1
|
Song Z, Zhao H, Wang X, Ren M, Pan A, Chen Y, Zhang J, Lu T, Cao J, Wang F, Zhang J. Characterization and functional analysis of CONSTANS-like 3 involved in photoperiodic flowering of Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109643. [PMID: 39977969 DOI: 10.1016/j.plaphy.2025.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The CONSTANS-like (COL) family plays a pivotal role in regulating plant photoperiodic flowering pathways. Although several COLs have been characterized in Arabidopsis, their functions in cotton lack clarity. Here, GhCOL3, a gene of the COL family in cotton (Gossypium hirsutum), was cloned and characterized. GhCOL3 is located in the nucleus, and GhCOL3 was expressed in young leaves, hypocotyls, and flower organs and exhibited obvious circadian rhythms under long-day conditions. Overexpressing of GhCOL3 heterogeneously in Arabidopsis thaliana led to delayed flowering, whereas silencing of GhCOL3 in cotton using the virus-induced gene silencing system led to earlier flowering, suggesting a negative regulatory role of GhCOL3 in plant flowering. Transcriptome analysis and expression detection showed that bHLH38, bHLH100, bHLH101, and BBX31 were significantly upregulated in GhCOL3 heterogeneous overexpression lines, whereas the expression of FT was downregulated. Moreover, the expression of GhbHLH38, GhBBX31, and GhFT were significantly affected in the GhCOL3-silenced line, thus laying the foundation for elucidating the regulatory mechanism of GhCOL3 in cotton flowering.
Collapse
Affiliation(s)
- Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Han Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Xin Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Miaomiao Ren
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Ao Pan
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tao Lu
- The 7th Division of Agricultural Sciences Institute, Xinjiang Production and Construction Corps, Kuitun 833200, China
| | - Juan Cao
- Xinjiang Tarim River Seed Industry Co., Ltd, Aral City, 843300, Xinjiang, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250358, China.
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Life Science, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
2
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
3
|
Feng X, Wu X, Wu H, Li Y, Zhou B, Jiang Y, Zhang S, Wei J, Su S, Hou Z. Short-Photoperiod Induces Floral Induction Involving Carbohydrate Metabolism and Regulation by VcCO3 in Greenhouse Blueberry. PLANT, CELL & ENVIRONMENT 2025; 48:2145-2161. [PMID: 39558459 DOI: 10.1111/pce.15292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Blueberry flower buds cultivated in greenhouses develop during both autumn and spring, with floral induction being a critical process for flowering, influenced by environmental factors. This study aimed to clarify the regulatory mechanisms governing floral induction in greenhouse blueberries, focusing on the similarities and differences in flower bud differentiation between the spring and autumn seasons. Understanding these mechanisms is pivotal for enhancing blueberry production. In this study, we analysed the phenotypic characteristics associated with flower bud differentiation and observed that short photoperiods markedly affect the induction process. Transcriptomic analyses revealed distinct major metabolic pathways activated in autumn compared to spring. Seasonal variations in carbohydrate metabolism were also noted, with sucrose hydrolysis being prominent in autumn and sucrose synthesis prevailing in spring. The interplay between circadian rhythms and photosynthesis appeared to facilitate the allocation of sugars for bud development. Subsequent investigations underscored the sensitivity of VcCO3 to variations in photoperiod. Predominantly localised in the nucleus, VcCO3 facilitated floral induction in response to short photoperiods by activating the expression of downstream genes, including VcFT, VcLFY, VcAP3, and VcSOC1. Furthermore, VcCO3 exhibits a close association with the sugar metabolism gene VcSUS, promoting increased sucrose concentrations.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Xinliang Wu
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Huiling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Yang Li
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Bingjie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Ying Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Suilin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Jiali Wei
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Shuchai Su
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Zhixia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Freidinger AG, Woodward LA, Bùi JT, Doty G, Ruiz S, Conant E, Hicks KA. Cycling DOF factor mediated seasonal regulation of sexual reproduction and cold response is not conserved in Physcomitrium patens. PLANT DIRECT 2024; 8:e70020. [PMID: 39600727 PMCID: PMC11588431 DOI: 10.1002/pld3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Many land plants have evolved such that the transition from vegetative to reproductive development is synchronized with environmental cues. Examples of reproduction in response to seasonal cues can be found in both vascular and nonvascular species; however, most of our understanding of the molecular events controlling this timing has been worked out in angiosperm model systems. While the organism-level mechanisms of sexual reproduction vary dramatically between vascular and nonvascular plants, phylogenetic and transcriptomic evidence suggest paralogs in nonvascular plants may have conserved function with their vascular counterparts. Given that Physcomitrium patens undergoes sexual reproductive development in response to photoperiodic and cold temperature cues, it is well-suited for studying evolutionarily conserved mechanisms of seasonal control of reproduction. Thus, we used publicly available microarray data to identify genes differentially expressed in response to temperature cues. We identified two CDF-like (CDL) genes in the P. patens genome that are the most like the angiosperm Arabidopsis thaliana CDFs based on conservation of protein motifs and diurnal expression patterns. In angiosperms, DNA-One Finger Transcription Factors (DOFs) play an important role in regulating photoperiodic flowering, regulating physiological changes in response to seasonal temperature changes, and mediating the cold stress response. We created knockout mutations and tested their impact on sexual reproduction and response to cold stress. Unexpectedly, the timing of sexual reproduction in the ppcdl-double mutants did not differ significantly from wild type, suggesting that the PpCDLs are not necessary for seasonal regulation of this developmental transition. We also found that there was no change in expression of downstream cold-regulated genes in response to cold stress and no change in freezing tolerance in the knockout mutant plants. Finally, we observed no interaction between PpCDLs and the partial homologs of FKF1, an A. thaliana repressor of CDFs. This is different from what is observed in angiosperms, which suggests that the functions of CDF proteins in angiosperms are not conserved in P. patens.
Collapse
Affiliation(s)
| | | | | | | | - Shawn Ruiz
- Biology DepartmentKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
5
|
He Y, Xiao D, Jiang C, Li Y, Hou X. CIRCADIAN CLOCK-ASSOCIATED1 Delays Flowering by Directly Inhibiting the Transcription of BcSOC1 in Pak-choi. PLANTS (BASEL, SWITZERLAND) 2024; 13:2190. [PMID: 39204626 PMCID: PMC11359169 DOI: 10.3390/plants13162190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Flowering is critical to the success of plant propagation. The MYB family transcription factor CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) is an essential component of the core loop of the circadian clock and plays a crucial role in regulating plant flowering time. In this study, we found that photoperiod affects the expression pattern and expression level of BcCCA1, which is delayed flowering time under short-day conditions in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. We detected overexpression and silencing of BcCCA1 in Pak-choi, resulting in delayed and promoted flowering time, respectively. Furthermore, we also discovered that FLOWERING LOCUS C (BcFLC) and SUPPRESSOR OF CONSTANS1 (BcSOC1) were expressed significantly differently in BcCCA1 overexpression and silencing plants compared with control plants. Therefore, we further investigated the interaction relationship between BcCCA1, BcFLC, and BcSOC1, and the results showed that BcCCA1 and BcFLC as a complex interacted with each other. Moreover, both BcCCA1 and BcFLC can directly bind to the promoter of BcSOC1 and repress its transcription, and BcCCA1 can form a complex with BcFLC to enhance the transcriptional inhibition of BcSOC1 by BcFLC. This study reveals a new mechanism by which the circadian clock regulates flowering time.
Collapse
Affiliation(s)
- Ying He
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Dong Xiao
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
| | - Cheng Jiang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Yiran Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (D.X.); (C.J.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| |
Collapse
|
6
|
Dong W, Li D, Zhang L, Tao P, Zhang Y. Flowering-associated gene expression and metabolic characteristics in adzuki bean ( Vigna angularis L.) with different short-day induction periods. PeerJ 2024; 12:e17716. [PMID: 39035158 PMCID: PMC11260412 DOI: 10.7717/peerj.17716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Background The adzuki bean is a typical short-day plant and an important grain crop that is widely used due to its high nutritional and medicinal value. The adzuki bean flowering time is affected by multiple environmental factors, particularly the photoperiod. Adjusting the day length can induce flower synchronization in adzuki bean and accelerate the breeding process. In this study, we used RNA sequencing analysis to determine the effects of different day lengths on gene expression and metabolic characteristics related to adzuki bean flowering time. Methods 'Tangshan hong xiao dou' was used as the experimental material in this study and field experiments were conducted in 2022 using a randomized block design with three treatments: short-day induction periods of 5 d (SD-5d), 10 d (SD-10d), and 15 d (SD-15d). Results A total of 5,939 differentially expressed genes (DEGs) were identified, of which 38.09% were up-regulated and 23.81% were down-regulated. Gene ontology enrichment analysis was performed on the target genes to identify common functions related to photosystems I and II. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified two pathways involved in the antenna protein and circadian rhythm. Furthermore, florescence was promoted by down-regulating genes in the circadian rhythm pathway through the blue light metabolic pathway; whereas, antenna proteins promoted flowering by enhancing the reception of light signals and accelerating electron transport. In these two metabolic pathways, the number of DEGs was the greatest between the SD-5d VS SD-15d groups. Real-time reverse transcription‒quantitative polymerase chain reaction analysis results of eight DEGs were consistent with the sequencing results. Thus, the sequencing results were accurate and reliable and eight genes were identified as candidates for the regulation of short-day induction at the adzuki bean seedling stage. Conclusions Short-day induction was able to down-regulate the expression of genes related to flowering according to the circadian rhythm and up-regulate the expression of certain genes in the antenna protein pathway. The results provide a theoretical reference for the molecular mechanism of short-day induction and multi-level information for future functional studies to verify the key genes regulating adzuki bean flowering.
Collapse
Affiliation(s)
- Weixin Dong
- College of Agronomy and Medical, Hebei Open University, Shijiazhuang, Hebei, China
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Dongxiao Li
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Lei Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Peijun Tao
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuechen Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
7
|
Mehta D, Scandola S, Kennedy C, Lummer C, Gallo MCR, Grubb LE, Tan M, Scarpella E, Uhrig RG. Twilight length alters growth and flowering time in Arabidopsis via LHY/ CCA1. SCIENCE ADVANCES 2024; 10:eadl3199. [PMID: 38941453 PMCID: PMC11212724 DOI: 10.1126/sciadv.adl3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Decades of research have uncovered how plants respond to two environmental variables that change across latitudes and over seasons: photoperiod and temperature. However, a third such variable, twilight length, has so far gone unstudied. Here, using controlled growth setups, we show that the duration of twilight affects growth and flowering time via the LHY/CCA1 clock genes in the model plant Arabidopsis. Using a series of progressively truncated no-twilight photoperiods, we also found that plants are more sensitive to twilight length compared to equivalent changes in solely photoperiods. Transcriptome and proteome analyses showed that twilight length affects reactive oxygen species metabolism, photosynthesis, and carbon metabolism. Genetic analyses suggested a twilight sensing pathway from the photoreceptors PHY E, PHY B, PHY D, and CRY2 through LHY/CCA1 to flowering modulation through the GI-FT pathway. Overall, our findings call for more nuanced models of day-length perception in plants and posit that twilight is an important determinant of plant growth and development.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
- Leuven Plant Institute, KU Leuven, B-3001 Leuven, Belgium
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Lauren E. Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
8
|
Wang M, Wang J, Wang Z, Teng Y. Nitrate Signaling and Its Role in Regulating Flowering Time in Arabidopsis thaliana. Int J Mol Sci 2024; 25:5310. [PMID: 38791350 PMCID: PMC11120727 DOI: 10.3390/ijms25105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Plant growth is coordinated with the availability of nutrients that ensure its development. Nitrate is a major source of nitrogen (N), an essential macronutrient for plant growth. It also acts as a signaling molecule to modulate gene expression, metabolism, and a variety of physiological processes. Recently, it has become evident that the calcium signal appears to be part of the nitrate signaling pathway. New key players have been discovered and described in Arabidopsis thaliana (Arabidopsis). In addition, knowledge of the molecular mechanisms of how N signaling affects growth and development, such as the nitrate control of the flowering process, is increasing rapidly. Here, we review recent advances in the identification of new components involved in nitrate signal transduction, summarize newly identified mechanisms of nitrate signaling-modulated flowering time in Arabidopsis, and suggest emerging concepts and existing open questions that will hopefully be informative for further discoveries.
Collapse
Affiliation(s)
- Mengyun Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
| | - Zeneng Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
- Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Yibo Teng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
| |
Collapse
|
9
|
Billah M, Renju L, Wei H, Qanmber G, Da Y, Lan Y, Qing-di Y, Fuguang L, Zhaoen Y. A cotton mitochondrial alternative electron transporter, GhD2HGDH, induces early flowering by modulating GA and photoperiodic pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14378. [PMID: 38887925 DOI: 10.1111/ppl.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Liu Renju
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Hu Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ghulam Qanmber
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Da
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Lan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Yan Qing-di
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Li Fuguang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhaoen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Alique D, Redondo López A, González Schain N, Allona I, Wabnik K, Perales M. Core clock genes adjust growth cessation time to day-night switches in poplar. Nat Commun 2024; 15:1784. [PMID: 38413620 PMCID: PMC10899572 DOI: 10.1038/s41467-024-46081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Poplar trees use photoperiod as a precise seasonal indicator, synchronizing plant phenology with the environment. Daylength cue determines FLOWERING LOCUS T 2 (FT2) daily expression, crucial for shoot apex development and establishment of the annual growing period. However, limited evidence exists for the molecular factors controlling FT2 transcription and the conservation with the photoperiodic control of Arabidopsis flowering. We demonstrate that FT2 expression mediates growth cessation response quantitatively, and we provide a minimal data-driven model linking core clock genes to FT2 daily levels. GIGANTEA (GI) emerges as a critical inducer of the FT2 activation window, time-bound by TIMING OF CAB EXPRESSION (TOC1) and LATE ELONGATED HYPOCOTYL (LHY2) repressions. CRISPR/Cas9 loss-of-function lines validate these roles, identifying TOC1 as a long-sought FT2 repressor. Additionally, model simulations predict that FT2 downregulation upon daylength shortening results from a progressive narrowing of this activation window, driven by the phase shift observed in the preceding clock genes. This circadian-mediated mechanism enables poplar to exploit FT2 levels as an accurate daylength-meter.
Collapse
Affiliation(s)
- Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Arturo Redondo López
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Nahuel González Schain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
| |
Collapse
|
11
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
12
|
Qin C, Du T, Zhang R, Wang Q, Liu Y, Wang T, Cao H, Bai Q, Zhang Y, Su S. Integrated transcriptome, metabolome and phytohormone analysis reveals developmental differences between the first and secondary flowering in Castanea mollissima. FRONTIERS IN PLANT SCIENCE 2023; 14:1145418. [PMID: 37008486 PMCID: PMC10060901 DOI: 10.3389/fpls.2023.1145418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Chestnut (Castanea mollissima BL.) is an important woody grain, and its flower formation has a significant impact on fruit yield and quality. Some chestnut species in northern China re-flower in the late summer. On the one hand, the second flowering consumes a lot of nutrients in the tree, weakening the tree and thus affecting flowering in the following year. On the other hand, the number of female flowers on a single bearing branch during the second flowering is significantly higher than that of the first flowering, which can bear fruit in bunches. Therefore, these can be used to study the sex differentiation of chestnut. METHODS In this study, the transcriptomes, metabolomes, and phytohormones of male and female chestnut flowers were determined during spring and late summer. We aimed to understand the developmental differences between the first and secondary flowering stages in chestnuts. We analysed the reasons why the number of female flowers is higher in the secondary flowering than in the first flowering and found ways to increase the number of female flowers or decrease the number of male flowers in chestnuts. RESULTS Transcriptome analysis of male and female flowers in different developmental seasons revealed that EREBP-like mainly affected the development of secondary female flowers and HSP20 mainly affected the development of secondary male flowers. KEGG enrichment analysis showed that 147 common differentially-regulated genes were mainly enriched from circadian rhythm-plant, carotenoid biosynthesis, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways. Metabolome analysis showed that the main differentially accumulated metabolites in female flowers were flavonoids and phenolic acids, whereas the main differentially accumulated metabolites in male flowers were lipids, flavonoids, and phenolic acids. These genes and their metabolites are positively correlated with secondary flower formation. Phytohormone analysis showed that abscisic and salicylic acids were negatively correlated with secondary flower formation. MYB305, a candidate gene for sex differentiation in chestnuts, promoted the synthesis of flavonoid substances and thus increased the number of female flowers. DISCUSSION We constructed a regulatory network for secondary flower development in chestnuts, which provides a theoretical basis for the reproductive development mechanism of chestnuts. This study has important practical implications for improving chestnut yield and quality.
Collapse
|
13
|
Gretsova M, Surkova S, Kanapin A, Samsonova A, Logacheva M, Shcherbakov A, Logachev A, Bankin M, Nuzhdin S, Samsonova M. Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int J Mol Sci 2023; 24:ijms24032692. [PMID: 36769014 PMCID: PMC9916832 DOI: 10.3390/ijms24032692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Chickpea (Cicer arietinum L.) is a major grain legume and a good source of plant-based protein. However, comprehensive knowledge of flowering time control in Cicer is lacking. In this study, we acquire high-throughput transcriptome sequencing data and analyze changes in gene expression during floral transition in the early flowering cultivar ICCV 96029, later flowering C. arietinum accessions, and two wild species, C. reticulatum and C. echinospermum. We identify Cicer orthologs of A. thaliana flowering time genes and analyze differential expression of 278 genes between four species/accessions, three tissue types, and two conditions. Our results show that the differences in gene expression between ICCV 96029 and other cultivated chickpea accessions are vernalization-dependent. In addition, we highlight the role of FTa3, an ortholog of FLOWERING LOCUS T in Arabidopsis, in the vernalization response of cultivated chickpea. A common set of differentially expressed genes was found for all comparisons between wild species and cultivars. The direction of expression change for different copies of the FT-INTERACTING PROTEIN 1 gene was variable in different comparisons, which suggests complex mechanisms of FT protein transport. Our study makes a contribution to the understanding of flowering time control in Cicer, and can provide genetic strategies to further improve this important agronomic trait.
Collapse
Affiliation(s)
- Maria Gretsova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Andrey Shcherbakov
- Laboratory of Microbial Technology, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Sergey Nuzhdin
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
14
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
15
|
A guiding role of the Arabidopsis circadian clock in cell differentiation revealed by time-series single-cell RNA sequencing. Cell Rep 2022; 40:111059. [PMID: 35830805 DOI: 10.1016/j.celrep.2022.111059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms and progression of cell differentiation are closely coupled in multicellular organisms. However, whether establishment of circadian rhythms regulates cell differentiation or vice versa has not been elucidated due to technical limitations. Here, we exploit high cell fate plasticity of plant cells to perform single-cell RNA sequencing during the entire process of cell differentiation. By analyzing reconstructed actual time series of the differentiation processes at single-cell resolution using a method we developed (PeakMatch), we find that the expression profile of clock genes is changed prior to cell differentiation, including induction of the clock gene LUX ARRYTHMO (LUX). ChIP sequencing analysis reveals that LUX induction in early differentiating cells directly targets genes involved in cell-cycle progression to regulate cell differentiation. Taken together, these results not only reveal a guiding role of the plant circadian clock in cell differentiation but also provide an approach for time-series analysis at single-cell resolution.
Collapse
|
16
|
Zhang C, Zhou Q, Liu W, Wu X, Li Z, Xu Y, Li Y, Imaizumi T, Hou X, Liu T. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:134-148. [PMID: 35442527 DOI: 10.1111/tpj.15783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Drought stress triggers the accumulation of the phytohormone abscisic acid (ABA), which in turn activates the expression of the floral integrator gene CONSTANS (CO), accelerating flowering. However, the molecular mechanism of ABA-induced CO activation remains elusive. Here, we conducted a yeast one-hybrid assay using the CO promoter from Brassica campestris (syn. Brassica rapa) ssp. chinensis (pak choi) to screen the ABA-induced pak choi library and identified the transcription activator ABF3 (BrABF3). BrABF3, the expression of which was induced by ABA in pak choi, directly bound to the CO promoter from both pak choi and Arabidopsis. The BrABF3 promoter is specifically active in the Arabidopsis leaf vascular tissue, where CO is mainly expressed. Impaired BrABF3 expression in pak choi decreased BrCO expression levels and delayed flowering, whereas ectopic expression of BrABF3 in Arabidopsis increased CO expression and induced earlier flowering under the long-day conditions. Electrophoretic mobility shift assay analysis showed that BrABF3 was enriched at the canonical ABA-responsive element-ABRE binding factor (ABRE-ABF) binding motifs of the BrCO promoter. The direct binding of BrABF3 to the ABRE elements of CO was further confirmed by chromatin immunoprecipitation quantitative PCR. In addition, the induction of BrCO transcription by BrABF3 could be repressed by BrCDF1 in the morning. Thus, our results suggest that ABA could accelerate the floral transition by directly activating BrCO transcription through BrABF3 in pak choi.
Collapse
Affiliation(s)
- Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Xu Z, Li E, Xue G, Zhang C, Yang Y, Ding Y. OsHUB2 inhibits function of OsTrx1 in heading date in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1670-1680. [PMID: 35395113 DOI: 10.1111/tpj.15763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Heading date is one of the most pivotal agronomic traits for rice (Oryza sativa) yield and adaptation. Little is known about the crosstalk between histone ubiquitination and histone methylation in rice heading date regulation. Here, we reported HISTONE MONOUBIQUITINATION 1 (OsHUB1) and OsHUB2 are involved in heading date regulation via the Hd1 and Ehd1 pathway. Loss of OsHUB1 and OsHUB2 function resulted in early heading under long-day and short-day photoperiods. The expression of Hd3a, RFT1, and Ehd1 was induced and the transcript levels of Hd1, Ghd7, OsCCA1, OsGI, OsFKF1, and OsTOC1 were reduced under long-day conditions, whereas RFT1 and Ehd1 expression was induced in oshub2 mutants under short-day conditions. OsHUB2 interacted with OsTrx1 and repressed the gene expression of OsTrx1. OsHUB2 directly bound to Ehd1 to ubiquitinate H2B at Ehd1, and H2B ubiquitination levels were reduced in oshub2-2 and oshub2-3 mutants. OsTrx1 were highly enriched at Ehd1, and H3K4me3 levels of Ehd1 were upregulated in oshub2-2. Mutations of OsTrx1 in the oshub2-2 background rescued the early-heading phenotype of oshub2-2. The increases in Ehd1 H3K4me3 levels and transcript levels in oshub2-2 mutants were attenuated in oshub2-2 ostrx1-2 double mutants. Together, our results (i) reveal that OsHUB2 represses the function of OsTrx1 and H3K4me3 levels at Ehd1 and (ii) suggest that OsHUB2-mediated H2B ubiquitination plays critical roles together with H3K4me3 in rice heading date regulation.
Collapse
Affiliation(s)
- Zuntao Xu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Enze Li
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Gan Xue
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Cheng Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yachun Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
18
|
Hirohata A, Yamatsuta Y, Ogawa K, Kubota A, Suzuki T, Shimizu H, Kanesaka Y, Takahashi N, Endo M. Sulfanilamide Regulates Flowering Time through Expression of the Circadian Clock Gene LUX. PLANT & CELL PHYSIOLOGY 2022; 63:649-657. [PMID: 35238923 DOI: 10.1093/pcp/pcac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Flowering time is an agriculturally important trait that can be manipulated by various approaches such as breeding, growth control and genetic modifications. Despite its potential advantages, including fine-tuning the regulation of flowering time, few reports have explored the use of chemical compounds to manipulate flowering. Here, we report that sulfanilamide, an inhibitor of folate biosynthesis, delays flowering by repressing the expression of florigen FLOWERING LOCUS T (FT) in Arabidopsis thaliana. Transcriptome deep sequencing and quantitative polymerase chain reaction analyses showed that the expression of the circadian clock gene LUX ARRYTHMO/PHYTOCLOCK1 (LUX/PCL1) is altered by sulfanilamide treatment. Furthermore, in the lux nox mutant harboring loss of function in both LUX and its homolog BROTHER OF LUX ARRHYTHMO (BOA, also named NOX), the inhibitory effect of sulfanilamide treatment on FT expression was weak and the flowering time was similar to that of the wild type, suggesting that the circadian clock may contribute to the FT-mediated regulation of flowering by sulfanilamide. Sulfanilamide also delayed flowering time in arugula (Eruca sativa), suggesting that it is involved in the regulation of flowering across Brassicaceae. We propose that sulfanilamide is a novel modulator of flowering.
Collapse
Affiliation(s)
- Atsuhiro Hirohata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Yuta Yamatsuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Kaori Ogawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Hanako Shimizu
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113 Japan
| | - Yuki Kanesaka
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
19
|
Liu Y, Sun Y, Yao H, Zheng Y, Cao S, Wang H. Arabidopsis Circadian Clock Repress Phytochrome a Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:809563. [PMID: 35645991 PMCID: PMC9131076 DOI: 10.3389/fpls.2022.809563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The plants' internal circadian clock can strongly influence phytochrome signaling in response to the changes in the external light environment. Phytochrome A (phyA) is the photoreceptor that mediates various far-red (FR) light responses. phyA signaling is modulated by FHY3 and FAR1, which directly activate the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. However, the mechanisms by which the clock regulates phyA signaling are poorly understood. Here, we discovered that FHY1 expression is diurnally regulated, peaking in the middle of the day. Two Arabidopsis core clock components, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1), repress FHY3/FAR1-mediated FHY1/FHL activation. Consistently, the specific expression pattern of FHY1 under diurnal conditions is altered in cca1-1, toc1-101, CCA1, and TOC1 overexpression plants. Furthermore, far-red induced gene expression and particularly nuclear accumulation of phyA are compromised in TOC1 and CCA1 overexpression seedlings. Our results therefore revealed a previously unidentified FHY1 expression pattern in diurnal cycles, which is negatively regulated by CCA1 and TOC1.
Collapse
Affiliation(s)
- Yang Liu
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Heng Yao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanyan Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shuyuan Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Haiyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Huang Y, Xing X, Tang Y, Jin J, Ding L, Song A, Chen S, Chen F, Jiang J, Fang W. An ethylene-responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum. PLANT, CELL & ENVIRONMENT 2022; 45:1442-1456. [PMID: 35040157 DOI: 10.1111/pce.14261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
The timely transition from vegetative to reproductive development is coordinated through the quantitative regulation of floral pathway genes in response to physiological and environmental cues. The function of ethylene-responsive element-binding protein (ERF) transcription factors in the regulation of flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) is not well understood. Here, chrysanthemum overexpressing CmERF110 flowered earlier than the wild-type plants, while those in which CmERF110 was suppressed flowered later. RNA-seq results revealed that several genes involved in the circadian rhythm were transcribed differently in CmERF110 transgenic plants from that of the wild-type plants. The rhythm peak of the circadian clock genes in transgenic plants was delayed. Yeast two-hybrid screening of CmERF110 interactors identified a chrysanthemum FLOWERING LOCUS KH DOMAIN (FLK) homologue CmFLK, which was further confirmed with both in vitro and in vivo assays. KEGG pathway enrichment also revealed that CmFLK is involved in the regulation of circadian rhythm-related genes. CmFLK transgenic plants showed a change in flowering time and delayed rhythm peak of the circadian rhythm genes. Taken together, the present data not only suggest that CmERF110 interacts with CmFLK to promote floral transition by tuning the circadian clock, but also provides evidence for the evolutionary conservation of the components in the autonomous pathway in chrysanthemum.
Collapse
Affiliation(s)
- Yaoyao Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaojuan Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yun Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinyu Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Kong Y, Zhang Y, Liu X, Meng Z, Yu X, Zhou C, Han L. The Conserved and Specific Roles of the LUX ARRHYTHMO in Circadian Clock and Nodulation. Int J Mol Sci 2022; 23:ijms23073473. [PMID: 35408833 PMCID: PMC8998424 DOI: 10.3390/ijms23073473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
LUX ARRHYTHMO (LUX) plays a key role in circadian rhythms and flowering. Here, we identified the MtLUX gene which is the putative ortholog of LUX in Medicago truncatula. The roles of MtLUX, in both the nodulation belowground and leaf movement aboveground, were investigated by characterizing a loss-of-function mtlux mutant. MtLUX was required for the control of flowering time under both long-day and short-day conditions. Further investigations showed that the early flowering in the mtlux mutant was correlated with the elevated expression level of the MtFTa1 gene but in a CO-like independent manner. MtLUX played a conserved role in the regulatory interactions with MtLHY, MtTOC1, and MtPRR genes, which is similar to those in other species. Meanwhile, the unexpected functions of MtLUX were revealed in nodule formation and nyctinastic leaf movement, probably through the indirect regulation in MtLHY. Its participation in nodulation is of interest in the context of functional conservation and the neo-functionalization of the products of LUX orthologs.
Collapse
Affiliation(s)
- Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan 250300, China;
| | - Yuxue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan 250300, China;
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
- Correspondence:
| |
Collapse
|
22
|
Amir Sohail, Shah L, Cheng S, Cao L, Wu W. Molecular Dissection of Rice (Oryza sativa L.) Florigen in Response to Photoperiod. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Li C, Liu XJ, Yan Y, Alam MS, Liu Z, Yang ZK, Tao RF, Yue EK, Duan MH, Xu JH. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111145. [PMID: 35067308 DOI: 10.1016/j.plantsci.2021.111145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Flowering time (or heading date in crops) is a critical agronomic trait for rice reproduction and adaptation. The circadian clock is an endogenous oscillator that is involved in controlling photoperiodic flowering. The rice LATE ELONGATED HYPOCOTYL (OsLHY), the core oscillator component of circadian clock, is a homolog of the LHY/CCA1 in Arabidopsis. Here we showed that CRISPR/Cas9-engineered mutations in OsLHY caused late flowering in rice only under natural long-day (nLD) and short-day (nSD) conditions, but not artificial SD (10 h light/14 h dark) conditions. In the oslhy mutant, the diurnal expression of circadian clock-related genes was seriously affected under both LD and SD conditions. Furthermore, the expression of the flowering activators Ehd1, Hd3a and RFT1 was down-regulated and flowering repressors Hd1 and Ghd7 was up-regulated in the oslhy mutant under LD conditions. While the transcripts of flowering-related genes were not dramatically influenced under SD conditions. Dual-luciferase assays showed that OsLHY repressed the transcription of OsGI, Hd1, Ghd7, Hd3a, RFT1 and OsELF3, and activated the transcription of Ehd1. Moreover, the yeast one hybrid assay and electrophoretic mobility shift assay confirmed that OsLHY directly repressed OsGI, RFT1 and OsELF3 by binding to their promoters, which is consistent with that in Arabidopsis. These results suggested that the OsLHY can promote rice flowering mainly through regulating Hd1 and Ehd1.
Collapse
Affiliation(s)
- Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China
| | - Xue-Jiao Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., Hangzhou, 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China.
| |
Collapse
|
24
|
Luo X, Yin M, He Y. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Int J Mol Sci 2021; 23:466. [PMID: 35008892 PMCID: PMC8745532 DOI: 10.3390/ijms23010466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
The developmental switch from a vegetative phase to reproduction (flowering) is essential for reproduction success in flowering plants, and the timing of the floral transition is regulated by various environmental factors, among which seasonal day-length changes play a critical role to induce flowering at a season favorable for seed production. The photoperiod pathways are well known to regulate flowering time in diverse plants. Here, we summarize recent progresses on molecular mechanisms underlying the photoperiod control of flowering in the long-day plant Arabidopsis as well as the short-day plant soybean; furthermore, the conservation and diversification of photoperiodic regulation of flowering in these two species are discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Mengnan Yin
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China;
| | - Yuehui He
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Structural and functional analysis of CCT family genes in pigeonpea. Mol Biol Rep 2021; 49:217-226. [PMID: 34800230 DOI: 10.1007/s11033-021-06860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pigeonpea (Cajanus cajan L.) is a photoperiod-sensitive short-day plant. Understanding the flowering-related genes is critical to developing photoperiod insensitive cultivars. METHODS The CCT family genes were identified using 'CCT DOMAIN PROTEIN' as a keyword and localized on the chromosomes using the BLAST search option available at the LIS database. The centromeric positions were identified through BLAST search using the centromeric repeat sequence of C. cajan as a query against the chromosome-wise FASTA files downloaded from the NCBI database. The CCT family genes were classified based on additional domains and/or CCT domains. The orthologous and phylogenetic relationships were inferred using the OrthoFinder and MEGA 10.1 software, respectively. The CCT family genes' expression level in photoperiod-sensitive and insensitive genotypes was compared using RNA-seq data and qRT-PCR analysis. RESULTS We identified 33 CCT family genes in C. cajan distributed on ten chromosomes and nine genomic scaffolds. They were classified into CMF-type, COL-type, PRR-type, and GTCC- type. The CCT family genes of legumes exhibited an extensive orthologous relationship. Glycine max showed the maximum similarity of CCT family genes with C. cajan. The expression analysis of CCT family genes using photoperiod insensitive (ICP20338) and photoperiod sensitive (MAL3) genotypes of C. cajan demonstrated that CcCCT4 and CcCCT23 are the active CONSTANS in ICP20338. In contrast, only CcCCT23 is active in MAL3. CONCLUSION The CCT family genes in C. cajan vary considerably in structure and domain types. They are maximally similar to soybean's CCT family genes. The differential photoperiod response of pigeonpea genotypes, ICP20338 and MAL3, is possibly due to the difference in the number and types of active CONSTANS in them.
Collapse
|
26
|
Wang M, Yang C, Wei K, Zhao M, Shen L, Ji J, Wang L, Zhang D, Guo J, Zheng Y, Yu J, Zhu M, Liu H, Li YF. Temporal expression study of miRNAs in the crown tissues of winter wheat grown under natural growth conditions. BMC Genomics 2021; 22:793. [PMID: 34736408 PMCID: PMC8567549 DOI: 10.1186/s12864-021-08048-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Winter wheat requires prolonged exposure to low temperature to initiate flowering (vernalization). Shoot apical meristem of the crown is the site of cold perception, which produces leaf primordia during vegetative growth before developing into floral primordia at the initiation of the reproductive phase. Although many essential genes for winter wheat cold acclimation and floral initiation have been revealed, the importance of microRNA (miRNA) meditated post-transcriptional regulation in crowns is not well understood. To understand the potential roles of miRNAs in crown tissues, we performed a temporal expression study of miRNAs in crown tissues at the three-leaf stage, winter dormancy stage, spring green-up stage, and jointing stage of winter wheat grown under natural growth conditions. RESULTS In total, 348 miRNAs belonging to 298 miRNA families, were identified in wheat crown tissues. Among them, 92 differentially expressed miRNAs (DEMs) were found to be significantly regulated from the three-leaf stage to the jointing stage. Most of these DEMs were highly expressed at the three-leaf stage and winter dormancy stage, and then declined in later stages. Six DEMs, including miR156a-5p were markedly induced during the winter dormancy stage. Eleven DEMs, including miR159a.1, miR390a-5p, miR393-5p, miR160a-5p, and miR1436, were highly expressed at the green-up stage. Twelve DEMs, such as miR172a-5p, miR394a, miR319b-3p, and miR9676-5p were highly induced at the jointing stage. Moreover, 14 novel target genes of nine wheat or Pooideae-specific miRNAs were verified using RLM-5' RACE assay. Notably, six mTERFs and two Rf1 genes, which are associated with mitochondrial gene expression, were confirmed as targets of three wheat-specific miRNAs. CONCLUSIONS The present study not only confirmed the known miRNAs associated with phase transition and floral development, but also identified a number of wheat or Pooideae-specific miRNAs critical for winter wheat cold acclimation and floral development. Most importantly, this study provided experimental evidence that miRNA could regulate mitochondrial gene expression by targeting mTERF and Rf1 genes. Our study provides valuable information for further exploration of the mechanism of miRNA mediated post-transcriptional regulation during winter wheat vernalization and inflorescent initiation.
Collapse
Affiliation(s)
- Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.,Present address: National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenhui Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Liqiang Shen
- Jindal School of Management, University of Texas at Dallas, 800 W Campbell RD, Richardson, TX, 75080, USA
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Haiying Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China. .,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
27
|
Gutiérrez-Larruscain D, Abeyawardana OAJ, Krüger M, Belz C, Juříček M, Štorchová H. Transcriptomic study of the night break in Chenopodium rubrum reveals possible upstream regulators of the floral activator CrFTL1. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153492. [PMID: 34385120 DOI: 10.1016/j.jplph.2021.153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
Collapse
Affiliation(s)
- David Gutiérrez-Larruscain
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Oushadee A J Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic; Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic.
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Claudia Belz
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| |
Collapse
|
28
|
Zhu C, Li Z, Tang Y, Zhang L, Wen J, Wang Z, Su Y, Chen Y, Zhang H. TaWRKY10 plays a key role in the upstream of circadian gene TaLHY in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110973. [PMID: 34315591 DOI: 10.1016/j.plantsci.2021.110973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
TaLHY is an MYB transcription factor (TF) that is upregulated by salicylic acid induction and shows circadian rhythms. However, the study of the upstream regulatory factors is still unclear. In this study, we cloned the promoter sequence of the TaLHY homologous genes, verified the activity of the promoters, and identified important regions that affect promoter activity. Furthermore, we explored a possible upstream regulator of TaLHY, named TaWRKY10, which played a key role in the expression of TaLHY. We found that the three promoters pTaLHYa, pTaLHYb, and pTaLHYd had transcriptional activity in wheat protoplasts. All three promoters have W-Box, which can bind to WRKY TFs. Using virus-induced gene silencing (VIGS), after silencing TaWRKY10, the resistance of ChuanNong 19 (CN19) to stripe rust pathogen strain CYR32 was lost, and the expression level of the TaLHY homologous gene decreased. At the same time, in wheat protoplasts, the transcriptional activity of TaLHY homologous promoters improved after TaWRKY10 overexpression. This indicates that TaWRKY10 is a key gene for wheat immune response to stripe rust, and this gene may bind to TaLHYa, TaLHYb, and TaLHYd promoters to regulate the expression of TaLHY.
Collapse
Affiliation(s)
- Chaoyang Zhu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Zhongyuan Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yizhen Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Liqiang Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jiahe Wen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Zhiming Wang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yongying Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang'er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|
29
|
Moseley RC, Motta F, Tuskan GA, Haase SB, Yang X. Inference of Gene Regulatory Network Uncovers the Linkage between Circadian Clock and Crassulacean Acid Metabolism in Kalanchoë fedtschenkoi. Cells 2021; 10:2217. [PMID: 34571864 PMCID: PMC8471846 DOI: 10.3390/cells10092217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
The circadian clock drives time-specific gene expression, enabling biological processes to be temporally controlled. Plants that conduct crassulacean acid metabolism (CAM) photosynthesis represent an interesting case of circadian regulation of gene expression as stomatal movement is temporally inverted relative to stomatal movement in C3 plants. The mechanisms behind how the circadian clock enabled physiological differences at the molecular level is not well understood. Recently, the rescheduling of gene expression was reported as a mechanism to explain how CAM evolved from C3. Therefore, we investigated whether core circadian clock genes in CAM plants were re-phased during evolution, or whether networks of phase-specific genes were simply re-wired to different core clock genes. We identified candidate core clock genes based on gene expression features and then applied the Local Edge Machine (LEM) algorithm to infer regulatory relationships between this new set of core candidates and known core clock genes in Kalanchoë fedtschenkoi. We further inferred stomata-related gene targets for known and candidate core clock genes and constructed a gene regulatory network for core clock and stomata-related genes. Our results provide new insight into the mechanism of circadian control of CAM-related genes in K. fedtschenkoi, facilitating the engineering of CAM machinery into non-CAM plants for sustainable crop production in water-limited environments.
Collapse
Affiliation(s)
- Robert C. Moseley
- Department of Biology, Duke University, Durham, NC 27708, USA; (R.C.M.); (S.B.H.)
| | - Francis Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven B. Haase
- Department of Biology, Duke University, Durham, NC 27708, USA; (R.C.M.); (S.B.H.)
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
30
|
Sun C, Zhang K, Zhou Y, Xiang L, He C, Zhong C, Li K, Wang Q, Yang C, Wang Q, Chen C, Chen D, Wang Y, Liu C, Yang B, Wu H, Chen X, Li W, Wang J, Xu P, Wang P, Fang J, Chu C, Deng X. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1644-1657. [PMID: 33740293 PMCID: PMC8384598 DOI: 10.1111/pbi.13580] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 05/11/2023]
Abstract
Circadian clock, an endogenous time-setting mechanism, allows plants to adapt to unstable photoperiod conditions and induces flowering with proper timing. In Arabidopsis, the central clock oscillator was formed by a series of interlocked transcriptional feedback loops, but little is known in rice so far. By MutMap technique, we identified the candidate gene OsLHY from a later flowering mutant lem1 and further confirmed it through genetic complementation, RNA interference knockdown, and CRISPR/Cas9-knockout. Global transcriptome profiling and expression analyses revealed that OsLHY might be a vital circadian rhythm component. Interestingly, oslhy flowered later under ≥12 h day length but headed earlier under ≤11 h day length. qRT-PCR results exhibited that OsLHY might function through OsGI-Hd1 pathway. Subsequent one-hybrid assays in yeast, DNA affinity purification qPCR, and electrophoretic mobility shift assays confirmed OsLHY could directly bind to the CBS element in OsGI promoter. Moreover, the critical day length (CDL) for function reversal of OsLHY in oslhy (11-12 h) was prolonged in the double mutant oslhy osgi (about 13.5 h), indicating that the CDL set by OsLHY was OsGI dependent. Additionally, the dual function of OsLHY entirely relied on Hd1, as the double mutant oslhy hd1 showed the same heading date with hd1 under about 11.5, 13.5, and 14 h day lengths. Together, OsLHY could fine-tune the CDL by directly regulating OsGI, and Hd1 acts as the final effector of CDL downstream of OsLHY. Our study illustrates a new regulatory mechanism between the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Kuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yi Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lin Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chao Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Ke Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiuxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanpeng Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Congping Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanqiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Hualin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
| | - Chengcai Chu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
31
|
Sorkin ML, Nusinow DA. Time Will Tell: Intercellular Communication in the Plant Clock. TRENDS IN PLANT SCIENCE 2021; 26:706-719. [PMID: 33468432 DOI: 10.1016/j.tplants.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 05/17/2023]
Abstract
Multicellular organisms have evolved local and long-distance signaling mechanisms to synchronize development and response to stimuli among a complex network of cells, tissues, and organs. Biological timekeeping is one such activity that is suggested to be coordinated within an organism to anticipate and respond to daily and seasonal patterns in the environment. New research into the plant clock suggests circadian rhythms are communicated between cells and across long distances. However, further clarity is required on the nature of the signaling molecules and the mechanisms underlying signal translocation. Here we summarize the roles and properties of tissue-specific circadian rhythms, discuss the evidence for local and long-distance clock communication, and evaluate the potential signaling molecules and transport mechanisms involved in this system.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
32
|
Transcriptome Profile Analysis of Strawberry Leaves Reveals Flowering Regulation under Blue Light Treatment. Int J Genomics 2021; 2021:5572076. [PMID: 34235213 PMCID: PMC8216796 DOI: 10.1155/2021/5572076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
Blue light is an important signal that regulates the flowering of strawberry plants. To reveal the mechanism of early flowering under blue light treatment at the transcriptional regulation level, seedlings of cultivated strawberry (Fragaria × ananassa Duch.) "Benihoppe" were subjected to a white light treatment (WL) and blue light treatment (BL) until their flowering. To detect the expression patterns of genes in response to BL, a transcriptome analysis was performed based on RNA-Seq. The results identified a total of 6875 differentially expressed genes (DEGs) that responded to BL, consisting of 3138 (45.64%) downregulated ones and 3737 (54.36%) upregulated ones. These DEGs were significantly enriched into 98 GO terms and 71 KEGG pathways based on gene function annotation. Among the DEGs, the expression levels of genes that might participate in light signaling (PhyB, PIFs, and HY5) and circadian rhythm (FKF1, CCA1, LHY, and CO) in plants were altered under BL. The BBX transcription factors which responded to BL were also identified. The result showed that the FaBBX29, one of strawberry's BBX family genes, may play an important role in flowering regulation. Our results provide a timely, comprehensive view and a reliable reference data resource for further study of flowering regulation under different light qualities.
Collapse
|
33
|
Transcriptional Cascade in the Regulation of Flowering in the Bamboo Orchid Arundina graminifolia. Biomolecules 2021; 11:biom11060771. [PMID: 34063940 PMCID: PMC8224086 DOI: 10.3390/biom11060771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Flowering in orchids is the most important horticultural trait regulated by multiple mechanisms. Arundina graminifolia flowers throughout the year unlike other orchids with a narrow flowering span. However, little is known of the genetic regulation of this peculiar flowering pattern. This study identifies a number of transcription factor (TF) families in five stages of flower development and four tissue types through RNA-seq transcriptome. About 700 DEGs were annotated to the transcription factor category and classified into 35 TF families, which were involved in multiple signaling pathways. The most abundant TF family was bHLH, followed by MYB and WRKY. Some important members of the bHLH, WRKY, MYB, TCP, and MADS-box families were found to regulate the flowering genes at transcriptional levels. Particularly, the TFs WRKY34 and ERF12 possibly respond to vernalization and photoperiod signaling, MYB108, RR9, VP1, and bHLH49 regulate hormonal balance, and CCA1 may control the circadian pathway. MADS-box TFs including MADS6, 14, 16, AGL5, and SEP may be important regulators of flowering in A. graminifolia. Therefore, this study provides a theoretical basis for understanding the molecular mechanism of flowering in A. graminifolia.
Collapse
|
34
|
Cervela-Cardona L, Yoshida T, Zhang Y, Okada M, Fernie A, Mas P. Circadian Control of Metabolism by the Clock Component TOC1. FRONTIERS IN PLANT SCIENCE 2021; 12:683516. [PMID: 34194455 PMCID: PMC8238050 DOI: 10.3389/fpls.2021.683516] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 05/11/2023]
Abstract
Photosynthesis in chloroplasts during the day and mitochondrial respiration during the night execute nearly opposing reactions that are coordinated with the internal cellular status and the external conditions. Here, we describe a mechanism by which the Arabidopsis clock component TIMING OF CAB EXPRESSION1 (TOC1) contributes to the diurnal regulation of metabolism. Proper expression of TOC1 is important for sustaining cellular energy and for the diel and circadian oscillations of sugars, amino acids and tricarboxylic acid (TCA) cycle intermediates. TOC1 binds to the promoter of the TCA-related gene FUMARASE 2 to repress its expression at night, which results in decreased fumarate accumulation in TOC1 over-expressing plants and increased in toc1-2 mutant. Genetic interaction studies confirmed that over-expression of FUMARASE 2 in TOC1 over-expressing plants alleviates the molecular and physiological energy-deprivation phenotypes of TOC1 over-expressing plants. Thus, we propose that the tandem TOC1-FUMARASE 2 is one of the mechanisms that contribute to the regulation of plant metabolism during the day and night.
Collapse
Affiliation(s)
- Luis Cervela-Cardona
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Plant Biotechnology, Plovdiv, Bulgaria
| | - Masaaki Okada
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Plant Biotechnology, Plovdiv, Bulgaria
| | - Paloma Mas
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- *Correspondence: Paloma Mas,
| |
Collapse
|
35
|
Zhang S, Zhang Y, Li K, Yan M, Zhang J, Yu M, Tang S, Wang L, Qu H, Luo L, Xuan W, Xu G. Nitrogen Mediates Flowering Time and Nitrogen Use Efficiency via Floral Regulators in Rice. Curr Biol 2020; 31:671-683.e5. [PMID: 33278354 DOI: 10.1016/j.cub.2020.10.095] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022]
Abstract
High nitrogen (N) fertilization for maximizing crop yield commonly leads to postponed flowering time (heading date in rice) and ripening, thus affecting resources use efficiency and followed planting time. We found that N-mediated heading date-1 (Nhd1) can directly activate florigen gene OsHd3a in rice. Inactivation of either Nhd1 or OsHd3a results in delay and insensitivity to N supply of flowering time. Knockout of Nhd1 increases N uptake and utilization efficiency at low-to-moderate N level under both short- and long-day field conditions. Increasing glutamine, the product of N assimilation, can upregulate expression of Nhd1, which in turn downregulates OsFd-GOGAT expression and OsFd-GOGAT activity, displaying a Nhd1-controlled negative feedback regulatory pathway of N assimilation. Moreover, N fertilization effect on rice flowering time shows genetically controlled diversity, and single-nucleotide polymorphism in Nhd1 promoter may relate to different responses of flowering time to N application. Nhd1 thus balances flowering time and N use efficiency in addition to photoperiod in rice.
Collapse
Affiliation(s)
- Shunan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Jinfei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Genome-Wide Characterization and Expression of Two-Component System Genes in Cytokinin-Regulated Gall Formation in Zizania latifolia. PLANTS 2020; 9:plants9111409. [PMID: 33105697 PMCID: PMC7690396 DOI: 10.3390/plants9111409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
The thickening of Zizania latifolia shoots, referred to as gall formation, depends on infection with the fungal endophyte Ustilago esculenta. The swollen and juicy shoots are a popular vegetable in Asia. A key role for cytokinin action in this process was postulated. Here, trans-zeatin stimulated swelling in fungi-infected Z. latifolia. A two-component system (TCS) linked cytokinin binding to receptors with transcriptional regulation in the nucleus and played important roles in diverse biological processes. We characterized 69 TCS genes encoding for 25 histidine kinase/histidine-kinase-like (HK(L)) (21 HKs and 4 HKLs), 8 histidine phosphotransfer proteins (HP) (5 authentic and 3 pseudo), and 36 response regulators (RR; 14 type A, 14 type B, 2 type C, and 6 pseudo) in the genome of Z. latifolia. These TCS genes have a close phylogenetic relationship with their rice counterparts. Nineteen duplicated TCS gene pairs were found and the ratio of nonsynonymous to synonymous mutations indicated that a strong purifying selection acted on these duplicated genes, leading to few mutations during evolution. Finally, ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and ZlPHYA expression was associated with gall formation. Among them, ARR5, ARR9, and ZlPHYA are quickly induced by trans-zeatin, suggesting a role for cytokinin signaling in shoot swelling of Z. latifolia.
Collapse
|
37
|
Wang Z, Ma W, Zhu T, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Multi-omics sequencing provides insight into floral transition in Catalpa bungei. C.A. Mey. BMC Genomics 2020; 21:508. [PMID: 32698759 PMCID: PMC7376858 DOI: 10.1186/s12864-020-06918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Floral transition plays an important role in development, and proper time is necessary to improve the value of valuable ornamental trees. The molecular mechanisms of floral transition remain unknown in perennial woody plants. "Bairihua" is a type of C. bungei that can undergo floral transition in the first planting year. RESULTS Here, we combined short-read next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to provide a more complete view of transcriptome regulation during floral transition in C. bungei. The circadian rhythm-plant pathway may be the critical pathway during floral transition in early flowering (EF) C. bungei, according to horizontal and vertical analysis in EF and normal flowering (NF) C. bungei. SBP and MIKC-MADS-box were seemingly involved in EF during floral transition. A total of 61 hub genes were associated with floral transition in the MEturquoise model with Weighted Gene Co-expression Network Analysis (WGCNA). The results reveal that ten hub genes had a close connection with the GASA homologue gene (Cbu.gene.18280), and the ten co-expressed genes belong to five flowering-related pathways. Furthermore, our study provides new insights into the complexity and regulation of alternative splicing (AS). The ratio or number of isoforms of some floral transition-related genes is different in different periods or in different sub-genomes. CONCLUSIONS Our results will be a useful reference for the study of floral transition in other perennial woody plants. Further molecular investigations are needed to verify our sequencing data.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Fangqun Ouyang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Lisheng Kong
- Department of Biology Centre for Forest Biology, University of Victoria, Victoria, BC 11 Canada
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 PR China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| |
Collapse
|
38
|
Shafiee Kamalabad M, Heberle AM, Thedieck K, Grzegorczyk M. Partially non-homogeneous dynamic Bayesian networks based on Bayesian regression models with partitioned design matrices. Bioinformatics 2020; 35:2108-2117. [PMID: 30395165 PMCID: PMC6581439 DOI: 10.1093/bioinformatics/bty917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 12/25/2022] Open
Abstract
Motivation Non-homogeneous dynamic Bayesian networks (NH-DBNs) are a popular modelling tool for learning cellular networks from time series data. In systems biology, time series are often measured under different experimental conditions, and not rarely only some network interaction parameters depend on the condition while the other parameters stay constant across conditions. For this situation, we propose a new partially NH-DBN, based on Bayesian hierarchical regression models with partitioned design matrices. With regard to our main application to semi-quantitative (immunoblot) timecourse data from mammalian target of rapamycin complex 1 (mTORC1) signalling, we also propose a Gaussian process-based method to solve the problem of non-equidistant time series measurements. Results On synthetic network data and on yeast gene expression data the new model leads to improved network reconstruction accuracies. We then use the new model to reconstruct the topologies of the circadian clock network in Arabidopsis thaliana and the mTORC1 signalling pathway. The inferred network topologies show features that are consistent with the biological literature. Availability and implementation All datasets have been made available with earlier publications. Our Matlab code is available upon request. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mahdi Shafiee Kamalabad
- Department of Mathematics, Bernoulli Institute, Faculty of Science and Engineering, University of Groningen, AG Groningen, The Netherlands
| | - Alexander Martin Heberle
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Kathrin Thedieck
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Marco Grzegorczyk
- Department of Mathematics, Bernoulli Institute, Faculty of Science and Engineering, University of Groningen, AG Groningen, The Netherlands
| |
Collapse
|
39
|
Identification and characterization of PEBP family genes reveal CcFT8 a probable candidate for photoperiod insensitivity in C. cajan. 3 Biotech 2020; 10:194. [PMID: 32274290 DOI: 10.1007/s13205-020-02180-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/23/2020] [Indexed: 01/24/2023] Open
Abstract
Understanding the molecular mechanism underlying photoperiod sensitivity will play a crucial role in extending the cropping area of Cajanus cajan, a photoperiod sensitive major grain legume of India and Africa. In flowering plants, Flowering locus T (FT) gene is involved in the production of florigen molecule which is essential for induction of flowering, influenced largely by the duration of photoperiod. To understand the structural and regulatory nature of this gene, a genome-wide survey was carried out, revealing the presence of 13 PEBP (FT) family genes in C. cajan. Based on the gene expression profiling of 13 PEBP genes across the 30 tissues of C. cajan, CcFT6 and CcFT8 were found to be probable Flowering locus T genes responsible for the production of florigen as both of them showed expression in reproductive leaf. Expression analysis in photoperiod sensitive, MAL3 genotype revealed that CcFT6 is upregulated under SD. However, in photoperiod insensitive genotype (ICP20338) CcFT6 and CcFT8 were upregulated in SD and LD, respectively. Hence, in ICP20338 under SD, flowering induction occurs with the involvement of CcFT6 while under LD, flowering induction seems to be associated with the expression of CcFT8. CcFT6 was found to be expressed only under favourable photoperiodic condition (SD) in both MAL3 and ICP20338 and may be regulated through a photoperiod dependent pathway. The presence of additional florigen producing gene, CcFT8 in ICP20338 which has the ability to flower in a photoperiod independent manner under LD conditions might provide some clues on its photoperiod insensitive nature. This study will provide a detailed characterization of the genes involved in photoperiodic regulation of flowering in C. cajan.
Collapse
|
40
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
Li YF, Wei K, Wang M, Wang L, Cui J, Zhang D, Guo J, Zhao M, Zheng Y. Identification and Temporal Expression Analysis of Conserved and Novel MicroRNAs in the Leaves of Winter Wheat Grown in the Field. Front Genet 2019; 10:779. [PMID: 31552091 PMCID: PMC6737308 DOI: 10.3389/fgene.2019.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
Cold acclimation and vegetative/reproductive transition are two important evolutionary adaptive mechanisms for winter wheat surviving the freezing temperature in winter and successful seeds setting in the next year. MicroRNA (miRNA) is a class of regulatory small RNAs (sRNAs), which plays critical roles in the growth and development of plants. However, the regulation mechanism of miRNAs during cold acclimation and vegetative/reproductive transition of winter wheat is not much understood. In this study, four sRNA libraries from leaves of winter wheat grown in the field at the three-leaf stage, winter dormancy stage, spring green-up stage, and jointing stage were analyzed to identify known and novel miRNAs and to understand their potential roles in the growth and development of winter wheat. We examined miRNA expression using a high-throughput sequencing technique. A total of 373 known, 55 novel, and 27 putative novel miRNAs were identified. Ninety-one miRNAs were found to be differentially expressed at the four stages. Among them, the expression of six known and eight novel miRNAs was significantly suppressed at the winter dormancy stage, whereas the expression levels of seven known and eight novel miRNAs were induced at this stage; three known miRNAs and three novel miRNAs were significantly induced at the spring green-up stage; six known miRNAs were induced at the spring green-up stage and reached the highest expression level at the jointing stage; and 20 known miRNAs and 10 novel miRNAs were significantly induced at the jointing stage. Expression of a number of representative differentially expressed miRNAs was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Potential target genes for known and novel miRNAs were predicted. Moreover, six novel target genes for four Pooideae species-specific miRNAs and two novel miRNAs were verified using the RNA ligase-mediated 5'-rapid amplification of cDNA ends (RLM-5'RACE) technique. These results indicate that miRNAs are key non-coding regulatory factors modulating the growth and development of wheat. Our study provides valuable information for in-depth understanding of the regulatory mechanism of miRNAs in cold acclimation and vegetative/reproductive transition of winter wheat grown in the field.
Collapse
Affiliation(s)
- Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Junxia Cui
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yun Zheng
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
42
|
Yamaura S, Yamauchi Y, Makihara M, Yamashino T, Ishikawa A. CCA1 and LHY contribute to nonhost resistance to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana. Biosci Biotechnol Biochem 2019; 84:76-84. [PMID: 31478783 DOI: 10.1080/09168451.2019.1660612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The circadian clock enables plants to adapt to their environment and control numerous physiological processes, including plant-pathogen interactions. However, it is unknown if the circadian clock controls nonhost resistance (NHR) in plants. To find out, we analyzed microarray data with the web-based tool DIURNAL to reveal that NHR-related genes show rhythmic expression patterns in the absence of a pathogen challenge. Our clock mutant analyses found that cca1-1 lhy-11 double mutant showed compromised NHR to Pyricularia oryzae, suggesting that two components of the circadian clock, CCA1 and LHY, are involved in regulating penetration resistance in Arabidopsis thaliana. By analyzing pen2 double mutants, we revealed that CCA1 contributes to time-of-day-dependent penetration resistance as a positive regulator and that LHY regulates post-penetration resistance as a positive regulator. Taken together, our results suggest that the circadian clock regulates the time-of-day-dependent NHR to P. oryzae and thus enables A. thaliana to counteract pathogen attacks.Abbreviations: EE: evening element; ETI: effector-triggered immunity; NHR: nonhost resistance; PAMP: pathogen-associated molecular pattern; PTI: PAMP-triggered immunity; SAR: systemic acquired resistance.
Collapse
Affiliation(s)
- Saaya Yamaura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Yuri Yamauchi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Motoi Makihara
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Ishikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
43
|
Zhou A, Sun H, Dai S, Feng S, Zhang J, Gong S, Wang J. Identification of Transcription Factors Involved in the Regulation of Flowering in Adonis Amurensis Through Combined RNA-seq Transcriptomics and iTRAQ Proteomics. Genes (Basel) 2019; 10:genes10040305. [PMID: 31003538 PMCID: PMC6523232 DOI: 10.3390/genes10040305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Temperature is one of the most important environmental factors affecting flowering in plants. Adonis amurensis, a perennial herbaceous flower that blooms in early spring in northeast China where the temperature can drop to −15 °C, is an ideal model for studying the molecular mechanisms of flowering at extremely low temperatures. This study first investigated global gene expression profiles at different developmental stages of flowering in A. amurensis by RNA-seq transcriptome and iTRAQ proteomics. Finally, 123 transcription factors (TFs) were detected in both the transcriptome and the proteome. Of these, 66 TFs belonging to 14 families may play a key role in multiple signaling pathways of flowering in A. amurensis. The TFs FAR1, PHD, and B3 may be involved in responses to light and temperature, while SCL, SWI/SNF, ARF, and ERF may be involved in the regulation of hormone balance. SPL may regulate the age pathway. Some members of the TCP, ZFP, MYB, WRKY, and bHLH families may be involved in the transcriptional regulation of flowering genes. The MADS-box TFs are the key regulators of flowering in A. amurensis. Our results provide a direction for understanding the molecular mechanisms of flowering in A. amurensis at low temperatures.
Collapse
Affiliation(s)
- Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Hongwei Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shengyue Dai
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shuang Feng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China.
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
44
|
Lin K, Zhao H, Gan S, Li G. Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time. Gene 2019; 700:131-138. [PMID: 30917931 DOI: 10.1016/j.gene.2019.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The circadian clock synchronizes internal and external stimuli to ensure numerous biological processes occur at the optimal time. EARLY FLOWERING 4 (ELF4) is a key evening-phased component of the circadian clock and essential for photoperiod-dependent flowering time regulation in Arabidopsis thaliana. There are four homologous ELF4-like (EFL1-EFL4) genes in the Arabidopsis genome but their functions are unknown. Protein sequence alignment and phylogenetic analysis showed that these four EFL proteins contained an evolutionarily conserved domain, DUF1313, of unknown function. To investigate the physical roles of these genes in Arabidopsis, we overexpressed the four homologous EFL genes in the elf4 mutant background. Under both long-day (LD) and short-day (SD) conditions, overexpression of EFL1 not only completely rescued the early flowering phenotype of the elf4 mutant, but also delayed flowering. Overexpression of EFL2, however, failed to rescue this phenotype and overexpression of EFL3 partially rescued the early flowering phenotype. The transcription levels of the key flowering time regulation genes CONSTANS (CO) and FLOWERING LOCUS T (FT) were significantly decreased in the EFL1- and EFL3-overexpressing transgenic lines in a dose-dependent manner, compared with the elf4 mutant. These results suggest that EFL1 and EFL3 are involved in flowering time regulation in Arabidopsis.
Collapse
Affiliation(s)
- Ke Lin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; Department of Biology Science and Technology, Taishan University, Tai'an 271000, Shandong, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Shuo Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
45
|
Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep 2019; 9:4814. [PMID: 30886204 PMCID: PMC6423321 DOI: 10.1038/s41598-019-41234-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
In Arabidopsis, a large subset of heat responsive genes exhibits diurnal or circadian oscillations. However, to what extent the dimension of time and/or the circadian clock contribute to heat stress responses remains largely unknown. To determine the direct contribution of time of day and/or the clock to differential heat stress responses, we probed wild-type and mutants of the circadian clock genes CCA1, LHY, PRR7, and PRR9 following exposure to heat (37 °C) and moderate cold (10 °C) in the early morning (ZT1) and afternoon (ZT6). Thousands of genes were differentially expressed in response to temperature, time of day, and/or the clock mutation. Approximately 30% more genes were differentially expressed in the afternoon compared to the morning, and heat stress significantly perturbed the transcriptome. Of the DEGs (~3000) specifically responsive to heat stress, ~70% showed time of day (ZT1 or ZT6) occurrence of the transcriptional response. For the DEGs (~1400) that are shared between ZT1 and ZT6, we observed changes to the magnitude of the transcriptional response. In addition, ~2% of all DEGs showed differential responses to temperature stress in the clock mutants. The findings in this study highlight a significant role for time of day in the heat stress responsive transcriptome, and the clock through CCA1 and LHY, appears to have a more profound role than PRR7 and PRR9 in modulating heat stress responses during the day. Our results emphasize the importance of considering the dimension of time in studies on abiotic stress responses in Arabidopsis.
Collapse
|
46
|
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. Int J Mol Sci 2019; 20:ijms20051211. [PMID: 30857376 PMCID: PMC6429127 DOI: 10.3390/ijms20051211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.
Collapse
|
47
|
Nagano AJ, Kawagoe T, Sugisaka J, Honjo MN, Iwayama K, Kudoh H. Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. NATURE PLANTS 2019; 5:74-83. [PMID: 30617252 DOI: 10.1038/s41477-018-0338-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/26/2018] [Indexed: 05/18/2023]
Abstract
As most organisms have evolved in seasonal environments, their environmental responses should be adapted to seasonal transitions. Here we show that the combination of temperature and day length shapes the seasonal dynamics of the transcriptome and adaptation to seasonal environments in a natural habitat of a perennial plant Arabidopsis halleri subsp. gemmifera. Weekly transcriptomes for two years and bihourly diurnal transcriptomes on the four equinoxes/solstices, identified 2,879 and 7,185 seasonally- and diurnally-oscillating genes, respectively. Dominance of annual temperature changes for defining seasonal oscillations of gene expressions was indicated by controlled environment experiments manipulating the natural 1.5-month lag of temperature behind day length. We found that plants have higher fitness in 'natural' chambers than in 'unnatural' chambers simulating in-phase and anti-phase oscillations between temperature and day length. Seasonal temperature responses were disturbed in unnatural chambers. Our results demonstrate how plants use multiple types of environmental information to adapt to seasonal environments.
Collapse
Affiliation(s)
- Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Otsu, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | | | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Koji Iwayama
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Center for Data Science Education and Research, Shiga University, Hikone, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| |
Collapse
|
48
|
Susila H, Nasim Z, Ahn JH. Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time. Int J Mol Sci 2018; 19:ijms19103196. [PMID: 30332820 PMCID: PMC6214042 DOI: 10.3390/ijms19103196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
In plants, environmental conditions such as temperature affect survival, growth, and fitness, particularly during key stages such as seedling growth and reproduction. To survive and thrive in changing conditions, plants have evolved adaptive responses that tightly regulate developmental processes such as hypocotyl elongation and flowering time in response to environmental temperature changes. Increases in temperature, coupled with increasing fluctuations in local climate and weather, severely affect our agricultural systems; therefore, understanding the mechanisms by which plants perceive and respond to temperature is critical for agricultural sustainability. In this review, we summarize recent findings on the molecular mechanisms of ambient temperature perception as well as possible temperature sensing components in plants. Based on recent publications, we highlight several temperature response mechanisms, including the deposition and eviction of histone variants, DNA methylation, alternative splicing, protein degradation, and protein localization. We discuss roles of each proposed temperature-sensing mechanism that affects plant development, with an emphasis on flowering time. Studies of plant ambient temperature responses are advancing rapidly, and this review provides insights for future research aimed at understanding the mechanisms of temperature perception and responses in plants.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
49
|
Mwimba M, Karapetyan S, Liu L, Marqués J, McGinnis EM, Buchler NE, Dong X. Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat Commun 2018; 9:4290. [PMID: 30327472 PMCID: PMC6191426 DOI: 10.1038/s41467-018-06692-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/20/2018] [Indexed: 01/27/2023] Open
Abstract
Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.
Collapse
Affiliation(s)
- Musoki Mwimba
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Jorge Marqués
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Erin M McGinnis
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA. .,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
50
|
The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Dev Cell 2018; 45:101-113.e4. [DOI: 10.1016/j.devcel.2018.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
|