1
|
Cao L, Jiang N, Li B, Deng J, Duan Y, Zu Y, Li Z. Characterization of Cd and As accumulation and subcellular distribution in different varieties of perennial ryegrasses. BMC PLANT BIOLOGY 2025; 25:508. [PMID: 40259279 PMCID: PMC12013065 DOI: 10.1186/s12870-025-06530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND The distribution, accumulation, and toxicological effects of two perennial ryegrass (Lolium perenne L.) varieties under combined cadmium (Cd)-arsenic (As) stress are worth exploring. Two varieties, 'Nicaragua' (high-Cd/As-accumulating, DPB) and 'Venus' (low-Cd/As-accumulating, WNS), were selected as experimental materials for pot trials. Subcellular fractionation, ultrastructural changes, and key transporter proteins cation exchanger (CAX), heavy metal ATPase (HMA), natural resistance-associated macrophage protein (NRAMP), and phosphate transporter (PHT) were analyzed under combined Cd-As stress. RESULTS (1) The translocation factors of perennial ryegrass for Cd and As were < 1. Cd and As were mainly distributed in the cell wall and the soluble fractions. The total percentage of Cd and As in the cell wall and the soluble fractions of DPB variety was 92.53 and 91.29%, respectively. (2) Cd and As stress on the cellular ultrastructure of two perennial ryegrasses resulted in plasmodesmata separation of leaf cells, swelling of chloroplasts, large numbers of osmiophilic granules, and thickening of root cell walls. Cell wall thickening was more pronounced in the low-accumulating variety. (3) The highest increase in HMA activity, which increased by 79.08% over the non-Cd/As treatment, was observed in the roots of DPB under Cd and As stress. Cd and As stress induced HMA activity (P < 0.01) in the highly accumulating variety DPB, and positively promoted Cd translocation and storage in the soluble fraction (vacuole). CONCLUSIONS Low Cd accumulation variety mainly resisted heavy metal through bound more Cd and As to cell wall resulting in cell wall thicken. High-Cd accumulation variety DPB stored Cd and As in the soluble fraction (vacuole ), and enhanced activity of the transporter protein HMA. This study elucidates the relationship and role of key transporter proteins of high/low accumulating perennial ryegrass with cellular Cd/As detoxification modes such as cell wall barrier defence and vesicle compartmentalisation, and provides a theoretical basis for differential detoxification strategies for species with different accumulating characteristics.
Collapse
Affiliation(s)
- Li Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Na Jiang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Jiangdi Deng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Yumo Duan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, PR China.
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Luo L, Tao G, Qin F, Luo B, Liu J, Xu A, Li W, Hu Y, Yi Y. Phosphate-solubilizing fungi enhances the growth of Brassica chinensis L. and reduces arsenic uptake by reshaping the rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120805-120819. [PMID: 37945954 DOI: 10.1007/s11356-023-30359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
High concentrations of arsenic in soil and plant systems are a threat to human health and ecosystems. The levels of phosphate ions in the soil strongly influence the soil efficacy and arsenic absorption by plants. This study investigated the effects of phosphate-solubilizing fungi (PSF) on environmental factors and structural changes in microbial community in soils contaminated with arsenic. Four experimental groups were created: control (CK), Penicillium GYAHH-CCT186 (W186), Aspergillus AHBB-CT196 (W196), and Penicillium GYAHH-CCT186 + Aspergillus AHBB-CT196 (W186 + W196), with Pakchoi (Brassica chinensis L.) as the test plant. Analysis of altered nutrient levels, enzyme activities and microbial community structure in the soil as well as the growth and physiological characteristics of Pakchoi, revealed a significant increase in the available phosphorus (AP), organic matter (OM), cation exchange capacity (CEC) and available arsenic (AAs) content of the soil following W186 + W196, W196 and W186 treatments. All experimental treatments enhanced the activity of soil β-glucosidase (β-GC) and soil catalase (S-CAT). W186 + W196 and W196 treatments significantly enhanced soil acid phosphatase (S-ACP) activity. Besides, W186 + W196 treatment significantly induced dehydrogenase (S-DHA) activity. Further, of the treatment with PSF increased the fresh weight, root length, plant height and chlorophyll levels while decreasing the arsenic accumulation in Pakchoi. Exposure to PSF also increased the activity of Ascomycota, Basidiomycota, Chytridiomycota, unclassified_Fungi, Mortierellomycota, Cryptomycota and Rozellomycota in the soil. The relative abundance of Ascomycota, Basidiomycota, and Mortierellomycota was positively correlated with the available nutrients (except iron) in the soil as well as enzyme activities. Consequently, the PSF improved the quality of soil and the safety of Pakchoi, suggesting that PSF can be utilized for the remediation of arsenic-contaminated soil.
Collapse
Affiliation(s)
- Lin Luo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Fanxin Qin
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China.
| | - Banglin Luo
- College of Resources and Environment/Key Laboratory of Eco-Environment in Three Gorges Region (Ministry of Education), Southwest University, Chongqing, 400716, China
| | - Jing Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Anqi Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Wanyu Li
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Yanjiao Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
3
|
Abstract
The non-essential metalloid arsenic (As) is widely distributed in soil and underground water of many countries. Arsenic contamination is a concern because it creates threat to food security in terms of crop productivity and food safety. Plants exposed to As show morpho-physiological, growth and developmental disorder which altogether result in loss of productivity. At physiological level, As-induced altered biochemistry in chloroplast, mitochondria, peroxisome, endoplasmic reticulum, cell wall, plasma membrane causes reactive oxygen species (ROS) overgeneration which damage cell through disintegrating the structure of lipids, proteins, and DNA. Therefore, plants tolerance to ROS-induced oxidative stress is a vital strategy for enhancing As tolerance in plants. Plants having enhanced antioxidant defense system show greater tolerance to As toxicity. Depending upon plant diversity (As hyperaccumulator/non-hyperaccumulator or As tolerant/susceptible) the mechanisms of As accumulation, absorption or toxicity response may differ. There can be various crop management practices such as exogenous application of nutrients, hormones, antioxidants, osmolytes, signaling molecules, different chelating agents, microbial inoculants, organic amendments etc. can be effective against As toxicity in plants. There is information gap in understanding the mechanism of As-induced response (damage or tolerance response) in plants. This review presents the mechanism of As uptake and accumulation in plants, physiological responses under As stress, As-induced ROS generation and antioxidant defense system response, various approaches for enhancing As tolerance in plants from the available literatures which will make understanding the to date knowledge, knowledge gap and future guideline to be worked out for the development of As tolerant plant cultivars.
Collapse
|
4
|
Cao GH, Wang XF, Li ZD, Zhang X, Li XG, Gu W, Zhang F, Yu J, He S. A Panax notoginseng phosphate transporter, PnPht1;3, greatly contributes to phosphate and arsenate uptake. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:259-271. [PMID: 35115080 DOI: 10.1071/fp21218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The crisis of arsenic (As) accumulation in rhizomes threatens the quality and safety of Panax notoginseng (Burk.) F.H. Chen, which is a well-known traditional Chinese herb with a long clinical history. The uptake of arsenate (AsV) could be suppressed by supplying phosphate (Pi), in which Pi transporters play important roles in the uptake of Pi and AsV. Herein, the P . notoginseng Pi transporter-encoding gene PnPht1;3 was identified and characterised under Pi deficiency and AsV exposure. In this study, the open reading frame (ORF) of PnPht1;3 was cloned according to RNA-seq and encoded 545 amino acids. The relative expression levels revealed that PnPht1;3 was significantly upregulated under phosphate deficiency and AsV exposure. Heterologous expression in Saccharomyces cerevisiae MB192 demonstrated that PnPht1;3 performed optimally in complementing the yeast Pi-transport defect and accumulated more As in the cells. Combined with the subcellular localisation prediction, it was concluded that PnPht1;3 encodes a functional plasma membrane-localised transporter protein that mediates putative high-affinity Pi/H+ symport activity and enhances the uptake of Pi and AsV. Therefore, a better understanding of the roles of the P . notoginseng Pi transporter could provide new insight for solving As accumulation in medicinal plants.
Collapse
Affiliation(s)
- Guan-Hua Cao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xi-Fu Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ze-Dong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xue Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao-Gang Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wen Gu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Fan Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jie Yu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Sen He
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; and Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Xie Q, Yu Q, Jobe TO, Pham A, Ge C, Guo Q, Liu J, Liu H, Zhang H, Zhao Y, Xue S, Hauser F, Schroeder JI. An amiRNA screen uncovers redundant CBF and ERF34/35 transcription factors that differentially regulate arsenite and cadmium responses. PLANT, CELL & ENVIRONMENT 2021; 44:1692-1706. [PMID: 33554343 PMCID: PMC8068611 DOI: 10.1111/pce.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 05/09/2023]
Abstract
Arsenic stress causes rapid transcriptional responses in plants. However, transcriptional regulators of arsenic-induced gene expression in plants remain less well known. To date, forward genetic screens have proven limited for dissecting arsenic response mechanisms. We hypothesized that this may be due to the extensive genetic redundancy present in plant genomes. To overcome this limitation, we pursued a forward genetic screen for arsenite tolerance using a randomized library of plants expressing >2,000 artificial microRNAs (amiRNAs). This library was designed to knock-down diverse combinations of homologous gene family members within sub-clades of transcription factor and transporter gene families. We identified six transformant lines showing an altered response to arsenite in root growth assays. Further characterization of an amiRNA line targeting closely homologous CBF and ERF transcription factors show that the CBF1,2 and 3 transcription factors negatively regulate arsenite sensitivity. Furthermore, the ERF34 and ERF35 transcription factors are required for cadmium resistance. Generation of CRISPR lines, higher-order T-DNA mutants and gene expression analyses, further support our findings. These ERF transcription factors differentially regulate arsenite sensitivity and cadmium tolerance.
Collapse
Affiliation(s)
- Qingqing Xie
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- These authors contributed equally to this work
| | - Qi Yu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, P. R. China
- These authors contributed equally to this work
| | - Timothy O. Jobe
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
- These authors contributed equally to this work
| | - Allis Pham
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Chennan Ge
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Qianqian Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jianxiu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Honghong Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Huijie Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yunde Zhao
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| |
Collapse
|
6
|
Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits. PLANTS 2020; 9:plants9050657. [PMID: 32456107 PMCID: PMC7284476 DOI: 10.3390/plants9050657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Arsenic (As) from coal fly ash can be released into soil/groundwater, presenting a global threat to the environment and human health. To overcome this environmental problem, phytoremediation represents an urgent need, providing ‘green’ cleanup of contaminated lands. The present study focused on As concentrations in fly ash and plants, evaluation of phytoremediation potential of Dactylis glomerata sown on fly ash deposits together with its photosynthetic activity, and oxidative and antioxidative response to As stress. Field research was carried out on fly ash deposits at the thermal power plant “Nikola Tesla”, Obrenovac (TENT-A, Serbia) and the control site. Fly ash is characterized by alkaline pH reactions, small amounts of organic matter, a large amount of available phosphate, and total and available As concentrations. Results in this study indicate that phosphate application can ameliorate As toxicity, uptake and root-shoot transport. Furthermore, D. glomerata can be considered as good As phytostabilizator, because it retains more As in roots than in leaves. Excess As in leaves decreases photosynthetic efficiency (Fv/Fm) and concentrations of chlorophylls, carotenoids, and anthocyanins, whereas high content of malondialdehyde (MDA) can be a signal for biosynthesis phenolics and ascorbic acid, providing cellular redox homeostasis and recovery of photosystem II (PSII) photochemistry. In the roots, low oxidative stress under high concentrations of As is related to intense antioxidant biosynthesis. Taken together, the results in this study indicate a high adaptive potential of D. glomerata to As stress. These findings may suggest that physiological and metabolic tools can be used as a way forward in the ‘real field’ scenario, phytomanagement of fly ash and ecosystem services providing sustainable phytoremediation of As-contaminated sites around the globe.
Collapse
|
7
|
Arsenic Uptake and Accumulation Mechanisms in Rice Species. PLANTS 2020; 9:plants9020129. [PMID: 31972985 PMCID: PMC7076356 DOI: 10.3390/plants9020129] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Rice consumption is a source of arsenic (As) exposure, which poses serious health risks. In this study, the accumulation of As in rice was studied. Research shows that As accumulation in rice in Taiwan and Bangladesh is higher than that in other countries. In addition, the critical factors influencing the uptake of As into rice crops are defined. Furthermore, determining the feasibility of using effective ways to reduce the accumulation of As in rice was studied. AsV and AsIII are transported to the root through phosphate transporters and nodulin 26-like intrinsic channels. The silicic acid transporter may have a vital role in the entry of methylated As, dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA), into the root. Amongst As species, DMA(V) is particularly mobile in plants and can easily transfer from root to shoot. The OsPTR7 gene has a key role in moving DMA in the xylem or phloem. Soil properties can affect the uptake of As by plants. An increase in organic matter and in the concentrations of sulphur, iron, and manganese reduces the uptake of As by plants. Amongst the agronomic strategies in diminishing the uptake and accumulation of As in rice, using microalgae and bacteria is the most efficient.
Collapse
|
8
|
Dual Role of Metallic Trace Elements in Stress Biology-From Negative to Beneficial Impact on Plants. Int J Mol Sci 2019; 20:ijms20133117. [PMID: 31247908 PMCID: PMC6651804 DOI: 10.3390/ijms20133117] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Heavy metals are an interesting group of trace elements (TEs). Some of them are minutely required for normal plant growth and development, while others have unknown biological actions. They may cause injury when they are applied in an elevated concentration, regardless of the importance for the plant functioning. On the other hand, their application may help to alleviate various abiotic stresses. In this review, both the deleterious and beneficial effects of metallic trace elements from their uptake by roots and leaves, through toxicity, up to the regulation of physiological and molecular mechanisms that are associated with plant protection against stress conditions have been briefly discussed. We have highlighted the involvement of metallic ions in mitigating oxidative stress by the activation of various antioxidant enzymes and emphasized the phenomenon of low-dose stimulation that is caused by non-essential, potentially poisonous elements called hormesis, which is recently one of the most studied issues. Finally, we have described the evolutionary consequences of long-term exposure to metallic elements, resulting in the development of unique assemblages of vegetation, classified as metallophytes, which constitute excellent model systems for research on metal accumulation and tolerance. Taken together, the paper can provide a novel insight into the toxicity concept, since both dose- and genotype-dependent response to the presence of metallic trace elements has been comprehensively explained.
Collapse
|
9
|
Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. CHEMOSPHERE 2018; 211:397-406. [PMID: 30077936 DOI: 10.1016/j.chemosphere.2018.07.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
The rapid pace of industrial, agricultural and anthropogenic activities in the 20th century has resulted in contamination of heavy metals across the globe. Arsenic (As) is a ubiquitous, naturally occurring toxic metalloid, contaminating the soil and water and affecting human health in several countries. Several physicochemical methods exist for the cleanup of As contamination but these are expensive and disastrous to microbes and soil. Plant based remediation approaches are low cost and environmentally safe. Hence, extensive biochemical, molecular and genetic experiments have been conducted to understand plants' responses to As stress and have led to the identification of potential genes. The available knowledge needs to be utilized to either reduce As accumulation in crop plants (rice) or to enhance As levels in shoots of hyperaccumulators (Pteris vittata). Gene manipulation using biotechnological tools can be an effective approach to exploit the potential genes (plasmamembrane and vacuolar transporters, glutathione and phytochelatin biosynthetic enzymes, etc.) playing pivotal roles in uptake, translocation, transformation, complexation, and compartmentalization of As in plants. The transgenic plants with increased tolerance to As and altered (increased/decreased) As accumulation have been developed. The need, however, exists to design plants with altered expression of two or more genes for harmonizing various events (like arsenate reduction, arsenite complexation, sequestration and translocation) so as to achieve desirable reduction (crop plants) or increase (phytoremediator plants) in As content. This review sheds light on transgenic approaches adopted to modulate As levels in plants and proposes future directions to achieve desirable results.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India.
| | - Anshu Rastogi
- Department of Meteorology, Poznan University of Life Sciences, Poznan, Poland.
| | - Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| |
Collapse
|