1
|
Hu W, Lagarias JC. A cytosol-tethered YHB variant of phytochrome B retains photomorphogenic signaling activity. PLANT MOLECULAR BIOLOGY 2024; 114:72. [PMID: 38874897 PMCID: PMC11178650 DOI: 10.1007/s11103-024-01469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Fichman Y, Xiong H, Sengupta S, Morrow J, Loog H, Azad RK, Hibberd JM, Liscum E, Mittler R. Phytochrome B regulates reactive oxygen signaling during abiotic and biotic stress in plants. THE NEW PHYTOLOGIST 2023; 237:1711-1727. [PMID: 36401805 DOI: 10.1111/nph.18626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Johanna Morrow
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
- Department of Biology and Environmental Sciences, Westminster College, 501 Westminster Ave, Fulton, MO, 65251, USA
| | - Hailey Loog
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
- Department of Mathematics, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Emmanuel Liscum
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
| | - Ron Mittler
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
3
|
Fichman Y, Xiong H, Sengupta S, Morrow J, Loog H, Azad RK, Hibberd JM, Liscum E, Mittler R. Phytochrome B regulates reactive oxygen signaling during abiotic and biotic stress in plants. THE NEW PHYTOLOGIST 2023. [PMID: 36401805 DOI: 10.1101/2021.11.29.470478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Johanna Morrow
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
- Department of Biology and Environmental Sciences, Westminster College, 501 Westminster Ave, Fulton, MO, 65251, USA
| | - Hailey Loog
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
- Department of Mathematics, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Emmanuel Liscum
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
| | - Ron Mittler
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
4
|
Imsande KG, Batzli JM. Additional green light induces shade response symptoms in Brassica rapa as evidenced by increased lateral root spread. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000723. [PMID: 36618026 PMCID: PMC9813772 DOI: 10.17912/micropub.biology.000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
In some plant species, green light (500 to 570 nm) has been shown to act as a shade signal, which stimulates non-photosynthetic photoreceptors to initiate a response that promotes shading symptoms, including lateral root formation. No studies to date have examined whether green light induces shading symptoms in Brassica rapa specifically. Here, we report increased hypocotyl length, root width, and increased width:depth ratio of root architecture in plants grown under additional green light compared to red and blue light, and white light alone. Results indicate that green light acts as a shade signal in B. rapa to induce shading symptoms, including wider roots.
Collapse
Affiliation(s)
- Kaylynn G Imsande
- Department of Biology Core Curriculum (Biocore), University of Wisconsin – Madison, WI, USA
,
Correspondence to: Kaylynn G Imsande (
)
| | - Janet M Batzli
- Department of Biology Core Curriculum (Biocore), University of Wisconsin – Madison, WI, USA
| |
Collapse
|
5
|
Diurnal control of intracellular distributions of PAS-Histidine kinase 1 and its interactions with partner proteins in the moss Physcomitrium patens. Biochem Biophys Res Commun 2022; 616:1-7. [DOI: 10.1016/j.bbrc.2022.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
|
6
|
Zeidler M. Physiological Analysis of Phototropic Responses to Blue and Red Light in Arabidopsis. Methods Mol Biol 2022; 2494:37-45. [PMID: 35467199 DOI: 10.1007/978-1-0716-2297-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants utilize light as sole energy source. To maximize light capture, they are able to detect the light direction and orient themselves toward the light source. This phototropic response is mediated by the plant blue-light photoreceptors phototropin1 and phototropin2 (phot1 and phot2). Although fully differentiated plants also exhibit this response, it can be best observed in etiolated seedlings. Differences in light between the illuminated and shaded site of a seedling stem lead to changes in the auxin distribution, resulting in cell elongation on the shaded site. Since phototropism connects light perception, signaling, and auxin transport, it is of great interest to analyze this response with a fast and simple method. Moreover, pre-exposure to red light enhances the phototropic response via phytochrome A (phyA) and phyB action. Here we describe a method to analyze the phototropic response of Arabidopsis seedlings to blue light and the enhanced response with a red-light pretreatment. With numerous mutants available, its fast germination, and its small size, Arabidopsis is well suited for this analysis. Different genotypes can be simultaneously probed in less than a week.
Collapse
Affiliation(s)
- Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
7
|
Zeidler M. Analysis of Phytochrome-Dependent Seed Germination in Arabidopsis. Methods Mol Biol 2022; 2494:117-124. [PMID: 35467203 DOI: 10.1007/978-1-0716-2297-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Light-dependent seed germination guarantees seedling proximity to the soil surface, enabling quick photosynthetic energy supply. While seedling hypocotyl length is mainly used in phytochrome physiological assays to determine the functional impact of photoreceptor point mutations, different intracellular localizations, or the function of signal transduction components, phytochrome-controlled seed germination offers a different, very sensitive tool to test the phytochrome photoreceptor network. Photon fluences as low as 1 nmol m-2 are sufficient to elicit the phytochrome A (phyA)-dependent very low fluence response (VLFR), whereas higher fluences (> 10 μmol m-2) are needed to elicit the phyB-controlled and phyB-photoreversible low fluence response (LFR). Taking advantage of the different sensitivities of both phytochromes to different light qualities and quantities, a screening protocol is presented to score germination under different light conditions.
Collapse
Affiliation(s)
- Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
8
|
Hoang QTN, Han YJ, Kim JI. Plant Phytochromes and their Phosphorylation. Int J Mol Sci 2019; 20:ijms20143450. [PMID: 31337079 PMCID: PMC6678601 DOI: 10.3390/ijms20143450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.
Collapse
Affiliation(s)
- Quyen T N Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
9
|
Sineshchekov V, Koppel L, Kim JI. The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA’ and phyA’’, suggesting that autophosphorylation at these sites is not involved in the phyA differentiation. Photochem Photobiol Sci 2019; 18:1242-1248. [DOI: https:/doi.org/10.1039/c8pp00574e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2023]
|
10
|
Sineshchekov V. Two molecular species of phytochrome A with distinct modes of action. FUNCTIONAL PLANT BIOLOGY 2019; 46:118. [DOI: https:/doi.org/10.1071/fp18156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Adaptation of plants to environmental light conditions is achieved via operation of a highly complex photoreceptor apparatus. It includes the phytochrome system comprising phytochromes A and B (phyA and phyB) as the major components. phyA differs from phyB by several properties, including its ability to mediate all three photoresponse modes – the very low and low fluence responses (VLFR and LFR respectively) and the high irradiance responses (HIR), whereas phyB is responsible for LFR. This review discusses the uniqueness of phyA in terms of its structural and functional heterogeneity. The photoreceptor is presented in monocots and dicots by two native molecular species, phyAʹ and phyAʹʹ, differing by spectroscopic, photochemical and phenomenological properties. phyA differentiation into substates includes post-translational phosphorylation of a serine residue(s) at the N-terminal extension of the molecule with phyAʹ being the phosphorylated species and phyAʹʹ, dephosphorylated. They differ also by their mode of action, which depends on the cellular context. The current working hypothesis is that phyAʹ mediates VLFR and phyAʹʹ, HIR and LFR. The content and functional activity of the two pools are regulated by light and by phosphatase/kinase equilibrium and pH in darkness, what contributes to the fine-tuning of the phytochrome system. Detection of the native pools of the cryptogamic plant fern Adiantum capillus-veneris phy1 (phy1ʹ and phy1ʹʹ) similar to those of phyA suggests that the structural and functional heterogeneity of phyA is not a unique phenomenon and may have arisen earlier in the molecular evolution of the phytochrome system than the appearance of the angiosperm phytochromes.
Collapse
|
11
|
Sineshchekov V. Two molecular species of phytochrome A with distinct modes of action. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:118-135. [PMID: 32172754 DOI: 10.1071/fp18156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 06/10/2023]
Abstract
Adaptation of plants to environmental light conditions is achieved via operation of a highly complex photoreceptor apparatus. It includes the phytochrome system comprising phytochromes A and B (phyA and phyB) as the major components. phyA differs from phyB by several properties, including its ability to mediate all three photoresponse modes - the very low and low fluence responses (VLFR and LFR respectively) and the high irradiance responses (HIR), whereas phyB is responsible for LFR. This review discusses the uniqueness of phyA in terms of its structural and functional heterogeneity. The photoreceptor is presented in monocots and dicots by two native molecular species, phyA' and phyA'', differing by spectroscopic, photochemical and phenomenological properties. phyA differentiation into substates includes post-translational phosphorylation of a serine residue(s) at the N-terminal extension of the molecule with phyA' being the phosphorylated species and phyA'', dephosphorylated. They differ also by their mode of action, which depends on the cellular context. The current working hypothesis is that phyA' mediates VLFR and phyA'', HIR and LFR. The content and functional activity of the two pools are regulated by light and by phosphatase/kinase equilibrium and pH in darkness, what contributes to the fine-tuning of the phytochrome system. Detection of the native pools of the cryptogamic plant fern Adiantum capillus-veneris phy1 (phy1' and phy1'') similar to those of phyA suggests that the structural and functional heterogeneity of phyA is not a unique phenomenon and may have arisen earlier in the molecular evolution of the phytochrome system than the appearance of the angiosperm phytochromes.
Collapse
Affiliation(s)
- V Sineshchekov
- Biology Department, M.V. Lomonosov Moscow State University, Moscow, Russia. Email
| |
Collapse
|
12
|
Sineshchekov V, Koppel L, Kim JI. The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA′ and phyA′′, suggesting that autophosphorylation at these sites is not involved in the phyA differentiation. Photochem Photobiol Sci 2019; 18:1242-1248. [DOI: 10.1039/c8pp00574e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modification of phytochrome A at the N-terminus yields its two types, phyA′ and phyA′′. This work excludes the known (oat) phyA autophosphorylation at serine 8 and serine 18 as its possible mechanism.
Collapse
Affiliation(s)
- V. Sineshchekov
- Biology Department
- M. V. Lomonosov Moscow State University
- Moscow 119234
- Russia
| | - L. Koppel
- Biology Department
- M. V. Lomonosov Moscow State University
- Moscow 119234
- Russia
| | - J.-I. Kim
- Department of Biotechnology and Kumho Life Science Laboratory
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| |
Collapse
|
13
|
Helizon H, Rösler-Dalton J, Gasch P, von Horsten S, Essen LO, Zeidler M. Arabidopsis phytochrome A nuclear translocation is mediated by a far-red elongated hypocotyl 1-importin complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1255-1268. [PMID: 30256472 DOI: 10.1111/tpj.14107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/19/2018] [Indexed: 05/28/2023]
Abstract
Phytochrome A (phyA) is a red and far-red (FR) sensing photoreceptor regulating plant growth and development. Its biologically active FR-absorbing form Pfr translocates into the nucleus and subsequently regulates gene expression. Two transport facilitators, FR elongated hypocotyl 1 (FHY1) and FHY1-like (FHL), are crucial for its cytoplasmic-nuclear translocation. FHY1 interacts preferentially with activated phyA (Pfr) in assays with recombinant phyA and FHY1 and in vivo. Nuclear translocation of the phyA-FHY1 complex depends on a nuclear localization signal (NLS) of FHY1, which is recognized by IMPαs independently of phyA. The complex is guided along the actin cytoskeleton. Additionally, FHY1 has the ability to exit the nucleus via the exportin route, thus is able to repeatedly transport phyA molecules to the nucleus, balancing the nucleo-cytoplasmic distribution. The direction of FHY1s transport appears to depend on its phosphorylation state in different compartments. Phosphorylated serins close to the NLS prevent FHY1 binding to IMPα. The work presented here elucidates key steps of the mechanism by which photoactivated phyA translocates to the nucleus.
Collapse
Affiliation(s)
- Hanna Helizon
- Institute for Plant Physiology, University Giessen, 35390, Giessen, Germany
| | - Jutta Rösler-Dalton
- Department of Plant Biology, University of California, Berkeley, CA, 94720, USA
| | - Philipp Gasch
- Plant Physiology, University Bayreuth, 95447, Bayreuth, Germany
| | - Silke von Horsten
- Department of Chemistry, University Marburg, 35032, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, University Marburg, 35032, Marburg, Germany
| | - Mathias Zeidler
- Institute for Plant Physiology, University Giessen, 35390, Giessen, Germany
| |
Collapse
|
14
|
Sineshchekov VA, Koppel LA, Bolle C. Two native types of phytochrome A, phyA' and phyA", differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:150-159. [PMID: 32291029 DOI: 10.1071/fp16261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/01/2016] [Indexed: 06/11/2023]
Abstract
Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyA' and phyA'', differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.) phyA or phyAphyB mutants overexpressing rice wild-type phyA (phyA WT) or mutant phyA (phyA SA) with the first 10 serines substituted by alanines. This prevents phyA phosphorylation at these sites and modifies photoresponses. Etiolated seedlings were employed and phyA parameters were evaluated with the use of low temperature fluorescence spectroscopy and photochemistry. Germination of seeds was induced by white light (WL) pre-treatment for 15min or 3h. Emission spectra of rice phyA WT and phyA SA were similar and their total content was comparable. However, the phyA'/phyA'' proportion in phyA WT was high and varied with the duration of the WL pre-treatment, whereas in phyA SA it was substantially shifted towards phyA'' and did not depend on the pre-illumination. This suggests that phyA SA comprises primarily or exclusively the phyA'' pool and supports the notion that the two phyA types differ by the state of serine phosphorylation. phyA'' was also found to be much more effective in the germination induction than phyA'.
Collapse
Affiliation(s)
| | - Larissa A Koppel
- Biology Department, MV Lomonosov Moscow State University, Moscow 119234, Russia
| | - Cordelia Bolle
- Biology Department, Ludwig Maximilian University, München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Sineshchekov VA, Koppel LA, Bolle C. Two native types of phytochrome A, phyAʹ and phyAʺ, differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY 2018; 45:150. [DOI: https:/doi.org/10.1071/fp16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyAʹ and phyAʹʹ, differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.) phyA or phyAphyB mutants overexpressing rice wild-type phyA (phyA WT) or mutant phyA (phyA SA) with the first 10 serines substituted by alanines. This prevents phyA phosphorylation at these sites and modifies photoresponses. Etiolated seedlings were employed and phyA parameters were evaluated with the use of low temperature fluorescence spectroscopy and photochemistry. Germination of seeds was induced by white light (WL) pre-treatment for 15 min or 3 h. Emission spectra of rice phyA WT and phyA SA were similar and their total content was comparable. However, the phyAʹ/phyAʹʹ proportion in phyA WT was high and varied with the duration of the WL pre-treatment, whereas in phyA SA it was substantially shifted towards phyAʹʹ and did not depend on the pre-illumination. This suggests that phyA SA comprises primarily or exclusively the phyAʹʹ pool and supports the notion that the two phyA types differ by the state of serine phosphorylation. phyAʹʹ was also found to be much more effective in the germination induction than phyAʹ.
Collapse
|
16
|
Xu T, Hiltbrunner A. PHYTOCHROME INTERACTING FACTORs from Physcomitrella patens are active in Arabidopsis and complement the pif quadruple mutant. PLANT SIGNALING & BEHAVIOR 2017; 12:e1388975. [PMID: 28985148 PMCID: PMC5703237 DOI: 10.1080/15592324.2017.1388975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Phytochromes are red/far-red light receptors in plants involved in the regulation of growth and development in response to changes in the ambient environment. An important mode of action of plant phytochromes depends on their light-regulated relocation from the cytosol into the nucleus and control of gene expression; in addition, there is also evidence for a cytosolic or plasma membrane associated function of phytochromes in different species. The PHYTOCHROME INTERACTING FACTORs (PIFs) form a subgroup of the bHLH transcription factors and it is well established that PIFs are key components of phytochrome downstream signalling in the nucleus of seed plants. Recent studies identified members of the PIF family also in the liverwort Marchantia polymorpha and the moss Physcomitrella patens. Here, we show that all four potential PIF homologs from Physcomitrella have PIF function when expressed in the Arabidopsis pifQ mutant, which is deficient in multiple PIFs. We propose that PIFs are ancient components of nuclear phytochrome signalling that have emerged in the last common ancestor of today's land plants.
Collapse
Affiliation(s)
- Tengfei Xu
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- CONTACT Andreas Hiltbrunner Institute of Biology II, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Kula M, Rys M, Saja D, Tys J, Skoczowski A. Far-red dependent changes in the chemical composition ofSpirulina platensis. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Monika Kula
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Diana Saja
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Jerzy Tys
- The Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences; Lublin Poland
| | | |
Collapse
|
18
|
An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Samardakiewicz S, Krzeszowiec-Jeleń W, Bednarski W, Jankowski A, Suski S, Gabryś H, Woźny A. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L. PLoS One 2015; 10:e0116757. [PMID: 25646776 PMCID: PMC4315572 DOI: 10.1371/journal.pone.0116757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022] Open
Abstract
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.
Collapse
Affiliation(s)
- Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Weronika Krzeszowiec-Jeleń
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Artur Jankowski
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Adam Woźny
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
20
|
Sineshchekov V, Sudnitsin A, Ádám É, Schäfer E, Viczián A. phyA-GFP is spectroscopically and photochemically similar to phyA and comprises both its native types, phyA’ and phyA”. Photochem Photobiol Sci 2014; 13:1671-1679. [DOI: https:/doi.org/10.1039/c4pp00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2023]
|
21
|
Sineshchekov V, Sudnitsin A, Ádám É, Schäfer E, Viczián A. phyA-GFP is spectroscopically and photochemically similar to phyA and comprises both its native types, phyA' and phyA''. Photochem Photobiol Sci 2014; 13:1671-9. [PMID: 25297540 DOI: 10.1039/c4pp00220b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2023]
Abstract
Low-temperature fluorescence investigations of phyA-GFP used in experiments on its nuclear-cytoplasmic partitioning were carried out. In etiolated hypocotyls of phyA-deficient Arabidopsis thaliana expressing phyA-GFP, it was found that it is similar to phyA in spectroscopic parameters with both its native types, phyA' and phyA'', present and their ratio shifted towards phyA'. In transgenic tobacco hypocotyls, native phyA and rice phyA-GFP were also identical to phyA in the wild type whereas phyA-GFP belonged primarily to the phyA' type. Finally, truncated oat Δ6-12 phyA-GFP expressed in phyA-deficient Arabidopsis was represented by the phyA' type in contrast to full-length oat phyA-GFP with an approximately equal proportion of the two phyA types. This correlates with a previous observation that Δ6-12 phyA-GFP can form only numerous tiny subnuclear speckles while its wild-type counterpart can also localize into bigger and fewer subnuclear protein complexes. Thus, phyA-GFP is spectroscopically and photochemically similar or identical to the native phyA, suggesting that the GFP tag does not affect the chromophore. phyA-GFP comprises phyA'-GFP and phyA''-GFP, suggesting that both of them are potential participants in nuclear-cytoplasmic partitioning, which may contribute to its complexity.
Collapse
Affiliation(s)
- Vitaly Sineshchekov
- Biology Department, MV Lomonosov Moscow State University, Moscow 119899, Russia.
| | | | | | | | | |
Collapse
|
22
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
23
|
Effendi Y, Radatz K, Labusch C, Rietz S, Wimalasekera R, Helizon H, Zeidler M, Scherer GFE. Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype. PLANT, CELL & ENVIRONMENT 2014; 37:1626-40. [PMID: 24433169 DOI: 10.1111/pce.12278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 12/27/2013] [Indexed: 05/13/2023]
Abstract
pPLA-I is the evolutionarily oldest patatin-related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA-I [ppla-I-1 in Wassilewskija (Ws) and ppla-I-3 in Columbia (Col) ] revealed pPLA-I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin-induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome-modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red-enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light-related phenotypes observed in both alleles point to an involvement of pPLA-I in phytochrome signalling.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzwissenschaften, Abt. Molekulare Ertragsphysiologie, D-30419, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Possart A, Fleck C, Hiltbrunner A. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:36-46. [PMID: 24467894 DOI: 10.1016/j.plantsci.2013.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
In order to monitor ambient light conditions, plants rely on functionally diversified photoreceptors. Among these, phytochromes perceive red (R) and far-red (FR) light. FR light does not constitute a photosynthetic energy source; it however influences adaptive and developmental processes. In seed plants, phytochrome A (phyA) acts as FR receptor and mediates FR high irradiance responses (FR-HIRs). It exerts a dual role by promoting e.g. germination and seedling de-etiolation in canopy shade and by antagonising shade avoidance growth. Even though cryptogam plants such as mosses and ferns do not have phyA, they show FR-induced responses. In the present review we discuss the mechanistic basis of phyA-dependent FR-HIRs as well as their dual role in seed plants. We compare FR responses in seed plants and cryptogam plants and conclude on different potential concepts for the detection of canopy shade. Scenarios for the evolution of FR perception and responses are discussed.
Collapse
Affiliation(s)
- Anja Possart
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian Fleck
- Laboratory for Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands.
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
25
|
Igamberdiev AU, Eprintsev AT, Fedorin DN, Popov VN. Phytochrome-mediated regulation of plant respiration and photorespiration. PLANT, CELL & ENVIRONMENT 2014; 37:290-299. [PMID: 23772790 DOI: 10.1111/pce.12155] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
The expression of genes encoding various enzymes participating in photosynthetic and respiratory metabolism is regulated by light via the phytochrome system. While many photosynthetic, photorespiratory and some respiratory enzymes, such as the rotenone-insensitive NADH and NADPH dehydrogenases and the alternative oxidase, are stimulated by light, succinate dehydrogenase, subunits of the pyruvate dehydrogenase complex, cytochrome oxidase and fumarase are inhibited via the phytochrome mechanism. The effect of light, therefore, imposes limitations on the tricarboxylic acid cycle and on the mitochondrial electron transport coupled to ATP synthesis, while the non-coupled pathways become activated. Phytochrome-mediated regulation of gene expression also creates characteristic distribution patterns of photosynthetic, photorespiratory and respiratory enzymes across the leaf generating different populations of mitochondria, either enriched by glycine decarboxylase (in the upper part) or by succinate dehydrogenase (in the bottom part of the leaf).
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, A1B 3X9
| | | | | | | |
Collapse
|
26
|
Sineshchekov V, Koppel L, Okamoto H, Wada M. Fern Adiantum capillus-veneris phytochrome 1 comprises two native photochemical types similar to seed plant phytochrome A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2014; 130:20-29. [DOI: https:/doi.org/10.1016/j.jphotobiol.2013.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|
27
|
Effendi Y, Jones AM, Scherer GFE. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5065-74. [PMID: 24052532 PMCID: PMC3830486 DOI: 10.1093/jxb/ert294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R:FR light-enriched white light (WL) condition more strongly than in the high red:FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R- and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5-15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Alan M. Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Günther F. E. Scherer
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
28
|
Fern Adiantum capillus-veneris phytochrome 1 comprises two native photochemical types similar to seed plant phytochrome A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:20-9. [PMID: 24246712 DOI: 10.1016/j.jphotobiol.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
Abstract
Phytochrome (phy) in etiolated seedlings of wild-type (WT) Arabidopsis (Ler) and its transgenic lines (TL) L15 and L20 transformed with Adiantum capillus-veneris PHY1 cDNA (Okamoto et al., 1997) was investigated using low-temperature (85K) fluorescence spectroscopy and photochemistry. It was found that while WT seed germination requires stimulation by light, the TL germinated equally well with or without pre-illumination. Phytochrome content [Ptot] was 2-fold higher in TL whereas the level of Pr→lumi-R phototransformation at 85K (γ1) was similar between WT (0.25) and TL (0.27). When seeds germinated with pre-illumination, the proportion of the photochemical types Pr' active and Pr″ inactive at 85K was 50/50 in WT and 54/46 in TL, respectively. Dark-germinated TL had a γ1 value of 0.16 and the proportion of Pr' and Pr″ was 32/68, respectively, without changes in [Ptot]. Evaluations based on these data revealed that phy1 has Pr' and Pr″, designated phy1' and phy1″, akin to phyA, which comprises both Pr photochemical types (phyA' and phyA″), and in contrast to phyB that possesses only Pr″. The proportion of phy1' and phy1″ depends on pre-illumination for induction of germination. The pigment most likely accumulated in the seeds and was active in promoting Arabidopsis seed germination.
Collapse
|
29
|
Abstract
Extensive studies in both lower and higher plants indicate that plant phytochrome photoreceptors signal not only by regulating transcription in the nucleus but also by acting within the cytoplasm, the latter signaling routes acting within minutes or even seconds and also providing directional information. Directional signals seem to arise from phytochromes attached anisotropically to the plasma membrane. Neochromes-phytochrome-phototropin hybrid photoreceptors probably attached to the plasma membrane-provide this signal in various ferns and perhaps certain algae but are absent from other groups. In mosses and probably higher plants too, a subpopulation of canonical phytochromes interact with phototropins at the plasma membrane and thereby steer directional responses. Phytochromes also seem able to regulate translation in the cytoplasm. This review discusses putative phytochrome functions in these contexts.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, D35390 Giessen, Germany.
| |
Collapse
|
30
|
Possart A, Hiltbrunner A. An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants. THE PLANT CELL 2013; 25:102-14. [PMID: 23303916 PMCID: PMC3584528 DOI: 10.1105/tpc.112.104331] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/22/2012] [Accepted: 12/18/2012] [Indexed: 05/18/2023]
Abstract
Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and cryptogams (e.g., ferns and mosses) preceded the evolution of PHYA. Seed plant phytochromes translocate into the nucleus and regulate gene expression. By contrast, there has been little evidence of a nuclear localization and function of cryptogam phytochromes. Here, we identified responses to FR light in cryptogams, which are highly reminiscent of PHYA signaling in seed plants. In the moss Physcomitrella patens and the fern Adiantum capillus-veneris, phytochromes accumulate in the nucleus in response to light. Although P. patens phytochromes evolved independently of PHYA, we have found that one clade of P. patens phytochromes exhibits the molecular properties of PHYA. We suggest that HIR-like responses had evolved in the last common ancestor of modern seed plants and cryptogams and that HIR signaling is more ancient than PHYA. Thus, other phytochromes in seed plants may have lost the capacity to mediate HIRs during evolution, rather than that PHYA acquired it.
Collapse
Affiliation(s)
- Anja Possart
- Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | | |
Collapse
|
31
|
Sineshchekov V, Koppel L, Shor E, Kochetova G, Galland P, Zeidler M. Protein Phosphatase Activity and Acidic/Alkaline Balance as Factors Regulating the State of Phytochrome A and its Two Native Pools in the Plant Cell. Photochem Photobiol 2013; 89:83-96. [DOI: https:/doi.org/10.1111/j.1751-1097.2012.01226.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
AbstractPhytochrome A (phyA), the most versatile plant phytochrome, exists in the two isoforms, phyA′ and phyA′′, differing by the character of its posttranslational modification, possibly, by phosphorylation at the N‐terminal extension [Sineshchekov, V. (2010) J. Botany 2010, Article ID 358372]. This heterogeneity may explain the diverse modes of phyA action. We investigated possible roles of protein phosphatases activity and pH in regulation of the phyA pools' content in etiolated seedlings of maize and their extracts using fluorescence spectroscopy and photochemistry of the pigment. The phyA′/phyA′′ ratio varied depending on the state of development of seedlings and the plant tissue/organ used. This ratio qualitatively correlated with the pH in maize root tips. In extracts, it reached a maximum at pH ≈ 7.5 characteristic for the cell cytoplasm. Inhibition of phosphatases of the PP1 and PP2A types with okadaic and cantharidic acids brought about phyA′ decline and/or concomitant increase of phyA′′ in coleoptiles and mesocotyls, but had no effect in roots, revealing a tissue/organ specificity. Thus, pH and phosphorylation status regulate the phyA′/phyA′′ equilibrium and content in the etiolated (maize) cells and this regulation is connected with alteration of the processes of phyA′ destruction and/or its transformation into the more stable phyA′′.
Collapse
Affiliation(s)
| | - Larissa Koppel
- Biology Department M.V. Lomonosov Moscow State University Moscow Russia
| | - Ekaterina Shor
- Biology Department M.V. Lomonosov Moscow State University Moscow Russia
| | - Galina Kochetova
- Biology Department M.V. Lomonosov Moscow State University Moscow Russia
| | - Paul Galland
- Department of Biology Philipps‐Universität Marburg Marburg Germany
| | - Mathias Zeidler
- Institute of Plant Physiology Justus Liebig University Giessen Germany
| |
Collapse
|
32
|
Sineshchekov V, Koppel L, Shor E, Kochetova G, Galland P, Zeidler M. Protein phosphatase activity and acidic/alkaline balance as factors regulating the state of phytochrome A and its two native pools in the plant cell. Photochem Photobiol 2012; 89:83-96. [PMID: 22913784 DOI: 10.1111/j.1751-1097.2012.01226.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/15/2012] [Indexed: 11/30/2022]
Abstract
Phytochrome A (phyA), the most versatile plant phytochrome, exists in the two isoforms, phyA' and phyA'', differing by the character of its posttranslational modification, possibly, by phosphorylation at the N-terminal extension [Sineshchekov, V. (2010) J. Botany 2010, Article ID 358372]. This heterogeneity may explain the diverse modes of phyA action. We investigated possible roles of protein phosphatases activity and pH in regulation of the phyA pools' content in etiolated seedlings of maize and their extracts using fluorescence spectroscopy and photochemistry of the pigment. The phyA'/phyA'' ratio varied depending on the state of development of seedlings and the plant tissue/organ used. This ratio qualitatively correlated with the pH in maize root tips. In extracts, it reached a maximum at pH ≈ 7.5 characteristic for the cell cytoplasm. Inhibition of phosphatases of the PP1 and PP2A types with okadaic and cantharidic acids brought about phyA' decline and/or concomitant increase of phyA'' in coleoptiles and mesocotyls, but had no effect in roots, revealing a tissue/organ specificity. Thus, pH and phosphorylation status regulate the phyA'/phyA'' equilibrium and content in the etiolated (maize) cells and this regulation is connected with alteration of the processes of phyA' destruction and/or its transformation into the more stable phyA''.
Collapse
|
33
|
A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci U S A 2012; 109:12231-6. [PMID: 22773817 DOI: 10.1073/pnas.1120203109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phytochromes are red/far-red photochromic photoreceptors central to regulating plant development. Although they are known to enter the nucleus upon light activation and, once there, regulate transcription, this is not the complete picture. Various phytochrome effects are manifested much too rapidly to derive from changes in gene expression, whereas others seem to occur without phytochrome entering the nucleus. Phytochromes also guide directional responses to light, excluding a genetic signaling route and implying instead plasma membrane association and a direct cytoplasmic signal. However, to date, no such association has been demonstrated. Here we report that a phytochrome subpopulation indeed associates physically with another photoreceptor, phototropin, at the plasma membrane. Yeast two-hybrid methods using functional photoreceptor molecules showed that the phytochrome steering growth direction in Physcomitrella protonemata binds several phototropins specifically in the photoactivated Pfr state. Split-YFP studies in planta showed that the interaction occurs exclusively at the plasma membrane. Coimmunoprecipitation experiments provided independent confirmation of in vivo phy-phot binding. Consistent with this interaction being associated with a cellular signal, we found that phytochrome-mediated tropic responses are impaired in Physcomitrella phot(-) mutants. Split-YFP revealed a similar interaction between Arabidopsis phytochrome A and phototropin 1 at the plasma membrane. These associations additionally provide a functional explanation for the evolution of neochrome photoreceptors. Our results imply that the elusive phytochrome cytoplasmic signal arises through binding and coaction with phototropin at the plasma membrane.
Collapse
|
34
|
|
35
|
Sokolova V, Bindics J, Kircher S, Ádám É, Schäfer E, Nagy F, Viczián A. Missense mutation in the amino terminus of phytochrome A disrupts the nuclear import of the photoreceptor. PLANT PHYSIOLOGY 2012; 158:107-18. [PMID: 21969386 PMCID: PMC3252074 DOI: 10.1104/pp.111.186288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.
Collapse
|
36
|
Carvalho RF, Campos ML, Azevedo RA. The role of phytochrome in stress tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011. [PMID: 22040287 DOI: 10.1007/978-1-4614-6108-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well-documented that phytochromes can control plant growth and development from germination to flowering. Additionally, these photoreceptors have been shown to modulate both biotic and abiotic stress. This has led to a series of studies exploring the molecular and biochemical basis by which phytochromes modulate stresses, such as salinity, drought, high light or herbivory. Evidence for a role of phytrochromes in plant stress tolerance is explored and reviewed.
Collapse
|
37
|
Scherer GFE. AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3339-57. [PMID: 21733909 DOI: 10.1093/jxb/err033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since we are living in the 'age of transcription', awareness of aspects other than transcription in auxin signal transduction seems to have faded. One purpose of this review is to recall these other aspects. The focus will also be on the time scales of auxin responses and their potential or known dependence on either AUXIN BINDING PROTEIN 1 (ABP1) or on TRANSPORT-INHIBITOR-RESISTANT1 (TIR1) as a receptor. Furthermore, both direct and indirect evidence for the function of ABP1 as a receptor will be reviewed. Finally, the potential functions of a two-receptor system for auxin and similarities to other two-receptor signalling systems in plants will be discussed. It is suggested that such a functional arrangement is a property of plants which strengthens tissue autonomy and overcomes the lack of nerves or blood circulation which are responsible for rapid signal transport in animals.
Collapse
Affiliation(s)
- Günther F E Scherer
- Leibniz-Universität Hannover, Institute for Ornamental Plants and Wood Science, Section Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| |
Collapse
|