1
|
Fakhimi N, Grossman AR. Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:3015. [PMID: 39519934 PMCID: PMC11548211 DOI: 10.3390/plants13213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific 'megacomplexes' involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell's fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae.
Collapse
Affiliation(s)
- Neda Fakhimi
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
| | - Arthur R. Grossman
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
- Courtesy Appointment, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Nur EAA, Kobayashi K, Ohte S, Tomoda H, Ohshiro T. Screening for microbial potentiators of neutral lipid degradation in CHO-K1 cells. Drug Discov Ther 2022; 16:273-279. [PMID: 36450503 DOI: 10.5582/ddt.2022.01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A cell-based assay was conducted to screen microbial culture broths for potentiators of neutral lipid degradation in Chinese Hamster Ovary K1 cells. A total of 5,363 microbial cultures from fungi and actinomycetes were screened in this assay. Brefeldin A (1) from fungal cultures was found to promote the degradation of triacylglycerol (TG) with an EC50 of 2.6 µM. Beauveriolides I (2), III (3), beauverolides A (4), B (5), and K (6) from fungal cultures showed potentiating effect on cholesteryl ester (CE) degradation with EC50s ranging from 0.02 to 0.13 µM. Among these compounds, 2 and 6 exhibited the strongest activities (EC50, 0.02 µM). From actinomycete cultures, oxohygrolidin (7) (EC50 for TG and CE, > 1.7 and 0.8 µM, respectively) and hygrolidin (8) (EC50 for TG and CE, 0.08 and 0.004 µM, respectively) promoted degradation of CE more preferably than TG.
Collapse
Affiliation(s)
- Elyza Aiman Azizah Nur
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Keisuke Kobayashi
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Satoshi Ohte
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Laboratory of Drug Discovery, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Taichi Ohshiro
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
3
|
Kato N, McCuiston C, Szuska KA, Lauersen KJ, Nelson G, Strain A. Chlamydomonas reinhardtii Alternates Peroxisomal Contents in Response to Trophic Conditions. Cells 2022; 11:cells11172724. [PMID: 36078132 PMCID: PMC9454557 DOI: 10.3390/cells11172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chlamydomonas reinhardtii is a model green microalga capable of heterotrophic growth on acetic acid but not fatty acids, despite containing a full complement of genes for β-oxidation. Recent reports indicate that the alga preferentially sequesters, rather than breaks down, lipid acyl chains as a means to rebuild its membranes rapidly. Here, we assemble a list of potential Chlamydomonas peroxins (PEXs) required for peroxisomal biogenesis to suggest that C. reinhardtii has a complete set of peroxisome biogenesis factors. To determine involvements of the peroxisomes in the metabolism of exogenously added fatty acids, we examined transgenic C. reinhardtii expressing fluorescent proteins fused to N- or C-terminal peptide of peroxisomal proteins, concomitantly with fluorescently labeled palmitic acid under different trophic conditions. We used confocal microscopy to track the populations of the peroxisomes in illuminated and dark conditions, with and without acetic acid as a carbon source. In the cells, four major populations of compartments were identified, containing: (1) a glyoxylate cycle enzyme marker and a protein containing peroxisomal targeting signal 1 (PTS1) tripeptide but lacking the fatty acid marker, (2) the fatty acid marker alone, (3) the glyoxylate cycle enzyme marker alone, and (4) the PTS1 marker alone. Less than 5% of the compartments contained both fatty acid and peroxisomal markers. Statistical analysis on optically sectioned images found that C. reinhardtii simultaneously carries diverse populations of the peroxisomes in the cell and modulates peroxisomal contents based on light conditions. On the other hand, the ratio of the compartment containing both fatty acid and peroxisomal markers did not change significantly regardless of the culture conditions. The result indicates that β-oxidation may be only a minor occurrence in the peroxisomal population in C. reinhardtii, which supports the idea that lipid biosynthesis and not β-oxidation is the primary metabolic preference of fatty acids in the alga.
Collapse
Affiliation(s)
- Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Correspondence:
| | - Clayton McCuiston
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly A. Szuska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gabela Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Gutkowska M, Kaus‐Drobek M, Hoffman‐Sommer M, Małgorzata Pamuła M, Daria Leja A, Perycz M, Lichocka M, Witek A, Wojtas M, Dadlez M, Swiezewska E, Surmacz L. Impact of C-terminal truncations in the Arabidopsis Rab escort protein (REP) on REP-Rab interaction and plant fertility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1400-1421. [PMID: 34592024 PMCID: PMC9293207 DOI: 10.1111/tpj.15519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Lipid anchors are common post-translational modifications for proteins engaged in signaling and vesicular transport in eukaryotic cells. Rab proteins are geranylgeranylated at their C-termini, a modification which is important for their stable binding to lipid bilayers. The Rab escort protein (REP) is an accessory protein of the Rab geranylgeranyl transferase (RGT) complex and it is obligatory for Rab prenylation. While REP-Rab interactions have been studied by biochemical, structural, and genetic methods in animals and yeast, data on the plant RGT complex are still limited. Here we use hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the structural basis of plant REP-Rab binding. The obtained results show that the interaction of REP with Rabs is highly dynamic and involves specific structural changes in both partners. In some cases the Rab and REP regions involved in the interaction are molecule-specific, and in other cases they are common for a subset of Rabs. In particular, the C-terminus of REP is not involved in binding of unprenylated Rab proteins in plants, in contrast to mammalian REP. In line with this, a C-terminal REP truncation does not have pronounced phenotypic effects in planta. On the contrary, a complete lack of functional REP leads to male sterility in Arabidopsis: pollen grains develop in the anthers, but they do not germinate efficiently and hence are unable to transmit the mutated allele. The presented data show that the mechanism of action of REP in the process of Rab geranylgeranylation is different in plants than in animals or yeast.
Collapse
Affiliation(s)
- Małgorzata Gutkowska
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Magdalena Kaus‐Drobek
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
- Mossakowski Medical Research CentrePolish Academy of Sciencesul. Pawinskiego 5, 02‐106WarsawPoland
| | - Marta Hoffman‐Sommer
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | | | - Anna Daria Leja
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Małgorzata Perycz
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
- Institute of Computer SciencePolish Academy of Sciencesul. Jana Kazimierza 501‐248WarsawPoland
| | - Małgorzata Lichocka
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Agnieszka Witek
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Magdalena Wojtas
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Ewa Swiezewska
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Liliana Surmacz
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| |
Collapse
|
5
|
Subcellular Localizations of Catalase and Exogenously Added Fatty Acid in Chlamydomonas reinhardtii. Cells 2021; 10:cells10081940. [PMID: 34440712 PMCID: PMC8391285 DOI: 10.3390/cells10081940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023] Open
Abstract
Fatty acids are important biological components, yet the metabolism of fatty acids in microalgae is not clearly understood. Previous studies found that Chlamydomonas reinhardtii, the model microalga, incorporates exogenously added fatty acids but metabolizes them differently from animals and yeast. Furthermore, a recent metabolic flux analysis found that the majority of lipid turnover in C. reinhardtii is the recycling of acyl chains from and to membranes, rather than β -oxidation. This indicates that for the alga, the maintenance of existing acyl chains may be more valuable than their breakdown for energy. To gain cell-biological knowledge of fatty acid metabolism in C. reinhardtii, we conducted microscopy analysis with fluorescent probes. First, we found that CAT1 (catalase isoform 1) is in the peroxisomes while CAT2 (catalase isoform 2) is localized in the endoplasmic reticulum, indicating the alga is capable of detoxifying hydrogen peroxide that would be produced during β-oxidation in the peroxisomes. Second, we compared the localization of exogenously added FL-C16 (fluorescently labelled palmitic acid) with fluorescently marked endosomes, mitochondria, peroxisomes, lysosomes, and lipid droplets. We found that exogenously added FL-C16 are incorporated and compartmentalized via a non-endocytic route within 10 min. However, the fluorescence signals from FL-C16 did not colocalize with any marked organelles, including peroxisomes. During triacylglycerol accumulation, the fluorescence signals from FL-C16 were localized in lipid droplets. These results support the idea that membrane turnover is favored over β-oxidation in C. reinhardtii. The knowledge gained in these analyses would aid further studies of the fatty acid metabolism.
Collapse
|
6
|
Sun XM, Ren LJ, Zhao QY, Zhang LH, Huang H. Application of chemicals for enhancing lipid production in microalgae-a short review. BIORESOURCE TECHNOLOGY 2019; 293:122135. [PMID: 31540787 DOI: 10.1016/j.biortech.2019.122135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 05/05/2023]
Abstract
Microalgae have attracted great attention as a promising sustainable resource for biofuel production. In studies aiming to improve lipid accumulation, many key enzymes involved in lipid biosynthesis were identified and confirmed, but genetic engineering remains a challenge in most species of microalgae. In an alternative approach, various chemical modulators can be used to directly regulate the lipid biosynthesis pathway, with similar effects to gene overexpression and interference approaches, including improving the precursor supply and blocking competing pathways. The produced lipid can be protected from being converted into other metabolites by the chemicals such as lipase inhibitors. In addition, a few chemicals were also demonstrated to greatly influence cell growth and lipid accumulation by indirect regulation of the lipid biosynthesis pathway, such as increasing cell permeability or regulating oxidative stress. Thus, adding chemical modulators can be a useful alternative strategy for improving lipid accumulation in large-scale cultivation of microalgae.
Collapse
Affiliation(s)
- Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Quan-Yu Zhao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
7
|
Proteomics analysis of lipid droplets indicates involvement of membrane trafficking proteins in lipid droplet breakdown in the oleaginous diatom Fistulifera solaris. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Chen Y, Frost S, Khushi M, Cantrill LC, Yu H, Arthur JW, Bright RK, Groblewski GE, Byrne JA. Delayed recruiting of TPD52 to lipid droplets - evidence for a "second wave" of lipid droplet-associated proteins that respond to altered lipid storage induced by Brefeldin A treatment. Sci Rep 2019; 9:9790. [PMID: 31278300 PMCID: PMC6611826 DOI: 10.1038/s41598-019-46156-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Tumor protein D52 (TPD52) is amplified and overexpressed in breast and prostate cancers which are frequently characterised by dysregulated lipid storage and metabolism. TPD52 expression increases lipid storage in mouse 3T3 fibroblasts, and co-distributes with the Golgi marker GM130 and lipid droplets (LDs). We examined the effects of Brefeldin A (BFA), a fungal metabolite known to disrupt the Golgi structure, in TPD52-expressing 3T3 cells, and in human AU565 and HMC-1-8 breast cancer cells that endogenously express TPD52. Five-hour BFA treatment reduced median LD numbers, but increased LD sizes. TPD52 knockdown decreased both LD sizes and numbers, and blunted BFA's effects on LD numbers. Following BFA treatment for 1-3 hours, TPD52 co-localised with the trans-Golgi network protein syntaxin 6, but after 5 hours BFA treatment, TPD52 showed increased co-localisation with LDs, which was disrupted by microtubule depolymerising agent nocodazole. BFA treatment also increased perilipin (PLIN) family protein PLIN3 but reduced PLIN2 detection at LDs in TPD52-expressing 3T3 cells, with PLIN3 recruitment to LDs preceding that of TPD52. An N-terminally deleted HA-TPD52 mutant (residues 40-184) almost exclusively targeted to LDs in both vehicle and BFA treated cells. In summary, delayed recruitment of TPD52 to LDs suggests that TPD52 participates in a temporal hierarchy of LD-associated proteins that responds to altered LD packaging requirements induced by BFA treatment.
Collapse
Affiliation(s)
- Yuyan Chen
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| | - Sarah Frost
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Matloob Khushi
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
- The University of Sydney School of Information Technologies, Darlington, NSW, 2008, Australia
| | - Laurence C Cantrill
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Kids Research Microscope Facility, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Hong Yu
- Cell Imaging Facility, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology and TTUHSC Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| |
Collapse
|
9
|
Durante L, Hübner W, Lauersen KJ, Remacle C. Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. PLANT DIRECT 2019; 3:e00148. [PMID: 31245784 PMCID: PMC6556978 DOI: 10.1002/pld3.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 05/17/2023]
Abstract
The unicellular green microalga Chlamydomonas reinhardtii is a powerful photosynthetic model organism which is capable of heterotrophic growth on acetate as a sole carbon source. This capacity has enabled its use for investigations of perturbations in photosynthetic machinery as mutants can be recovered heterotrophically. Fixation of acetate into cellular carbon metabolism occurs first by its conversion into acetyl-CoA by a respective synthase and the generation of succinate by the glyoxylate cycle. These metabolic steps have been recently determined to largely occur in the peroxisomes of this alga; however, little is known about the trafficking and import of acetate or its subcellular compartmentalization. Recently, the genes of five proteins belonging to the GPR1/FUN34/YaaH (GFY) superfamily were observed to exhibit increased expression in C. reinhardtii upon acetate addition, however, no further characterization has been reported. Here, we provide several lines of evidence to implicate Cr GFY1-5 as channels which share structural homology with bacterial succinate-acetate channels and specifically localize to microbodies, which are surprisingly distinct from the glyoxylate cycle-containing peroxisomes. We demonstrate structural models, gene expression profiling, and in vivo fluorescence localization of all five isoforms in the algal cell to further support this role.
Collapse
Affiliation(s)
- Lorenzo Durante
- Genetics and Physiology of MicroalgaeInBios/PhytosystemsUniversity of LiegeLiegeBelgium
| | - Wolfgang Hübner
- Biomolecular PhotonicsDepartment of PhysicsBielefeld UniversityBielefeldGermany
| | - Kyle J. Lauersen
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Claire Remacle
- Genetics and Physiology of MicroalgaeInBios/PhytosystemsUniversity of LiegeLiegeBelgium
| |
Collapse
|
10
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
11
|
Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. THE NEW PHYTOLOGIST 2018; 218:1340-1348. [PMID: 29473650 DOI: 10.1111/nph.15047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Lipid degradation processes are important in microalgae because survival and growth of microalgal cells under fluctuating environmental conditions require permanent remodeling or turnover of membrane lipids as well as rapid mobilization of storage lipids. Lipid catabolism comprises two major spatially and temporarily separated steps, namely lipolysis, which releases fatty acids and head groups and is catalyzed by lipases at membranes or lipid droplets, and degradation of fatty acids to acetyl-CoA, which occurs in peroxisomes through the β-oxidation pathway in green microalgae, and can sometimes occur in mitochondria in some other algal species. Here we review the current knowledge on the enzymes and regulatory proteins involved in lipolysis and peroxisomal β-oxidation and highlight gaps in our understanding of lipid degradation pathways in microalgae. Metabolic use of acetyl-CoA products via glyoxylate cycle and gluconeogenesis is also reviewed. We then present the implication of various cellular processes such as vesicle trafficking, cell cycle and autophagy on lipid turnover. Finally, physiological roles and the manipulation of lipid catabolism for biotechnological applications in microalgae are discussed.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Ismael Torres Romero
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Jaruswan Warakanont
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
12
|
Yamaoka Y, Choi BY, Kim H, Shin S, Kim Y, Jang S, Song WY, Cho CH, Yoon HS, Kohno K, Lee Y. Identification and functional study of the endoplasmic reticulum stress sensor IRE1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:91-104. [PMID: 29385296 DOI: 10.1111/tpj.13844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Chung H Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
13
|
Goold HD, Cuiné S, Légeret B, Liang Y, Brugière S, Auroy P, Javot H, Tardif M, Jones B, Beisson F, Peltier G, Li-Beisson Y. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 171:2406-17. [PMID: 27297678 PMCID: PMC4972293 DOI: 10.1104/pp.16.00718] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 05/02/2023]
Abstract
Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Stéphan Cuiné
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Yuanxue Liang
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Sabine Brugière
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Pascaline Auroy
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Hélène Javot
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Marianne Tardif
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Brian Jones
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Fred Beisson
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Gilles Peltier
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| |
Collapse
|
14
|
Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. PLANT, CELL & ENVIRONMENT 2016; 39:834-47. [PMID: 26477535 DOI: 10.1111/pce.12656] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 05/18/2023]
Abstract
Studying how photosynthetic cells modify membrane lipids in response to heat stress is important to understand how plants and microalgae adapt to daily fluctuations in temperature and to investigate new lipid pathways. Here, we investigate changes occurring in lipid molecular species and lipid metabolism genes during early response to heat stress in the model photosynthetic microorganism Chlamydomonas reinhardtii. Lipid molecular species analyses revealed that, after 60 min at 42 °C, a strong decrease in specific polyunsaturated membrane lipids was observed together with an increase in polyunsaturated triacylglycerols (TAGs) and diacylglycerols (DAGs). The fact that decrease in the major chloroplastic monogalactosyldiacylglycerol sn1-18:3/sn2-16:4 was mirrored by an accumulation of DAG sn1-18:3/sn2-16:4 and TAG sn1-18:3/sn2-16:4/sn3-18:3 indicated that newly accumulated TAGs were formed via direct conversion of monogalactosyldiacylglycerols to DAGs then TAGs. Lipidomic analyses showed that the third fatty acid of a TAG likely originated from a phosphatidylethanolamine or a diacylglyceryl-O-4'-(N,N,N,-trimethyl)-homoserine betaine lipid species. Candidate genes for this TAG synthesis pathway were provided through comparative transcriptomic analysis and included a phospholipase A2 homolog and the DAG acyltransferase DGTT1. This study gives insights into the molecular events underlying changes in membrane lipids during heat stress and reveals an alternative route for TAG synthesis.
Collapse
Affiliation(s)
- B Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - M Schulz-Raffelt
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - H M Nguyen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - P Auroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - F Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Blanc
- Laboratoire Information Génomique & Structurale, UMR7256 (IMM FR3479) CNRS Aix-Marseille Université, Marseille, France
| | - Y Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| |
Collapse
|
15
|
Wase N, Tu B, Black PN, DiRusso CC. Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:504-522. [PMID: 25660108 DOI: 10.1111/tpj.12787] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 05/03/2023]
Abstract
Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Wayne Riekhof
- School of Biological Sciences and Center for Biological Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
17
|
Goold H, Beisson F, Peltier G, Li-Beisson Y. Microalgal lipid droplets: composition, diversity, biogenesis and functions. PLANT CELL REPORTS 2015; 34:545-55. [PMID: 25433857 DOI: 10.1007/s00299-014-1711-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 05/03/2023]
Abstract
Lipid droplet is the major site of neutral lipid storage in eukaryotic cells, and increasing evidence show its involvement in numerous cellular processes such as lipid homeostasis, signaling, trafficking and inter-organelle communications. Although the biogenesis, structure, and functions of lipid droplets have been well documented for seeds of vascular plants, mammalian adipose tissues, insects and yeasts, relative little is known about lipid droplets in microalgae. Over the past 5 years, the growing interest of microalgae as a platform for biofuel, green chemicals or value-added polyunsaturated fatty acid production has brought algal lipid droplets into spotlight. Studies conducted on the green microalga Chlamydomonas reinhardtii and other model microalgae such as Haematococcus and Nannochloropsis species have led to the identification of proteins associated with lipid droplets, which include putative structural proteins different from plant oleosins and animal perilipins, as well as candidate proteins for lipid biosynthesis, mobilization, trafficking and homeostasis. Biochemical and microscopy studies have also started to shed light on the role of chloroplasts in the biogenesis of lipid droplets in Chlamydomonas.
Collapse
Affiliation(s)
- Hugh Goold
- CEA, IBEB, Lab Bioenerget Biotechnol Bacteries and Microalgues, Saint-Paul-lez-Durance, 13108, France
| | | | | | | |
Collapse
|
18
|
Baker A, Paudyal R. The life of the peroxisome: from birth to death. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:39-47. [PMID: 25261594 DOI: 10.1016/j.pbi.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Peroxisomes are dynamic and metabolically plastic organelles. Their multiplicity of functions impacts on many aspects of plant development and survival. New functions for plant peroxisomes such as in the synthesis of biotin, ubiquinone and phylloquinone are being uncovered and their role in generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) as signalling hubs in defence and development is becoming appreciated. Understanding of the biogenesis of peroxisomes, mechanisms of import and turnover of their protein complement, and the wholesale destruction of the organelle by specific autophagic processes is giving new insight into the ways that plants can adjust peroxisome function in response to changing needs.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Rupesh Paudyal
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|