorbol esters. In conclusion, our study provides insights into the major biosynthetic pathways and certain unique features of the plastids from the endosperm of developing seeds at the whole proteome level.
Collapse
Affiliation(s)
- Camila B Pinheiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará , Bld. 907, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Behrens C, Blume C, Senkler M, Eubel H, Peterhänsel C, Braun HP. The 'protein complex proteome' of chloroplasts in Arabidopsis thaliana. J Proteomics 2013; 91:73-83. [PMID: 23851315 DOI: 10.1016/j.jprot.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/19/2013] [Accepted: 07/02/2013] [Indexed: 01/30/2023]
Abstract
UNLABELLED Here, a first GelMap of the chloroplast "protein complex proteome" of Arabidopsis thaliana is presented. The GelMap software tool allows assigning multiple proteins to gel spots, thereby taking advantage of the high sensitivity of state-of-the-art mass spectrometry systems. Furthermore, the software allows functional annotation of all identified proteins. If applied to a 2D blue native (BN)/SDS gel, GelMap can selectively display protein complexes of low abundance. For the chloroplast GelMap, highly purified organelles were separated by 2D BN/SDS PAGE and spots were automatically detected using Delta 2D software. Within 287 spots, a total of 1841 proteins were identified (on average 6.4 proteins per spot), representing a set of 436 non redundant proteins. Most of these proteins form part of protein complexes. The quality of the map is reflected by its inclusion of a more or less complete set of protein complexes described for chloroplasts in the literature. The GelMap is publically available at www.gelmap.de/arabidopsis-chloro and may be used as a resource for identifying novel protein complexes within any of its functional categories. BIOLOGICAL SIGNIFICANCE The chloroplast GelMap represents a data resource for the definition of protein complexes in the model plant A. thaliana. It should be useful for in depth understanding of chloroplast biochemistry, as illustrated by the discovery of so far unknown protein complexes. The GelMap is publically available at www.gelmap.de/arabidopsis-chloro.
Collapse
Affiliation(s)
- Christof Behrens
- Institute of Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Ciska M, Masuda K, Moreno Díaz de la Espina S. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1553-64. [PMID: 23378381 PMCID: PMC3617829 DOI: 10.1093/jxb/ert020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The nucleoskeleton of plants contains a peripheral lamina (also called plamina) and, even though lamins are absent in plants, their roles are still fulfilled in plant nuclei. One of the most intriguing topics in plant biology concerns the identity of lamin protein analogues in plants. Good candidates to play lamin functions in plants are the members of the NMCP (nuclear matrix constituent protein) family, which exhibit the typical tripartite structure of lamins. This paper describes a bioinformatics analysis and classification of the NMCP family based on phylogenetic relationships, sequence similarity and the distribution of conserved regions in 76 homologues. In addition, NMCP1 in the monocot Allium cepa characterized by its sequence and structure, biochemical properties, and subnuclear distribution and alterations in its expression throughout the root were identified. The results demonstrate that these proteins exhibit many similarities to lamins (structural organization, conserved regions, subnuclear distribution, and solubility) and that they may fulfil the functions of lamins in plants. These findings significantly advance understanding of the structural proteins of the plant lamina and nucleoskeleton and provide a basis for further investigation of the protein networks forming these structures.
Collapse
Affiliation(s)
- Malgorzata Ciska
- Cell and Molecular Biology Department, Centre of Biological Researches, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Kiyoshi Masuda
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Susana Moreno Díaz de la Espina
- Cell and Molecular Biology Department, Centre of Biological Researches, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Manandhar-Shrestha K, Tamot B, Pratt EPS, Saitie S, Bräutigam A, Weber APM, Hoffmann-Benning S. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development. FRONTIERS IN PLANT SCIENCE 2013; 4:65. [PMID: 23543921 PMCID: PMC3610082 DOI: 10.3389/fpls.2013.00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/08/2013] [Indexed: 05/08/2023]
Abstract
As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second "green revolution" will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M) and bundle sheath (BS) chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and particularly across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts. Seventy-four percent have a known or predicted membrane association. Twenty-one membrane proteins were 2-15 times more abundant in BS cells, while 36 of the proteins were more abundant in M chloroplast envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of 13 candidate genes. Chloroplast association for seven proteins was confirmed using YFP/GFP labeling. Gene expression of four putative transporters was examined throughout the leaf and during the greening of leaves. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast development.
Collapse
Affiliation(s)
- K. Manandhar-Shrestha
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - B. Tamot
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - E. P. S. Pratt
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - S. Saitie
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - A. Bräutigam
- Plant Biochemistry, Heinrich-Heine University DüsseldorfDüsseldorf, Germany
| | - A. P. M. Weber
- Plant Biochemistry, Heinrich-Heine University DüsseldorfDüsseldorf, Germany
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
27
|
Saravanan V, Lakshmi P. SCLAP: An Adaptive Boosting Method for Predicting Subchloroplast Localization of Plant Proteins. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:106-15. [DOI: 10.1089/omi.2012.0070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vijayakumar Saravanan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - P.T.V. Lakshmi
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
28
|
Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B, Schorge T, Karas M, Mirus O, Sommer MS, Schleiff E. Defining the core proteome of the chloroplast envelope membranes. FRONTIERS IN PLANT SCIENCE 2013; 4:11. [PMID: 23390424 PMCID: PMC3565376 DOI: 10.3389/fpls.2013.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/15/2013] [Indexed: 05/20/2023]
Abstract
High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided.
Collapse
Affiliation(s)
- Stefan Simm
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | | | - Mohamed Ibrahim
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | | | - Bernd Müller
- Department of Biology I, Ludwig-Maximilians-UniversityMunich, Germany
| | - Tobias Schorge
- Institute of Pharmaceutical Chemistry, Goethe UniversityFrankfurt, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe UniversityFrankfurt, Germany
- Center of Membrane Proteomics, Goethe UniversityFrankfurt, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe UniversityFrankfurt, Germany
| | - Oliver Mirus
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | - Maik S. Sommer
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | - Enrico Schleiff
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
- Center of Membrane Proteomics, Goethe UniversityFrankfurt, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe UniversityFrankfurt, Germany
- *Correspondence: Enrico Schleiff, Center of Membrane Proteomics, Cluster of Excellence ’Macromolecular Complexes’, Institute of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Strasse 9, Frankfurt 60438, Germany. e-mail:
| |
Collapse
|
29
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
30
|
Sucaet Y, Wang Y, Li J, Wurtele ES. MetNet Online: a novel integrated resource for plant systems biology. BMC Bioinformatics 2012; 13:267. [PMID: 23066841 PMCID: PMC3483157 DOI: 10.1186/1471-2105-13-267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/10/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plants are important as foods, pharmaceuticals, biorenewable chemicals, fuel resources, bioremediation tools and general tools for recombinant technology. The study of plant biological pathways is advanced by easy access to integrated data sources. Today, various plant data sources are scattered throughout the web, making it increasingly complicated to build comprehensive datasets. RESULTS MetNet Online is a web-based portal that provides access to a regulatory and metabolic plant pathway database. The database and portal integrate Arabidopsis, soybean (Glycine max) and grapevine (Vitis vinifera) data. Pathways are enriched with known or predicted information on sub cellular location. MetNet Online enables pathways, interactions and entities to be browsed or searched by multiple categories such as sub cellular compartment, pathway ontology, and GO term. In addition to this, the "My MetNet" feature allows registered users to bookmark content and track, import and export customized lists of entities. Users can also construct custom networks using existing pathways and/or interactions as building blocks. CONCLUSION The site can be reached at http://www.metnetonline.org. Extensive video tutorials on how to use the site are available through http://www.metnetonline.org/tutorial/.
Collapse
Affiliation(s)
- Yves Sucaet
- Dept of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA
| | - Yi Wang
- Dept of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Jie Li
- Dept of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA
| | - Eve Syrkin Wurtele
- Dept of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latché A, Pech JC. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. PLANT PHYSIOLOGY 2012; 160:708-25. [PMID: 22908117 PMCID: PMC3461550 DOI: 10.1104/pp.112.203679] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/16/2012] [Indexed: 05/18/2023]
Abstract
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Egea
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Michel Rossignol
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - David Bouyssie
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Carole Pichereaux
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Eduardo Purgatto
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Mondher Bouzayen
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Alain Latché
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Jean-Claude Pech
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| |
Collapse
|
32
|
Wang Y, Ding J, Daniell H, Hu H, Li X. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins. PLANT MOLECULAR BIOLOGY 2012; 80:177-87. [PMID: 22733202 DOI: 10.1007/s11103-012-9938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | |
Collapse
|
33
|
Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M. Chloroplast-localized protein kinases: a step forward towards a complete inventory. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1713-23. [PMID: 22282538 PMCID: PMC3971369 DOI: 10.1093/jxb/err377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to redox regulation, protein phosphorylation has gained increasing importance as a regulatory principle in chloroplasts in recent years. However, only very few chloroplast-localized protein kinases have been identified to date. Protein phosphorylation regulates important chloroplast processes such as photosynthesis or transcription. In order to better understand chloroplast function, it is therefore crucial to obtain a complete picture of the chloroplast kinome, which is currently constrained by two effects: first, recent observations showed that the bioinformatics-based prediction of chloroplast-localized protein kinases from available sequence data is strongly biased; and, secondly, protein kinases are of very low abundance, which makes their identification by proteomics approaches extremely difficult. Therefore, the aim of this study was to obtain a complete list of chloroplast-localized protein kinases from different species. Evaluation of protein kinases which were either highly predicted to be chloroplast localized or have been identified in different chloroplast proteomic studies resulted in the confirmation of only three new kinases. Considering also all reports of experimentally verified chloroplast protein kinases to date, compelling evidence was found for a total set of 15 chloroplast-localized protein kinases in different species. This is in contrast to a much higher number that would be expected based on targeting prediction or on the general abundance of protein kinases in relation to the entire proteome. Moreover, it is shown that unusual protein kinases with differing ATP-binding sites or catalytic centres seem to occur frequently within the chloroplast kinome, thus making their identification by mass spectrometry-based approaches even more difficult due to a different annotation.
Collapse
Affiliation(s)
- Roman G. Bayer
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Agostinho G. Rocha
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
34
|
Hu J, Yan X. BS-KNN: An Effective Algorithm for Predicting Protein Subchloroplast Localization. Evol Bioinform Online 2012; 8:79-87. [PMID: 22267906 PMCID: PMC3256996 DOI: 10.4137/ebo.s8681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chloroplasts are organelles found in cells of green plants and eukaryotic algae that conduct photosynthesis. Knowing a protein’s subchloroplast location provides in-depth insights about the protein’s function and the microenvironment where it interacts with other molecules. In this paper, we present BS-KNN, a bit-score weighted K-nearest neighbor method for predicting proteins’ subchloroplast locations. The method makes predictions based on the bit-score weighted Euclidean distance calculated from the composition of selected pseudo-amino acids. Our method achieved 76.4% overall accuracy in assigning proteins to 4 subchloroplast locations in cross-validation. When tested on an independent set that was not seen by the method during the training and feature selection, the method achieved a consistent overall accuracy of 76.0%. The method was also applied to predict subchloroplast locations of proteins in the chloroplast proteome and validated against proteins in Arabidopsis thaliana. The software and datasets of the proposed method are available at https://edisk.fandm.edu/jing.hu/bsknn/bsknn.html.
Collapse
Affiliation(s)
- Jing Hu
- Department of Mathematics and Computer Science, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA 17604, USA
| | | |
Collapse
|
35
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
36
|
Jeon Y, Jung HJ, Kang H, Park YI, Lee SH, Pai HS. S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2012; 193:349-63. [PMID: 22050604 DOI: 10.1111/j.1469-8137.2011.03941.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• In this study, we examined the biochemical and physiological functions of Nicotiana benthamiana S1 domain-containing Transcription-Stimulating Factor (STF) using virus-induced gene silencing (VIGS), cosuppression, and overexpression strategies. • STF : green fluorescent protein (GFP) fusion protein colocalized with sulfite reductase (SiR), a chloroplast nucleoid-associated protein also present in the stroma. Full-length STF and its S1 domain preferentially bound to RNA, probably in a sequence-nonspecific manner. • STF silencing by VIGS or cosuppression resulted in severe leaf yellowing caused by disrupted chloroplast development. STF deficiency significantly perturbed plastid-encoded multimeric RNA polymerase (PEP)-dependent transcript accumulation. Chloroplast transcription run-on assays revealed that the transcription rate of PEP-dependent plastid genes was reduced in the STF-silenced leaves. Conversely, the exogenously added recombinant STF protein increased the transcription rate, suggesting a direct role of STF in plastid transcription. Etiolated seedlings of STF cosuppression lines showed defects in the light-triggered transition from etioplasts to chloroplasts, accompanied by reduced light-induced expression of plastid-encoded genes. • These results suggest that STF plays a critical role as an auxiliary factor of the PEP transcription complex in the regulation of plastid transcription and chloroplast biogenesis in higher plants.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, Deng X. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5297-309. [PMID: 21841170 PMCID: PMC3223033 DOI: 10.1093/jxb/err140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 05/18/2023]
Abstract
Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuxin Deng
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc Natl Acad Sci U S A 2011; 108:12955-60. [PMID: 21768351 DOI: 10.1073/pnas.1104734108] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Important aspects of photosynthetic electron transport efficiency in chloroplasts are controlled by protein phosphorylation. Two thylakoid-associated kinases, STN7 and STN8, have distinct roles in short- and long-term photosynthetic acclimation to changes in light quality and quantity. Although some substrates of STN7 and STN8 are known, the complexity of this regulatory kinase system implies that currently unknown substrates connect photosynthetic performance with the regulation of metabolic and regulatory functions. We performed an unbiased phosphoproteome-wide screen with Arabidopsis WT and stn8 mutant plants to identify unique STN8 targets. The phosphorylation status of STN7 was not affected in stn8, indicating that kinases other than STN8 phosphorylate STN7 under standard growth conditions. Among several putative STN8 substrates, PGRL1-A is of particular importance because of its possible role in the modulation of cyclic electron transfer. The STN8 phosphorylation site on PGRL1-A is absent in both monocotyledonous plants and algae. In dicots, spectroscopic measurements with Arabidopsis WT, stn7, stn8, and stn7/stn8 double-mutant plants indicate a STN8-mediated slowing down of the transition from cyclic to linear electron flow at the onset of illumination. This finding suggests a possible link between protein phosphorylation by STN8 and fine-tuning of cyclic electron flow during this critical step of photosynthesis, when the carbon assimilation is not commensurate to the electron flow capacity of the chloroplast.
Collapse
|
40
|
Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS. The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 2011; 286:21427-39. [PMID: 21515685 PMCID: PMC3122202 DOI: 10.1074/jbc.m111.233734] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/11/2011] [Indexed: 11/06/2022] Open
Abstract
The plastid is a defining structure of photosynthetic eukaryotes and houses many plant-specific processes, including the light reactions, carbon fixation, pigment synthesis, and other primary metabolic processes. Identifying proteins associated with catalytic, structural, and regulatory functions that are unique to plastid-containing organisms is necessary to fully define the scope of plant biochemistry. Here, we performed phylogenomics on 20 genomes to compile a new inventory of 597 nucleus-encoded proteins conserved in plants and green algae but not in non-photosynthetic organisms. 286 of these proteins are of known function, whereas 311 are not characterized. This inventory was validated as applicable and relevant to diverse photosynthetic eukaryotes using an additional eight genomes from distantly related plants (including Micromonas, Selaginella, and soybean). Manual curation of the known proteins in the inventory established its importance to plastid biochemistry. To predict functions for the 52% of proteins of unknown function, we used sequence motifs, subcellular localization, co-expression analysis, and RNA abundance data. We demonstrate that 18% of the proteins in the inventory have functions outside the plastid and/or beyond green tissues. Although 32% of proteins in the inventory have homologs in all cyanobacteria, unexpectedly, 30% are eukaryote-specific. Finally, 8% of the proteins of unknown function share no similarity to any characterized protein and are plant lineage-specific. We present this annotated inventory of 597 proteins as a resource for functional analyses of plant-specific biochemistry.
Collapse
Affiliation(s)
| | - Simon E. Prochnik
- the United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598, and
| | - Arthur R. Grossman
- the Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sabeeha S. Merchant
- From the Department of Chemistry and Biochemistry and
- Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
41
|
Polyakov NB, Slizhikova DK, Izmalkova MY, Cherepanova NI, Kazakov VS, Rogova MA, Zhukova NA, Alexeev DG, Bazaleev NA, Skripnikov AY, Govorun VM. Proteome analysis of chloroplasts from the moss Physcomitrella patens (Hedw.) B.S.G. BIOCHEMISTRY (MOSCOW) 2011; 75:1470-83. [PMID: 21314618 DOI: 10.1134/s0006297910120084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intact chloroplasts were prepared from protoplasts of the moss Physcomitrella patens according to an especially developed method. They were additionally separated into stroma and thylakoid fractions. The proteomes of intact plastids, stroma, and thylakoids were analyzed by 1D-electrophoresis under denaturing conditions followed by protein digestion and nano-LC-ESI-MS/MS of tryptic peptides from gel bands. A total of 624 unique proteins were identified, 434 of which were annotated as chloroplast resident proteins. The majority of proteins belonged to a photosynthetic group (21.3%) and to the group of proteins implicated in protein degradation, posttranslational modification, folding, and import (20.6%). Among proteins assigned to chloroplasts, the following groups are prominent combining proteins implicated in metabolism of: amino acids (6.9%), nucleotides (2.5%), lipids (2.2%), carbohydrates (2.4%), hormones (1.5%), isoprenoids (1.25%), vitamins and cofactors (1%), sulfur (1.25%), and nitrogen (1%); as well as proteins involved in the pentose-phosphate cycle (1.75%), tetrapyrrole synthesis (3.7%), and redox processes (3.6%). The data can be used in physiological and photobiological studies as well as in further studies of P. patens chloroplast proteome including structural and functional specifics of plant protein localization in organelles.
Collapse
Affiliation(s)
- N B Polyakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bayer RG, Stael S, Csaszar E, Teige M. Mining the soluble chloroplast proteome by affinity chromatography. Proteomics 2011; 11:1287-99. [PMID: 21365755 PMCID: PMC3531887 DOI: 10.1002/pmic.201000495] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 12/28/2022]
Abstract
Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO(2), they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions.
Collapse
Affiliation(s)
- Roman G Bayer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | | | | | | |
Collapse
|
43
|
Demartini DR, Jain R, Agrawal G, Thelen JJ. Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J Proteome Res 2011; 10:2226-37. [PMID: 21417358 DOI: 10.1021/pr101047y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plastids are highly specialized organelles, responsible for photosynthesis and biosynthesis of various phytochemicals. To better understand plastid diversity and metabolism, a quantitative proteomic study of two plastid forms from Brassica napus (oilseed rape) was performed. Plastids were isolated from leaves (chloroplasts) of two-week-old plants and developing embryos (embryoplasts) three-weeks after flowering, using an approach avoiding protein storage vacuole contamination. Proteins from five different plastid preparations were prefractionated by SDS-PAGE and sectioned into multiple bands, and in-gel proteins were subjected to trypsin digestion. Tryptic peptides from each band were eluted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and spectra were searched against a comprehensive plant database. Proteins were quantified based on MS/MS spectral counting of unique, nonhomologous peptides. Functional classification and quantitative comparison of over 2000 redundant proteins (compiled to 675 nonredundant proteins) determined that light reaction proteins are more prominent in chloroplasts, while many Calvin cycle enzymes are more prominent in embryoplasts. Embryoplasts also contain a diversity of other metabolic enzymes undetected in chloroplasts. Many enzymes involved in de novo fatty acid and amino acid biosynthesis were detected in embryoplasts but not chloroplasts. Additionally, protein synthesis-related proteins were prominent in embryoplasts. Collectively, these results indicate that these two plastid types are distinct.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Department of Biochemistry and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | | | | | | |
Collapse
|
44
|
Sucaet Y, Deva T. Evolution and applications of plant pathway resources and databases. Brief Bioinform 2011; 12:530-44. [PMID: 21949268 DOI: 10.1093/bib/bbq083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plants are important sources of food and plant products are essential for modern human life. Plants are increasingly gaining importance as drug and fuel resources, bioremediation tools and as tools for recombinant technology. Considering these applications, database infrastructure for plant model systems deserves much more attention. Study of plant biological pathways, the interconnection between these pathways and plant systems biology on the whole has in general lagged behind human systems biology. In this article we review plant pathway databases and the resources that are currently available. We lay out trends and challenges in the ongoing efforts to integrate plant pathway databases and the applications of database integration. We also discuss how progress in non-plant communities can serve as an example for the improvement of the plant pathway database landscape and thereby allow quantitative modeling of plant biosystems. We propose Good Database Practice as a possible model for collaboration and to ease future integration efforts.
Collapse
|
45
|
Baerenfaller K, Hirsch-Hoffmann M, Svozil J, Hull R, Russenberger D, Bischof S, Lu Q, Gruissem W, Baginsky S. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Integr Biol (Camb) 2011; 3:225-37. [PMID: 21264403 DOI: 10.1039/c0ib00078g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
pep2pro is a comprehensive proteome analysis database specifically suitable for flexible proteome data analysis. The pep2pro database schema offers solutions to the various challenges of developing a proteome data analysis database and because data integrated in pep2pro are in relational format, it enables flexible and detailed data analysis. The information provided here will facilitate building proteome data analysis databases for other organisms or applications. The capacity of the pep2pro database for the integration and analysis of large proteome datasets was demonstrated by creating the pep2pro dataset, which is an organ-specific characterisation of the Arabidopsis thaliana proteome containing 14 522 identified proteins based on 2.6 million peptide spectrum assignments. This dataset provides evidence of protein expression and reveals organ-specific processes. The high coverage and density of the dataset are essential for protein quantification by normalised spectral counting and allowed us to extract information that is usually not accessible in low-coverage datasets. With this quantitative protein information we analysed organ- and organelle-specific sub-proteomes. In addition we matched spectra to regions in the genome that were not predicted to have protein coding capacity and provide PCR validation for selected revised gene models. Furthermore, we analysed the peptide features that distinguish detected from non-detected peptides and found substantial disagreement between predicted and detected proteotypic peptides, suggesting that large-scale proteomics data are essential for efficient selection of proteotypic peptides in targeted proteomics surveys. The pep2pro dataset is available as a resource for plant systems biology at www.pep2pro.ethz.ch.
Collapse
Affiliation(s)
- Katja Baerenfaller
- Department of Biology, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Armbruster U, Pesaresi P, Pribil M, Hertle A, Leister D. Update on chloroplast research: new tools, new topics, and new trends. MOLECULAR PLANT 2011; 4:1-16. [PMID: 20924030 DOI: 10.1093/mp/ssq060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
47
|
Demartini DR, Carlini CR, Thelen JJ. Proteome databases and other online resources for chloroplast research in Arabidopsis. Methods Mol Biol 2011; 775:93-115. [PMID: 21863440 DOI: 10.1007/978-1-61779-237-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Proteomics aimed at addressing sub cellular fractions, such as chloroplasts, are a complex challenge. In the past few years, several studies in different laboratories have identified and, more recently, quantified, thousands of proteins within whole chloroplasts or chloroplast fractions. A considerable number of these studies are available for querying, using online resources, such as databases containing the proteins identified, encoding genes, acquired spectra, and phosphopeptides. The main purpose of this review is to identity and highlight useful features of these online resourses, mainly focused in proteomics databases related to chloroplast research in Arabidopsis thaliana. Several web sites were consulted. Among them, 11 were selected and discussed herein. The databases were classified into Plastid Databases, General Organelle Proteome Databases, and General Arabidopsis Proteome Databases. Special care was taken to present information regarding protein identification, protein quantification, and data integration. A selected list of online resources is presented in two tables. The databases analyzed are a useful source of information for researchers in the plastid organelle and plant proteomics fields.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Department of Biophysics, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
48
|
Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech JC. Characteristics of the tomato chromoplast revealed by proteomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2413-31. [PMID: 20363867 DOI: 10.1093/jxb/erq070] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism and trafficking were well represented, including all the proteins of the lipoxygenase pathway required for the synthesis of lipid-derived aroma volatiles. Proteins involved in starch synthesis co-existed with several starch-degrading proteins and starch excess proteins. Chromoplasts lacked proteins of the chlorophyll biosynthesis branch and contained proteins involved in chlorophyll degradation. None of the proteins involved in the thylakoid transport machinery were discovered. Surprisingly, chromoplasts contain the entire set of Calvin cycle proteins including Rubisco, as well as the oxidative pentose phosphate pathway (OxPPP). The present proteomic analysis, combined with available physiological data, provides new insights into the metabolic characteristics of the tomato chromoplast and enriches our knowledge of non-photosynthetic plastids.
Collapse
Affiliation(s)
- Cristina Barsan
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schröter Y, Steiner S, Matthäi K, Pfannschmidt T. Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 2010; 10:2191-204. [DOI: 10.1002/pmic.200900678] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Daher Z, Recorbet G, Valot B, Robert F, Balliau T, Potin S, Schoefs B, Dumas-Gaudot E. Proteomic analysis of Medicago truncatula root plastids. Proteomics 2010; 10:2123-37. [DOI: 10.1002/pmic.200900345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|