1
|
Wang T, Meng K, Zhu Z, Pan L, Okita TW, Zhang L, Tian L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. PLANTS (BASEL, SWITZERLAND) 2025; 14:1402. [PMID: 40364430 PMCID: PMC12074014 DOI: 10.3390/plants14091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance.
Collapse
Affiliation(s)
- Tangying Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Kaiyuan Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilin Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Linxuan Pan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Hernández-Urrieta J, Álvarez JM, O’Brien JA. Exploring Alternative Splicing in Response to Salinity: A Tissue-Level Comparative Analysis Using Arabidopsis thaliana Public Transcriptomic Data. PLANTS (BASEL, SWITZERLAND) 2025; 14:1064. [PMID: 40219132 PMCID: PMC11991229 DOI: 10.3390/plants14071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Increased soil salinity is a major threat to global agriculture and food security, caused mainly by anthropogenic activities and changing climatic cycles. Plants responses to salinity involve multiple regulatory layers, from transcriptome reprogramming to proteomic and metabolomic changes. Alternative splicing (AS) plays a role in coordinating the response to salinity, yet its extent, tissue, and condition specificity, remain poorly understood aspects. In this study, we used 52 publicly available RNA-seq datasets of salinity treatment to identify differential alternative splicing (DAS) events and genes participating in the response to this stimulus. Our findings reveal that either independently or coordinately, AS can regulate up to 20% of the transcriptome detected in Arabidopsis, with treatment intensity being the most determining factor. Moreover, we show that AS regulation was highly tissue-specific, with roots displaying strong AS-mediated stress responses. Furthermore, cross-stress comparisons showed that roots have a core set of AS-regulated genes associated with stress response and development, with functionally distinct sets of genes when comparing salt with other stresses, while also conserving a relevant condition-specific response. We demonstrate the need to integrate AS analysis to better understand plant adaptation mechanisms and highlight the key role of AS in salinity responses, revealing shared AS regulation between salt, heat, and drought responses.
Collapse
Affiliation(s)
- Jesús Hernández-Urrieta
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile
| | - José Miguel Álvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile;
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- ANID–Millenium Science Initiative Program–Millenium Nucleus in Data Science for Plant Resilience (Phytolearning), Santiago 8370186, Chile
| | - José Antonio O’Brien
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile
| |
Collapse
|
3
|
Hussain SS, Li Y, Liu J, Abbas M, Li Q, Deng H, Abbas S, Han K, Han J, Sun Y, Li Y. DNA Hypomethylation Activates the RpMYB2-Centred Gene Network to Enhance Regeneration of Adventitious Roots. PLANT, CELL & ENVIRONMENT 2025; 48:1674-1691. [PMID: 39468797 DOI: 10.1111/pce.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Plants, being immobile, are exposed to environmental adversities such as wind, snow and animals that damage their structure, making regeneration essential for their survival. The adventitious roots (ARs) primarily emerge from a detached explant to uptake nutrients; therefore, the molecular network involved in their regeneration needs to be explored. DNA methylation, a key epigenetic mark, influences molecular pathways, and recent studies suggested its role in regeneration. In our research, the application of 5-azacytidine (5-azaC), an inhibitor of DNA methylation, caused the earlier initiation and development of root primordia and consequently enhanced the AR regeneration rate in Robinia psuedoacacia L (black locust). The whole-genome bisulfite sequencing (WGBS) revealed a decrease in global methylation and an increase in hypomethylated cytosine sites and regions across all contexts including CHH, CHG and mergedCG caused transcriptional variations in 5-azaC-treated sample. The yeast two-hybrid (Y2H) assay revealed a RpMYB2-centred network of transcriptionally activated transcription factors (TFs) including RpWRKY23, RpGATA23, RpSPL16 and other genes like RpSDP, RpSS1, RpBEN1, RpGULL05 and RpCUV with nuclear localization suggesting their potential co-localization. Additionally, yeast one-hybrid (Y1H) assay showed the interaction of RpMYB2 interactors, RpGATA23 and RpWRKY23, with promoters of RpSK6 and RpCDC48, and luciferase reporting assay (LRA) validated their binding with RpSK6. Our results revealed that hypomethylation-mediated transcriptomic modifications activated the RpMYB2-centred gene network to enhance AR regeneration in black locust hypocotyl cuttings. These findings pave the way for genetic modification to improve plant regeneration ability and increase wood production while withstanding environmental damage.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yapeng Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Quanzi Li
- Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Houyin Deng
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sammar Abbas
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Juan Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024; 282:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
5
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
6
|
Schmidt M, Guerreiro R, Baig N, Habekuß A, Will T, Ruckwied B, Stich B. Fine mapping a QTL for BYDV-PAV resistance in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:163. [PMID: 38896149 PMCID: PMC11186928 DOI: 10.1007/s00122-024-04668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Barley yellow dwarf (BYD) is one of the economically most important virus diseases of cereals worldwide, causing yield losses up to 80%. The means to control BYD are limited, and the use of genetically resistant cultivars is the most economical and environmentally friendly approach. The objectives of this study were i) to identify the causative gene for BYD virus (BYDV)-PAV resistance in maize, ii) to identify single nucleotide polymorphisms and/or structural variations in the gene sequences, which may cause differing susceptibilities to BYDV-PAV of maize inbreds, and iii) to characterize the effect of BYDV-PAV infection on gene expression of susceptible, tolerant, and resistant maize inbreds. Using two biparental mapping populations, we could reduce a previously published quantitative trait locus for BYDV-PAV resistance in maize to ~ 0.3 Mbp, comprising nine genes. Association mapping and gene expression analysis further reduced the number of candidate genes for BYDV-PAV resistance in maize to two: Zm00001eb428010 and Zm00001eb428020. The predicted functions of these genes suggest that they confer BYDV-PAV resistance either via interfering with virus replication or by inducing reactive oxygen species signaling. The gene sequence of Zm00001eb428010 is affected by a 54 bp deletion in the 5`-UTR and a protein altering variant in BYDV-PAV-resistant maize inbreds but not in BYDV-PAV-susceptible and -tolerant inbreds. This finding suggests that altered abundance and/or properties of the proteins encoded by Zm00001eb428010 may lead to BYDV-PAV resistance.
Collapse
Affiliation(s)
- Maria Schmidt
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Nadia Baig
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Antje Habekuß
- Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institute, Quedlinburg, Germany
| | - Torsten Will
- Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institute, Quedlinburg, Germany
| | - Britta Ruckwied
- Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institute, Quedlinburg, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany.
- Cluster of Excellence On Plant Sciences, From Complex Traits Towards Synthetic Modules, Heinrich Heine University, Düsseldorf, Germany.
- Federal Research Center for Cultivated Plants, Institute for Breeding Research On Agricultural Crops, Julius-Kühn Institute, Sanitz, Germany.
| |
Collapse
|
7
|
Shen C, Feng G, Zhao F, Huang X, Li X. The multi-omics analysis in the hepatopancreas of Eriocheir sinensis provides novel insights into the response mechanism of heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101232. [PMID: 38598963 DOI: 10.1016/j.cbd.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Under global warming, heat stress can induce the excessive production of reactive oxygen species, causing irreversible damage to aquatic animals. It is essential to predict potentially harmful impacts on aquatic organisms under heat stress. Eriocheir sinensis, a typical crustacean crab, is widely distributed in China, American and Europe. Parent E. sinensis need migrate to the estuaries to reproduce in winter, and temperature is a key environmental factor. Herein, we performed a comprehensive transcriptomic and proteomic analysis in the hepatopancreas of E. sinensis under heat stress (20 °C and 30 °C), focusing on heat shock protein family, antioxidant system, energy metabolism and immune defense. The results revealed that parent E. sinensis generated adaptative responses to maintain physiological function under 20 °C stress via the transcriptional up-regulation of energy metabolism enzymes, mRNA synthesis and heat shock proteins. The transcriptional inhibition of key enzymes related to energy metabolism implied that 30 °C stress may lead to the dysfunction of energy metabolism in parent E. sinensis. Meanwhile, parent E. sinensis also enhanced the expression of ferritin and phospholipase D at translational level, and the glutathione s-transferase and heat shock protein 70 at both transcriptional and translational levels, speculating that parent E. sinensis can strengthen antioxidant and immune capacity to resist oxidative stress under 30 °C stress. This study elucidated the potential molecular mechanism in response to heat stress of parent E. sinensis hepatopancreas. The preliminary selection of heat tolerance genes or proteins in E. sinensis can provide a reference for the population prediction and the study of evolutionary mechanism under heat stress in crabs.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| |
Collapse
|
8
|
Nishanth MJ. Transcriptome meta-analysis-based identification of hub transcription factors and RNA-binding proteins potentially orchestrating gene regulatory cascades and crosstalk in response to abiotic stresses in Arabidopsis thaliana. J Appl Genet 2024; 65:255-269. [PMID: 38337133 DOI: 10.1007/s13353-024-00837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Deteriorating climatic conditions and increasing human population necessitate the development of robust plant varieties resistant to harsh environments. Manipulation of regulatory proteins such as transcription factors (TFs) and RNA-binding proteins (RBPs) would be a beneficial strategy in this regard. Further, understanding the complex interconnections between different classes of regulatory molecules would be essential for the identification of candidate genes/proteins for trait improvement. Most studies to date have analysed the roles of TFs or RBPs individually, in conferring stress resilience. However, it would be important to identify dominant/upstream TFs and RBPs inducing widespread transcriptomic alterations through other regulators (i.e., other TFs/RBPs targeted by the upstream regulators). To this end, the present study employed a transcriptome meta-analysis and computational approaches to obtain a comprehensive overview of regulatory interactions. This work identified dominant TFs and RBPs potentially influencing stress-mediated differential expression of other regulators, which could in turn influence gene expression, and consequently, physiological responses. Twenty transcriptomic studies [related to (i) UV radiation, (ii) wounding, (iii) salinity, (iv) cold, and (v) drought stresses in Arabidopsis thaliana] were analysed for differential gene expression, followed by the identification of differentially expressed TFs and RBPs. Subsequently, other TFs and RBPs which could be influencing these regulators were identified, and their interaction networks and hub nodes were analysed. As a result, an interacting module of Basic Leucine Zipper (bZIP) family TFs as well as Heterogeneous nuclear ribonucleoproteins (hnRNP) and Glycine-rich protein (GRP) family RBPs (among other TFs and RBPs) were shown to potentially influence the stress-induced differential expression of other TFs and RBPs under all the considered stress conditions. Some of the identified hub TFs and RBPs are known to be of major importance in orchestrating stress-induced transcriptomic changes influencing a variety of physiological processes from seed germination to senescence. This study highlighted the gene/protein candidates that could be considered for multiplexed genetic manipulation - a promising approach to develop robust, multi-stress-resilient plant varieties.
Collapse
Affiliation(s)
- M J Nishanth
- Deptartment of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, India, 560027.
| |
Collapse
|
9
|
Xiang X, Deng Q, Zheng Y, He Y, Ji D, Vejlupkova Z, Fowler JE, Zhou L. Genome-wide investigation of the LARP gene family: focus on functional identification and transcriptome profiling of ZmLARP6c1 in maize pollen. BMC PLANT BIOLOGY 2024; 24:348. [PMID: 38684961 PMCID: PMC11057080 DOI: 10.1186/s12870-024-05054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. RESULTS In this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs, cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions of ZmLARP genes in maize. Moreover, ZmLARP6c1 was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression of ZmLARP6c1 enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes included PABP homologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in a Zmlarp6c1::Ds mutant and ZmLARP6c1-overexpression line compared with the corresponding wild type. CONCLUSIONS The findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function of ZmLARP6c1 in maize pollen germination.
Collapse
Affiliation(s)
- Xiaoqin Xiang
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Qianxia Deng
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Zheng
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi He
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Dongpu Ji
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lian Zhou
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
10
|
Peleke FF, Zumkeller SM, Gültas M, Schmitt A, Szymański J. Deep learning the cis-regulatory code for gene expression in selected model plants. Nat Commun 2024; 15:3488. [PMID: 38664394 PMCID: PMC11045779 DOI: 10.1038/s41467-024-47744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.
Collapse
Affiliation(s)
- Fritz Forbang Peleke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Seeland, OT, Gatersleben, Germany
| | - Simon Maria Zumkeller
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, Forschungszentrum Jülich, D-52428, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Soest, 59494, Germany
| | - Armin Schmitt
- Breeding Informatics Group, University of Göttingen, Göttingen, 37075, Germany
- Center of Integrated Breeding Research (CiBreed), Göttingen, 37075, Germany
| | - Jędrzej Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Seeland, OT, Gatersleben, Germany.
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, Forschungszentrum Jülich, D-52428, Jülich, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
11
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Padilla-Chacón D, Campos-Patiño L, Peña-Valdivia CB, García-Esteva A, Jiménez-Galindo JC, Pizeno-García JL. Proteomic profile of tepary bean seed storage proteins in germination with low water potential. Proteome Sci 2024; 22:1. [PMID: 38195472 PMCID: PMC10775562 DOI: 10.1186/s12953-023-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Tepary bean (Phaseolus acutifolius A. Gray) is one of the five species domesticated from the genus Phaseolus with genetic resistance to biotic and abiotic stress. To understand the mechanisms underlying drought responses in seed storage proteins germinated on water and polyethylene glycol (PEG-6000) at -0.49 MPa, we used a proteomics approach to identify potential molecular target proteins associated with the low water potential stress response. METHODS Storage proteins from cotyledons of Tepary bean seeds germinated at 24, 48 and 72 h on water and PEG-6000 at -0.49 MPa were analyzed by one-dimensional electrophoresis (DE) with 2-DE analysis and shotgun mass spectrometry. Using computational database searching and bioinformatics analyses, we performed Gene Ontology (GO) and protein interactome (functional protein association network) String analyses. RESULTS Comparative analysis showed that the effect of PEG-6000 on root growth was parallel to that on germination. Based on the SDS‒PAGE protein banding patterns and 2-DE analysis, ten differentially abundant seed storage proteins showed changes in storage proteins, principally in the phaseolin and lectin fractions. We found many proteins that are recognized as drought stress-responsive proteins, and several of them are predicted to be intrinsically related to abiotic stress. The shotgun analysis searched against UniProt's legume database, and Gene Ontology (GO) analysis indicated that most of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. The protein‒protein interaction networks from functional enrichment analysis showed that phytohemagglutinin interacts with proteins associated with the degradation of storage proteins in the cotyledons of common bean during germination. CONCLUSION These findings suggest that Tepary bean seed proteins provide valuable information with the potential to be used in genetic improvement and are part of the drought stress response, making our approach a potentially useful strategy for discovering novel drought-responsive proteins in other plant models.
Collapse
Affiliation(s)
- Daniel Padilla-Chacón
- Colegio de Postgraduados, CONAHCYT-Programa de Posgrado en Botánica, Carretera México- Texcoco, km 36.5, Montecillo, 56264, México.
| | - Laura Campos-Patiño
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| | - Cecilia B Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| | - Antonio García-Esteva
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| | | | - Jorge Luis Pizeno-García
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| |
Collapse
|
13
|
Li W, Liu Z, Huang Y, Zheng J, Yang Y, Cao Y, Ding L, Meng Y, Shan W. Phytophthora infestans RXLR effector Pi23014 targets host RNA-binding protein NbRBP3a to suppress plant immunity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13416. [PMID: 38279850 PMCID: PMC10777756 DOI: 10.1111/mpp.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.
Collapse
Affiliation(s)
- Wanyue Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuli Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jie Zheng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
14
|
Yang Y, Yang H, Yang C. Circ-AMOTL1 enhances cardiac fibrosis through binding with EIF4A3 and stabilizing MARCKS expression in diabetic cardiomyopathy. Cell Signal 2023; 111:110853. [PMID: 37586467 DOI: 10.1016/j.cellsig.2023.110853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-β1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.
Collapse
Affiliation(s)
- Yang Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Huan Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Chong Yang
- Cardiology department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China.
| |
Collapse
|
15
|
Mateos JL, Staiger D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. THE PLANT CELL 2023; 35:1708-1726. [PMID: 36461946 PMCID: PMC10226577 DOI: 10.1093/plcell/koac345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding proteins (RBPs) have a broad impact on most biochemical, physiological, and developmental processes in a plant's life. RBPs engage in an on-off relationship with their RNA partners, accompanying virtually every stage in RNA processing and function. While the function of a plethora of RBPs in plant development and stress responses has been described, we are lacking a systems-level understanding of components in RNA-based regulation. Novel techniques have substantially enlarged the compendium of proteins with experimental evidence for binding to RNAs in the cell, the RNA-binding proteome. Furthermore, ribonomics methods have been adapted for use in plants to profile the in vivo binding repertoire of RBPs genome-wide. Here, we discuss how recent technological achievements have provided novel insights into the mode of action of plant RBPs at a genome-wide scale. Furthermore, we touch upon two emerging topics, the connection of RBPs to phase separation in the cell and to extracellular RNAs. Finally, we define open questions to be addressed to move toward an integrated understanding of RBP function.
Collapse
Affiliation(s)
- Julieta L Mateos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Comparative phylogenomic analysis of 5’is-regulatory elements (CREs) of miR160 gene family in diploid and allopolyploid cotton (Gossypium) species. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Zhang Y, Fan S, Hua C, Teo ZWN, Kiang JX, Shen L, Yu H. Phase separation of HRLP regulates flowering time in Arabidopsis. SCIENCE ADVANCES 2022; 8:eabn5488. [PMID: 35731874 PMCID: PMC9217094 DOI: 10.1126/sciadv.abn5488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA binding proteins mediate posttranscriptional RNA metabolism and play regulatory roles in many developmental processes in eukaryotes. Despite their known effects on the floral transition from vegetative to reproductive growth in plants, the underlying mechanisms remain largely obscure. Here, we show that a hitherto unknown RNA binding protein, hnRNP R-LIKE PROTEIN (HRLP), inhibits cotranscriptional splicing of a key floral repressor gene FLOWERING LOCUS C (FLC). This, in turn, facilitates R-loop formation near FLC intron I to repress its transcription, thereby promoting the floral transition in Arabidopsis thaliana. HRLP, together with the splicing factor ARGININE/SERINE-RICH 45, forms phase-separated nuclear condensates with liquid-like properties, which is essential for HRLP function in regulating FLC splicing, R-loop formation, and RNA Polymerase II recruitment. Our findings reveal that inhibition of cotranscriptional splicing of FLC by nuclear HRLP condensates constitutes the molecular basis for down-regulation of FLC transcript levels to ensure the reproductive success of Arabidopsis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Sheng Fan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Changmei Hua
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Jian Xuan Kiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (L.S.); (H.Y.)
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (L.S.); (H.Y.)
| |
Collapse
|
18
|
Nishanth MJ, Simon B. Understanding the possible influence of Pumilio RNA binding proteins on terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:963-969. [PMID: 35722510 PMCID: PMC9203614 DOI: 10.1007/s12298-022-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Catharanthus roseus is a clinically significant medicinal plant; the sole source of chemotherapy agents, vincristine and vinblastine (specialized metabolites, terpenoid indole alkaloids/TIAs). Owing to large clinical demand and low bioavailability, several studies have focused on biosynthesis and regulation of TIA biosynthesis in C. roseus. However, transcription factor mediated regulation has been a major research focus, and the impact of post-transcriptional regulation remains under-explored. RNA binding proteins (RBPs) are an emerging class of post-transcriptional regulators having a profound influence on transcript stability. Pumilio (Pum) RBPs are evolutionarily conserved post-transcriptional regulators, involved in RNA degradation across eukaryotes. However, their potential influence on TIA biosynthesis has not been studied till date in any medicinal plants including C. roseus. Thus, the present study aimed at identification and computational characterization of Pum in C. roseus, followed by expression and functional analyses. The genome-wide identification and characterization revealed twelve CrPum isoforms. The effect of CrPum2, 3, and 5 knockdown on TIA biosynthesis (specifically vindoline and catharanthine) was analyzed via high performance liquid chromatography. CrPum5 knockdown was associated with increased TIA levels and upregulation of key TIA pathway genes. Thus, the present study is the first to report the potential influence of Pum on TIA biosynthesis in C. roseus. Further studies to elucidate the mechanism of Pum activity could provide new insights into the molecular regulation of TIA biosynthesis. A holistic understanding of regulatory mechanisms could benefit the metabolic engineering programs aimed at higher productivity of plant specialized metabolites. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01193-5.
Collapse
Affiliation(s)
- M. J. Nishanth
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu India
| | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu India
- Assistant Professor of Biology, Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144 USA
| |
Collapse
|
19
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Alvarado-Marchena L, Marquez-Molins J, Martinez-Perez M, Aparicio F, Pallás V. Mapping of Functional Subdomains in the atALKBH9B m 6A-Demethylase Required for Its Binding to the Viral RNA and to the Coat Protein of Alfalfa Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2021; 12:701683. [PMID: 34290728 PMCID: PMC8287571 DOI: 10.3389/fpls.2021.701683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 06/01/2023]
Abstract
N 6-methyladenosine (m6A) modification is a dynamically regulated RNA modification that impacts many cellular processes and pathways. This epitranscriptomic methylation relies on the participation of RNA methyltransferases (referred to as "writers") and demethylases (referred to as "erasers"), respectively. We previously demonstrated that the Arabidopsis thaliana protein atALKBH9B showed m6A-demethylase activity and interacted with the coat protein (CP) of alfalfa mosaic virus (AMV), causing a profound impact on the viral infection cycle. To dissect the functional activity of atALKBH9B in AMV infection, we performed a protein-mapping analysis to identify the putative domains required for regulating this process. In this context, the mutational analysis of the protein revealed that the residues between 427 and 467 positions are critical for in vitro binding to the AMV RNA. The atALKBH9B amino acid sequence showed intrinsically disordered regions (IDRs) located at the N-terminal part delimiting the internal AlkB-like domain and at the C-terminal part. We identified an RNA binding domain containing an RGxxxRGG motif that overlaps with the C-terminal IDR. Moreover, bimolecular fluorescent experiments allowed us to determine that residues located between 387 and 427 are critical for the interaction with the AMV CP, which should be critical for modulating the viral infection process. Finally, we observed that atALKBH9B deletions of either N-terminal 20 residues or the C-terminal's last 40 amino acids impede their accumulation in siRNA bodies. The involvement of the regions responsible for RNA and viral CP binding and those required for its localization in stress granules in the viral cycle is discussed.
Collapse
|
21
|
Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. Int J Mol Sci 2021; 22:ijms22136731. [PMID: 34201749 PMCID: PMC8269355 DOI: 10.3390/ijms22136731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
Collapse
|
22
|
Wang L, Zhong X, Wang S, Zhang H, Liu Y. A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network. BMC Bioinformatics 2021; 22:169. [PMID: 33789581 PMCID: PMC8011163 DOI: 10.1186/s12859-021-04102-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Studies have shown that RNA secondary structure, a planar structure formed by paired bases, plays diverse vital roles in fundamental life activities and complex diseases. RNA secondary structure profile can record whether each base is paired with others. Hence, accurate prediction of secondary structure profile can help to deduce the secondary structure and binding site of RNA. RNA secondary structure profile can be obtained through biological experiment and calculation methods. Of them, the biological experiment method involves two ways: chemical reagent and biological crystallization. The chemical reagent method can obtain a large number of prediction data, but its cost is high and always associated with high noise, making it difficult to get results of all bases on RNA due to the limited of sequencing coverage. By contrast, the biological crystallization method can lead to accurate results, yet heavy experimental work and high costs are required. On the other hand, the calculation method is CROSS, which comprises a three-layer fully connected neural network. However, CROSS can not completely learn the features of RNA secondary structure profile since its poor network structure, leading to its low performance. Results In this paper, a novel end-to-end method, named as “RPRes, was proposed to predict RNA secondary structure profile based on Bidirectional LSTM and Residual Neural Network. Conclusions RPRes utilizes data sets generated by multiple biological experiment methods as the training, validation, and test sets to predict profile, which can compatible with numerous prediction requirements. Compared with the biological experiment method, RPRes has reduced the costs and improved the prediction efficiency. Compared with the state-of-the-art calculation method CROSS, RPRes has significantly improved performance.
Collapse
Affiliation(s)
- Linyu Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xiaodan Zhong
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Shuo Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, China.
| |
Collapse
|
23
|
Zhou L, Vejlupkova Z, Warman C, Fowler JE. A Maize Male Gametophyte-Specific Gene Encodes ZmLARP6c1, a Potential RNA-Binding Protein Required for Competitive Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:635244. [PMID: 33719310 PMCID: PMC7947365 DOI: 10.3389/fpls.2021.635244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Members of the La-related protein family (LARPs) contain a conserved La module, which has been associated with RNA-binding activity. Expression of the maize gene GRMZM2G323499/Zm00001d018613, a member of the LARP family, is highly specific to pollen, based on both transcriptomic and proteomic assays. This suggests a pollen-specific RNA regulatory function for the protein, designated ZmLARP6c1 based on sequence similarity to the LARP6 subfamily in Arabidopsis. To test this hypothesis, a Ds-GFP transposable element insertion in the ZmLarp6c1 gene (tdsgR82C05) was obtained from the Dooner/Du mutant collection. Sequencing confirmed that the Ds-GFP insertion is in an exon, and thus likely interferes with ZmLARP6c1 function. Tracking inheritance of the insertion via its endosperm-expressed GFP indicated that the mutation was associated with reduced transmission from a heterozygous plant when crossed as a male (ranging from 0.5 to 26.5% transmission), but not as a female. Furthermore, this transmission defect was significantly alleviated when less pollen was applied to the silk, reducing competition between mutant and wild-type pollen. Pollen grain diameter measurements and nuclei counts showed no significant differences between wild-type and mutant pollen. However, in vitro, mutant pollen tubes were significantly shorter than those from sibling wild-type plants, and also displayed altered germination dynamics. These results are consistent with the idea that ZmLARP6c1 provides an important regulatory function during the highly competitive progamic phase of male gametophyte development following arrival of the pollen grain on the silk. The conditional, competitive nature of the Zmlarp6c1::Ds male sterility phenotype (i.e., reduced ability to produce progeny seed) points toward new possibilities for genetic control of parentage in crop production.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Cedar Warman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
24
|
Fungal Infection Induces Anthocyanin Biosynthesis and Changes in DNA Methylation Configuration of Blood Orange [ Citrus sinensis L. (Osbeck)]. PLANTS 2021; 10:plants10020244. [PMID: 33513740 PMCID: PMC7910907 DOI: 10.3390/plants10020244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
The biosynthesis of sweet orange anthocyanins is triggered by several environmental factors such as low temperature. Much less is known about the effect of biotic stress on anthocyanin production in sweet orange, although in other species anthocyanins are often indicated as “defense molecules”. In this work, citrus fruits were inoculated with Penicillium digitatum, the causal agent of green mold, and the amount of anthocyanins and the expression of genes related to their biosynthesis was monitored by RT-real time PCR after 3 and 5 days from inoculation (DPI). Moreover, the status of cytosine methylation of DFR and RUBY promoter regions was investigated by McrBC digestion followed in real-time. Our results highlight that fungal infection induces anthocyanin production by activating the expression of several genes in the biosynthetic pathway. The induction of gene expression is accompanied by maintenance of high levels of methylation at the DFR and RUBY promoters in the inoculated fruits, thus suggesting that DNA methylation is not a repressive mark of anthocyanin related gene expression in sweet orange subjected to biotic stress. Finally, by measuring the expression levels of the Citrus DNA demethylase genes, we found that none of them is up-regulated in response to fungal infection, this result being in accordance with the observed maintenance of high-level DFR and Ruby promoter regions methylation.
Collapse
|
25
|
Muleya V, Marondedze C. Functional Roles of RNA-Binding Proteins in Plant Signaling. Life (Basel) 2020; 10:life10110288. [PMID: 33217949 PMCID: PMC7698727 DOI: 10.3390/life10110288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are typical proteins that bind RNA through single or multiple RNA-binding domains (RBDs). These proteins have a functional role in determining the fate or function of the bound RNAs. A few hundred RBPs were known through in silico prediction based on computational assignment informed by structural similarity and the presence of classical RBDs. However, RBPs lacking such conventional RBDs were omitted. Owing to the recent mRNA interactome capture technology based on UV-crosslinking and fixing proteins to their mRNA targets followed by affinity capture purification and identification of RBPs by tandem mass spectrometry, several hundreds of RBPs have recently been discovered. These proteome-wide studies have colossally increased the number of proteins implicated in RNA binding and unearthed hundreds of novel RBPs lacking classical RBDs, such as proteins involved in intermediary metabolism. These discoveries provide wide insights into the post-transcriptional gene regulation players and their role in plant signaling, such as environmental stress conditions. In this review, novel discoveries of RBPs are explored, particularly on the evolving knowledge of their role in stress responses. The molecular functions of these RBPs, particularly focusing on those that do not have classical RBDs, are also elucidated at the systems level.
Collapse
Affiliation(s)
- Victor Muleya
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Main Campus, Senga Road, Gweru P Bag 9055, Zimbabwe;
| | - Claudius Marondedze
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Main Campus, Senga Road, Gweru P Bag 9055, Zimbabwe;
- Rijk Zwaan, 2678 ZG De Lier, The Netherlands
- Correspondence: or or
| |
Collapse
|
26
|
Liu J, Zhang C, Jia X, Wang W, Yin H. Comparative analysis of RNA-binding proteomes under Arabidopsis thaliana-Pst DC3000-PAMP interaction by orthogonal organic phase separation. Int J Biol Macromol 2020; 160:47-54. [PMID: 32454107 DOI: 10.1016/j.ijbiomac.2020.05.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
RNA-binding proteins (RBPs) are pivotal participants in post-transcriptional gene regulation. They interact with RNA directly to perform several post-transcriptional RNA regulatory functions or direct metabolic processes. Despite the essential importance, the understanding of plant RBPs is elementary, which derives mainly from other kingdoms via bioinformatic extrapolation or mRNA-binding proteins captured through UV crosslinked method. Recently, orthogonal organic phase separation (OOPS) method for RBP identification has been used in mammals and Escherichia coli. And plentiful RBPs were enriched without molecular tagging or capture of polyadenylated RNA in an unbiased way. In our study, OOPS was conducted on Arabidopsis and 468 RBPs were discovered including 244 putative RBPs. There were 17 peroxidases in 232 RBPs with enzymatic activities. In addition, Arabidopsis thaliana-Pst DC3000-chitinpentaose interaction system was chosen to explore whether OOPS can be used to dig specific RBPs under special physiological conditions. Eighty-four differential RBPs in this system were found and some of them involved in reactive oxygen species (ROS) metabolic pathway. These results showed OOPS can be applied to plants successfully and would be a useful method to identify RBPomes and specific RBPs.
Collapse
Affiliation(s)
- Junjie Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunguang Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Torkamanian-Afshar M, Lanjanian H, Nematzadeh S, Tabarzad M, Najafi A, Kiani F, Masoudi-Nejad A. RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions. Genomics 2020; 112:2623-2632. [DOI: 10.1016/j.ygeno.2020.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
|
28
|
Scarrow M, Chen N, Sun G. Insights into the N 6-methyladenosine mechanism and its functionality: progress and questions. Crit Rev Biotechnol 2020; 40:639-652. [PMID: 32321323 DOI: 10.1080/07388551.2020.1751059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation has become a progressively popular area of molecular research since the discovery of its potentially essential regulatory role amongst eukaryotes. m6A marks are observed in the 5'UTR, 3'UTR and coding regions of eukaryotes and its mediation has been associated with various human diseases, RNA stability and translational efficiency. To understand the implications of m6A methylation in molecular governance, its functionality and mechanism must be initially understood. m6A regulation through its readers, writers and erasers as well as an insight into the potential "cross-talk" occurring between m6A and previously well documented regulatory molecular mechanisms have been characterized. The majority of research to date has been limited to few species and has yet to explore the species- and tissue specific nature or mechanistic plasticity of m6A regulation. There is still a tremendous gap in our knowledge surrounding the mechanism and functionality of m6A RNA methylation. Here we review the formation, removal, and decoding of m6A amongst animals, yeast, and plants while noting potential "cross-talk" between various mechanisms and highlighting potential areas of future research.
Collapse
Affiliation(s)
| | - Ning Chen
- Biology Department, Saint Mary's University, Halifax, Canada
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
29
|
Hunt AG. mRNA 3′ end formation in plants: Novel connections to growth, development and environmental responses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1575. [DOI: 10.1002/wrna.1575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Arthur G. Hunt
- Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky
| |
Collapse
|
30
|
Ohtani M, Kurihara Y, Seki M, Crespi M. RNA-Mediated Plant Behavior. PLANT & CELL PHYSIOLOGY 2019; 60:1893-1896. [PMID: 31501874 DOI: 10.1093/pcp/pcz168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Japan
| | - Yukio Kurihara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku Suehirocho, Tsurumi-ku Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku Suehirocho, Tsurumi-ku Yokohama, Kanagawa, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako Saitama, Japan
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universit�s Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cit�, Universit� Paris-Saclay, Orsay, France
| |
Collapse
|