1
|
Yang T, Mu X, Yu M, Ergashev U, Zhu Y, Shi N, Li N, Luo L, Zhang K, Han Y. Consecutive oxidative stress in CATALASE2-deficient Arabidopsis negatively regulates Glycolate Oxidase1 activity through S-nitrosylation. PHYSIOLOGIA PLANTARUM 2025; 177:e70040. [PMID: 39777728 DOI: 10.1111/ppl.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory H2O2 may entrain negative feedback regulation of GOX in an age-dependent manner. Intriguingly, a loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) rather than in GOX2 and GOX3 attenuated the SA responses of cat2. We found that GOX1 is S-nitrosylated at Cys-343 during consecutive oxidative stress in the cat2 mutant. Subsequently, increased GOX1-SNO formations may contribute to progressively decreased GOX activities and then compromised photorespiratory H2O2 flux, which forms a negative feedback loop limiting the amplified activation of SA-dependent defence responses. Together, the data reveal that GOX S-nitrosylation is involved in the crosstalk between photorespiratory H2O2 and NO signalling in the fine-tuning regulation of oxidative stress responses and further highlight that NO-based S-nitrosylation acts as an on-off switch for ROS homeostasis.
Collapse
Affiliation(s)
- Tianzhao Yang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- School of Urban and Rural Construction, Fuyang Institute of Technology, Fuyang, China
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mei Yu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ulugbek Ergashev
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yihan Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ningning Shi
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kuanchao Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Friedrichs N, Shokouhi D, Heyer AG. Flux Calculation for Primary Metabolism Reveals Changes in Allocation of Nitrogen to Different Amino Acid Families When Photorespiratory Activity Changes. Int J Mol Sci 2024; 25:8394. [PMID: 39125964 PMCID: PMC11313221 DOI: 10.3390/ijms25158394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Photorespiration, caused by oxygenation of the enzyme Rubisco, is considered a wasteful process, because it reduces photosynthetic carbon gain, but it also supplies amino acids and is involved in amelioration of stress. Here, we show that a sudden increase in photorespiratory activity not only reduced carbon acquisition and production of sugars and starch, but also affected diurnal dynamics of amino acids not obviously involved in the process. Flux calculations based on diurnal metabolite profiles suggest that export of proline from leaves increases, while aspartate family members accumulate. An immense increase is observed for turnover in the cyclic reaction of glutamine synthetase/glutamine-oxoglutarate aminotransferase (GS/GOGAT), probably because of increased production of ammonium in photorespiration. The hpr1-1 mutant, defective in peroxisomal hydroxypyruvate reductase, shows substantial alterations in flux, leading to a shift from the oxoglutarate to the aspartate family of amino acids. This is coupled to a massive export of asparagine, which may serve in exchange for serine between shoot and root.
Collapse
Affiliation(s)
| | | | - Arnd G. Heyer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany (D.S.)
| |
Collapse
|
3
|
Antenozio ML, Caissutti C, Caporusso FM, Marzi D, Brunetti P. Urban Air Pollution and Plant Tolerance: Omics Responses to Ozone, Nitrogen Oxides, and Particulate Matter. PLANTS (BASEL, SWITZERLAND) 2024; 13:2027. [PMID: 39124144 PMCID: PMC11313721 DOI: 10.3390/plants13152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Urban air pollution is a crucial global challenge, mainly originating from urbanization and industrial activities, which are continuously increasing. Vegetation serves as a natural air filter for air pollution, but adverse effects on plant health, photosynthesis, and metabolism can occur. Recent omics technologies have revolutionized the study of molecular plant responses to air pollution, overcoming previous limitations. This review synthesizes the latest advancements in molecular plant responses to major air pollutants, emphasizing ozone (O3), nitrogen oxides (NOX), and particulate matter (PM) research. These pollutants induce stress responses common to other abiotic and biotic stresses, including the activation of reactive oxygen species (ROSs)-scavenging enzymes and hormone signaling pathways. New evidence has shown the central role of antioxidant phenolic compound biosynthesis, via the phenylpropanoid pathway, in air pollution stress responses. Transcription factors like WRKY, AP2/ERF, and MYB, which connect hormone signaling to antioxidant biosynthesis, were also affected. To date, research has predominantly focused on laboratory studies analyzing individual pollutants. This review highlights the need for comprehensive field studies and the identification of molecular tolerance traits, which are crucial for the identification of tolerant plant species, aimed at the development of sustainable nature-based solutions (NBSs) to mitigate urban air pollution.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Cristina Caissutti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Francesca Maria Caporusso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- Department of Biology and Biotechnologies ‘Charles Darwin’ (BBCD), Sapienza University of Roma, 00185 Roma, Italy
| | - Davide Marzi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| |
Collapse
|
4
|
Saini D, Rao DE, Bapatla RB, Aswani V, Raghavendra AS. Measurement of Photorespiratory Cycle Enzyme Activities in Leaves Exposed to Abiotic Stress. Methods Mol Biol 2024; 2832:145-161. [PMID: 38869793 DOI: 10.1007/978-1-0716-3973-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress. This chapter describes the procedures for assaying several individual enzyme activities of key photorespiratory enzymes and evaluating their response to oxidative/photooxidative stress. It is essential to ascertain the presence of stress in the experimental material. Therefore, procedures for typical abiotic stress induction in leaves by highlighting without or with menadione (an oxidant that targets mitochondria) are also included.
Collapse
Affiliation(s)
- Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Duvvarapu Easwar Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ramesh Babu Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Saini D, Bharath P, Gahir S, Raghavendra AS. Suppression of photorespiratory metabolism by low O 2 and presence of aminooxyacetic acid induces oxidative stress in Arabidopsis thaliana leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1851-1861. [PMID: 38222271 PMCID: PMC10784248 DOI: 10.1007/s12298-023-01388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Photorespiration, an essential component of plant metabolism, was upregulated under abiotic stress conditions, such as high light or drought. One of the signals for such upregulation was the rise in reactive oxygen species (ROS). Photorespiration was expected to mitigate oxidative stress by reducing ROS levels. However, it was unclear if ROS levels would increase when photorespiration was lowered. Our goal was to examine the redox status in leaves when photorespiratory metabolism was restricted under low O2 (medium flushed with N2 gas) or by adding aminooxyacetic acid (AOA), a photorespiratory inhibitor. We examined the impact of low O2 and AOA in leaves of Arabidopsis thaliana under dark, moderate, or high light. Downregulation of typical photorespiratory enzymes, including catalase (CAT), glycolate oxidase (GO), and phosphoglycolate phosphatase (PGLP) under low O2 or with AOA confirmed the lowering of photorespiratory metabolism. A marked increase in ROS levels (superoxide and H2O2) indicated the induction of oxidative stress. Thus, our results demonstrated for the first time that restricted photorespiratory conditions increased the extent of oxidative stress. We propose that photorespiration is essential to sustain normal ROS levels and optimize metabolism in cellular compartments of Arabidopsis leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01388-4.
Collapse
Affiliation(s)
- Deepak Saini
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Pulimamidi Bharath
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Shashibhushan Gahir
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Agepati S. Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
6
|
Saji S, Saji H, Sage-Ono K, Ono M, Nakajima N, Aono M. Phytocyanin-encoding genes confer enhanced ozone tolerance in Arabidopsis thaliana. Sci Rep 2022; 12:21204. [PMID: 36550187 PMCID: PMC9780206 DOI: 10.1038/s41598-022-25706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Ozone is a phytotoxic air pollutant that has various damaging effects on plants, including chlorosis and growth inhibition. Although various physiological and genetic studies have elucidated some of the mechanisms underlying plant ozone sensitivity and lesion development, our understanding of plant response to this gas remains incomplete. Here, we show evidence for the involvement of certain apoplastic proteins called phytocyanins, such as AtUC5, that protect against ozone damage. Two representative ozone-inducible responses, chlorosis and stomatal closure, were suppressed in AtUC5-overexpressing plants. Analysis of transgenic plants expressing a chimeric protein composed of AtUC5 fused to green fluorescent protein indicated that this fusion protein localises to the apoplast of plant cells where it appears to suppress early responses to ozone damage such as generation or signalling of reactive oxygen species. Moreover, yeast two-hybrid analyses suggest that AtUC5 may physically interact with stress-related proteins such as copper amine oxidase and late embryogenesis abundant protein-like protein. In addition to AtUC5, other examined phytocyanins such as AtUC6 and AtSC3 could confer ozone tolerance to plants when overexpressed in A. thaliana, suggesting that these proteins act together to protect plants against oxidative stress factors.
Collapse
Affiliation(s)
- Shoko Saji
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Hikaru Saji
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Kimiyo Sage-Ono
- grid.20515.330000 0001 2369 4728Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Michiyuki Ono
- grid.20515.330000 0001 2369 4728Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Nobuyoshi Nakajima
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Mitsuko Aono
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| |
Collapse
|
7
|
Wang L, Mu X, Chen X, Han Y. Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:98. [PMID: 35247968 PMCID: PMC8897949 DOI: 10.1186/s12870-022-03490-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been proposed to exert anti-oxidative effect under many environmental stresses; however, how it influences oxidative stress remains largely unclear. RESULTS Here, we assessed the effects of H2S on oxidative stress responses such as salicylic acid (SA)-dependent cell death, which triggered by increased H2O2 availability in Arabidopsis thaliana catalase-deficient mutants cat2 displaying around 20% wild-type catalase activity. H2S generation and its producing enzyme L-cysteine desulfhydrase (LCD/DES) were found to transient increase in response to intracellular oxidative stress. Although introducing the mutation of des1, an important LCD, into the cat2 background produced little effect, H2S fumigation not only rescued the cell death phenotype of cat2 plant, but also attenuated SA accumulation and oxidation of the glutathione pool. Unexpectedly, the activities of major components of ascorbate-glutathione pathway were less affected by the presence of H2S treatment, but decreased glycolate oxidase (GOX) in combination with accumulation of glycolate implied H2S treatment impacts the cellular redox homeostasis by repressing the GOX-catalyzed reaction likely via altering the major GOX transcript levels. CONCLUSIONS Our findings reveal a link between H2S and peroxisomal H2O2 production that has implications for the understanding of the multifaceted roles of H2S in the regulation of oxidative stress responses.
Collapse
Affiliation(s)
- Lijuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Chen
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, 212400, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
8
|
Basu D, South PF. Design and Analysis of Native Photorespiration Gene Motifs of Promoter Untranslated Region Combinations Under Short Term Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:828729. [PMID: 35251099 PMCID: PMC8888687 DOI: 10.3389/fpls.2022.828729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Quantitative traits are rarely controlled by a single gene, thereby making multi-gene transformation an indispensable component of modern synthetic biology approaches. However, the shortage of unique gene regulatory elements (GREs) for the robust simultaneous expression of multiple nuclear transgenes is a major bottleneck that impedes the engineering of complex pathways in plants. In this study, we compared the transcriptional efficacies of a comprehensive list of well-documented promoter and untranslated region (UTR) sequences side by side. The strength of GREs was examined by a dual-luciferase assay in conjunction with transient expression in tobacco. In addition, we created suites of new GREs with higher transcriptional efficacies by combining the best performing promoter-UTR sequences. We also tested the impact of elevated temperature and high irradiance on the effectiveness of these GREs. While constitutive promoters ensure robust expression of transgenes, they lack spatiotemporal regulations exhibited by native promoters. Here, we present a proof-of-principle study on the characterization of synthetic promoters based on cis-regulatory elements of three key photorespiratory genes. This conserved biochemical process normally increases under elevated temperature, low CO2, and high irradiance stress conditions and results in ∼25% loss in fixed CO2. To select stress-responsive cis-regulatory elements involved in photorespiration, we analyzed promoters of two chloroplast transporters (AtPLGG1 and AtBASS6) and a key plastidial enzyme, AtPGLP using PlantPAN3.0 and AthaMap. Our results suggest that these motifs play a critical role for PLGG1, BASS6, and PGLP in mediating response to elevated temperature and high-intensity light stress. These findings will not only enable the advancement of metabolic and genetic engineering of photorespiration but will also be instrumental in related synthetic biology approaches.
Collapse
Affiliation(s)
| | - Paul F. South
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Zhang T, Ma M, Chen T, Zhang L, Fan L, Zhang W, Wei B, Li S, Xuan W, Noctor G, Han Y. Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H 2 O 2. PLANT, CELL & ENVIRONMENT 2020; 43:1175-1191. [PMID: 31990075 DOI: 10.1111/pce.13727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Photorespiratory hydrogen peroxide (H2 O2 ) plays key roles in pathogenesis responses by triggering the salicylic acid (SA) pathway in Arabidopsis. However, factors linking intracellular H2 O2 to activation of the SA pathway remain elusive. In this work, the catalase-deficient Arabidopsis mutant, cat2, was exploited to elucidate the impact of S-nitrosoglutathione reductase 1 (GSNOR1) on H2 O2 -dependent signalling pathways. Introducing the gsnor1-3 mutation into the cat2 background increased S-nitrosothiol levels and abolished cat2-triggered cell death, SA accumulation, and associated gene expression but had little additional effect on the major components of the ascorbate-glutathione system or glycolate oxidase activities. Differential transcriptome profiles between gsnor1-3 and cat2 gsnor1-3 together with damped ROS-triggered gene expression in cat2 gsnor1-3 further indicated that GSNOR1 acts to mediate the SA pathway downstream of H2 O2 . Up-regulation of GSNOR activity was compromised in cat2 cad2 and cat2 pad2 mutants in which glutathione accumulation was genetically prevented. Experiments with purified recombinant GSNOR revealed that the enzyme is posttranslationally regulated by direct denitrosation in a glutathione-dependent manner. Together, our findings identify GSNOR1-controlled nitrosation as a key factor in activation of the SA pathway by H2 O2 and reveal that glutathione is required to maintain this biological function.
Collapse
Affiliation(s)
- Tianru Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Mingyue Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Tao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Linlin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Lingling Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Bo Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS, INRA, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
10
|
Jossier M, Liu Y, Massot S, Hodges M. Enzymatic Properties of Recombinant Phospho-Mimetic Photorespiratory Glycolate Oxidases from Arabidopsis thaliana and Zea mays. PLANTS (BASEL, SWITZERLAND) 2019; 9:plants9010027. [PMID: 31878154 PMCID: PMC7020226 DOI: 10.3390/plants9010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In photosynthetic organisms, the photorespiratory cycle is an essential pathway leading to the recycling of 2-phosphoglycolate, produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, to 3-phosphoglycerate. Although photorespiration is a widely studied process, its regulation remains poorly understood. In this context, phosphoproteomics studies have detected six phosphorylation sites associated with photorespiratory glycolate oxidases from Arabidopsis thaliana (AtGOX1 and AtGOX2). Phosphorylation sites at T4, T158, S212 and T265 were selected and studied using Arabidopsis and maize recombinant glycolate oxidase (GOX) proteins mutated to produce either phospho-dead or phospho-mimetic enzymes in order to compare their kinetic parameters. Phospho-mimetic mutations (T4D, T158D and T265D) led to a severe inhibition of GOX activity without altering the KM glycolate. In two cases (T4D and T158D), this was associated with the loss of the cofactor, flavin mononucleotide. Phospho-dead versions exhibited different modifications according to the phospho-site and/or the GOX mutated. Indeed, all T4V and T265A enzymes had kinetic parameters similar to wild-type GOX and all T158V proteins showed low activities while S212A and S212D mutations had no effect on AtGOX1 activity and AtGOX2/ZmGO1 activities were 50% reduced. Taken together, our results suggest that GOX phosphorylation has the potential to modulate GOX activity.
Collapse
|
11
|
Timm S, Woitschach F, Heise C, Hagemann M, Bauwe H. Faster Removal of 2-Phosphoglycolate through Photorespiration Improves Abiotic Stress Tolerance of Arabidopsis. PLANTS 2019; 8:plants8120563. [PMID: 31810232 PMCID: PMC6963629 DOI: 10.3390/plants8120563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Photorespiration metabolizes 2-phosphoglyolate (2-PG) to avoid inhibition of carbon assimilation and allocation. In addition to 2-PG removal, photorespiration has been shown to play a role in stress protection. Here, we studied the impact of faster 2-PG degradation through overexpression of 2-PG phosphatase (PGLP) on the abiotic stress-response of Arabidopsis thaliana (Arabidopsis). Two transgenic lines and the wild type were subjected to short-time high light and elevated temperature stress during gas exchange measurements. Furthermore, the same lines were exposed to long-term water shortage and elevated temperature stresses. Faster 2-PG degradation allowed maintenance of photosynthesis at combined light and temperatures stress and under water-limiting conditions. The PGLP-overexpressing lines also showed higher photosynthesis compared to the wild type if grown in high temperatures, which also led to increased starch accumulation and shifts in soluble sugar contents. However, only minor effects were detected on amino and organic acid levels. The wild type responded to elevated temperatures with elevated mRNA and protein levels of photorespiratory enzymes, while the transgenic lines displayed only minor changes. Collectively, these results strengthen our previous hypothesis that a faster photorespiratory metabolism improves tolerance against unfavorable environmental conditions, such as high light intensity and temperature as well as drought. In case of PGLP, the likely mechanism is alleviation of inhibitory feedback of 2-PG onto the Calvin–Benson cycle, facilitating carbon assimilation and accumulation of transitory starch.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
- Correspondence: ; Tel.: +49-(0)381-4986115; Fax: +49-(0)381-4986112
| | - Franziska Woitschach
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str.6, D-18057 Rostock, Germany
| | - Carolin Heise
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| |
Collapse
|
12
|
Liu C, Sun Q, Zhao L, Li Z, Peng Z, Zhang J. Heterologous Expression of the Transcription Factor EsNAC1 in Arabidopsis Enhances Abiotic Stress Resistance and Retards Growth by Regulating the Expression of Different Target Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1495. [PMID: 30374363 PMCID: PMC6196249 DOI: 10.3389/fpls.2018.01495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
Heterologous expression of a transcription factor (TF) gene in a related species is a useful method for crop breeding and the identification of gene function. The differences in phenotype and target gene expression between HE lines (with the heterologous expression of an ortholog) and OX lines (with an overexpressed native gene) must be understood. EsNAC1, encoding a NAC protein and the ortholog of RD26 in Arabidopsis, was cloned from Eutrema salsugineum and introduced into Arabidopsis. The heterologous expression of EsNAC1 retarded the vegetative growth of Arabidopsis, and the transgenic plants (HE lines) showed much greater resistance to salt and oxidative stress than the wild type, Col-0. The HE lines accumulated 2.8-fold (8-h light) of starch, 1.42-fold of Chlorophyll a and 1.31-fold of Chlorophyll b than Col-0 during the light period, with obvious differences compared to the RD26OX line. A genome-wide ChIP (chromatin immunoprecipitation analysis)-on-chip assay revealed that EsNAC1 targeted promoters of different genes compared to RD26. In HE lines, EsNAC1 could specifically upregulate the expression level of TF genes NAC DOMAIN CONTAINING PROTEIN 62 (ANAC062), INTEGRASE-TYPE DNA-BINDING PROTEIN (TINY2), and MYB HYPOCOTYL ELONGATION-RELATED (MYBH) to show more effective abiotic stress resistance than RD26OX lines. Moreover, DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1), TRYPTOPHAN BIOSYNTHESIS 2 (TRP2) or GALACTINOL SYNTHASE 2 (GOLS2), was also specifically regulated by EsNAC1 to retard the vegetative growth of HE lines, but not the brassinosteroid singling pathway in RD26OX lines. These differences in phenotypes and metabolism between the HE lines and the RD26OX line implied that the differential features could be produced from the diversity of target genes in the transgenic plants when the ortholog was introduced.
Collapse
Affiliation(s)
| | | | | | | | | | - Juren Zhang
- School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
13
|
Cui F, Wu H, Safronov O, Zhang P, Kumar R, Kollist H, Salojärvi J, Panstruga R, Overmyer K. Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. PLANT, CELL & ENVIRONMENT 2018; 41:782-796. [PMID: 29333607 DOI: 10.1111/pce.13144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 05/13/2023]
Abstract
The atmospheric pollutant ozone (O3 ) is a strong oxidant that causes extracellular reactive oxygen species (ROS) formation, has significant ecological relevance, and is used here as a non-invasive ROS inducer to study plant signalling. Previous genetic screens identified several mutants exhibiting enhanced O3 sensitivity, but few with enhanced tolerance. We found that loss-of-function mutants in Arabidopsis MLO2, a gene implicated in susceptibility to powdery mildew disease, exhibit enhanced dose-dependent tolerance to O3 and extracellular ROS, but a normal response to intracellular ROS. This phenotype is increased in a mlo2 mlo6 mlo12 triple mutant, reminiscent of the genetic redundancy of MLO genes in powdery mildew resistance. Stomatal assays revealed that enhanced O3 tolerance in mlo2 mutants is not caused by altered stomatal conductance. We explored modulation of the mlo2-associated O3 tolerance, powdery mildew resistance, and early senescence phenotypes by genetic epistasis analysis, involving mutants with known effects on ROS sensitivity or antifungal defence. Mining of publicly accessible microarray data suggests that these MLO proteins regulate accumulation of abiotic stress response transcripts, and transcript accumulation of MLO2 itself is O3 responsive. In summary, our data reveal MLO2 as a novel negative regulator in plant ROS responses, which links biotic and abiotic stress response pathways.
Collapse
Affiliation(s)
- Fuqiang Cui
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Hongpo Wu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056, Aachen, Germany
| | - Omid Safronov
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Panpan Zhang
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Rajeev Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, 848125, Pusa, Samastipur, Bihar, India
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Jarkko Salojärvi
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056, Aachen, Germany
| | - Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|