1
|
Blervacq AS, Galinousky D, Simon C, Moreau M, Duputié A, Baldacci-Cresp F, Lion C, Biot C, Hawkins S, Neutelings G. Tracking ectopic lignification in flax stems following scarification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109806. [PMID: 40179634 DOI: 10.1016/j.plaphy.2025.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/30/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
When flax (Linum usitatissimum L.) stems are scarified, major changes occur in the organization of cell walls within the tissues that border the wound. We sought to characterize the plant's response using a variety of approaches, with a particular focus on lignin deposition within the peripheral fiber cell walls of the stem. Raman spectroscopy and imaging first showed that changes occurred in the polysaccharide matrix of the parenchyma and fiber cell walls. These changes were accompanied by rapid deposition of lignin which initially diffuses centripetally and then, once the vascular cambium was reached, propagates in a periclinal manner until 150 μm from the edges of the wounded zone. Lignin biosynthesis appears to be the result of a de novo activity, as demonstrated by the concomitant accumulation of transcripts corresponding to lignin biosynthesis genes. In addition, using bioorthogonal chemistry approaches, we showed that wounding had enhanced the capacity of fiber cell walls to incorporate modified lignin precursors, in parallel with an increase in transcripts corresponding to peroxidases in the cortical tissues. This incorporation potential was identical for the 3 different types of reporters tested. Our findings demonstrated that mechanical stress can trigger lignification, in a polarized manner within the bast fibers, providing insights into the plasticity of cell wall composition and the potential for modulating fiber properties in flax.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| | - Dmitry Galinousky
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Clémence Simon
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Myriam Moreau
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000, Lille, France
| | - Anne Duputié
- Univ. Lille, CNRS, UMR 8198 - EEP - Evolution Ecologie et Paléontologie, F-59000, Lille, France
| | - Fabien Baldacci-Cresp
- Manager Analytical Sciences, Exothera, Allée Centrale - Zoning de Jumet 52, B-6040, Jumet, Belgium
| | - Cedric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Godfrey Neutelings
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
2
|
Hřivňacký M, Rác M, Vrobel O, Tarkowski P, Pavlovič A. Diethyl ether anaesthesia does not block local touch response in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154358. [PMID: 39332322 DOI: 10.1016/j.jplph.2024.154358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Plants can sense and respond to non-damaging mechanical stimulation such as touch, rain, or wind. Mechanical stimulation induces an increase of cytosolic calcium ([Ca2+]cyt), accumulation of phytohormones from the group of jasmonates (JAs) and activation of gene expression, which can be JAs-dependent or JAs-independent. Response to touch shares similar properties with reactions to stresses such as wounding or pathogen attack, and regular mechanical stimulation leads to changes in growth and development called thigmomorphogenesis. Previous studies showed that well-known seismonastic plants such as Venus flytrap (Dionaea muscipula) or sensitive plant (Mimosa pudica) lost their touch-induced motive responses during exposure to general volatile anaesthetic (GVA) diethyl ether. Here, we investigated the effect of diethyl ether anaesthesia on touch response in Arabidopsis thaliana. We monitored [Ca2+]cyt level, accumulation of JAs and expression of touch-responsive genes. Our results showed that none of the investigated responses was affected by diethyl ether. However, diethyl ether alone increased [Ca2+]cyt and modulated JAs-independent touch-responsive genes, thus partially activating touch response non-specifically. Together with our previous studies, we concluded that GVA diethyl ether cannot block the local rise of [Ca2+]cyt but only its systemic propagation dependent on GLUTAMATE LIKE RECEPTOR 3s (GLR3s) channels.
Collapse
Affiliation(s)
- Martin Hřivňacký
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Hayashi K, Kato N, Bashir K, Nomoto H, Nakayama M, Chini A, Takahashi S, Saito H, Watanabe R, Takaoka Y, Tanaka M, Nagano AJ, Seki M, Solano R, Ueda M. Subtype-selective agonists of plant hormone co-receptor COI1-JAZs identified from the stereoisomers of coronatine. Commun Biol 2023; 6:320. [PMID: 36966228 PMCID: PMC10039919 DOI: 10.1038/s42003-023-04709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Severe genetic redundancy is particularly clear in gene families encoding plant hormone receptors, each subtype sharing redundant and specific functions. Genetic redundancy of receptor family members represents a major challenge for the functional dissection of each receptor subtype. A paradigmatic example is the perception of the hormone (+)-7-iso-jasmonoyl-L-isoleucine, perceived by several COI1-JAZ complexes; the specific role of each receptor subtype still remains elusive. Subtype-selective agonists of the receptor are valuable tools for analyzing the responses regulated by individual receptor subtypes. We constructed a stereoisomer library consisting of all stereochemical isomers of coronatine (COR), a mimic of the plant hormone (+)-7-iso-jasmonoyl-L-isoleucine, to identify subtype-selective agonists for COI1-JAZ co-receptors in Arabidopsis thaliana and Solanum lycopersicum. An agonist selective for the Arabidopsis COI1-JAZ9 co-receptor efficiently revealed that JAZ9 is not involved in most of the gene downregulation caused by COR, and the degradation of JAZ9-induced defense without inhibiting growth.
Collapse
Affiliation(s)
- Kengo Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Nobuki Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, 54792, Lahore, Pakistan
| | - Haruna Nomoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Misuzu Nakayama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Andrea Chini
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Hiroaki Saito
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Japan
| | - Raku Watanabe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
4
|
Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2023; 14:1174281. [PMID: 37152175 PMCID: PMC10161258 DOI: 10.3389/fpls.2023.1174281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Cotton is widely grown in many countries around the world due to the huge economic value of the total natural fiber. Verticillium wilt, caused by the soil-borne pathogen Verticillium dahliae, is the most devastating disease that led to extensive yield losses and fiber quality reduction in cotton crops. Developing resistant cotton varieties through genetic engineering is an effective, economical, and durable strategy to control Verticillium wilt. However, there are few resistance gene resources in the currently planted cotton varieties, which has brought great challenges and difficulties for breeding through genetic engineering. Further revealing the molecular mechanism between V. dahliae and cotton interaction is crucial to discovering genes related to disease resistance. In this review, we elaborated on the pathogenic mechanism of V. dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae has evolved complex mechanisms to achieve pathogenicity in cotton, mainly including five aspects: (1) germination and growth of microsclerotia; (2) infection and successful colonization; (3) adaptation to the nutrient-deficient environment and competition of nutrients; (4) suppression and manipulation of cotton immune responses; (5) rapid reproduction and secretion of toxins. Cotton has evolved multiple physiological and biochemical responses to cope with V. dahliae infection, including modification of tissue structures, accumulation of antifungal substances, homeostasis of reactive oxygen species (ROS), induction of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades, hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI). This review will provide an important reference for the breeding of new cotton germplasm resistant to Verticillium wilt through genetic engineering.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dongxiao Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yanpeng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| |
Collapse
|
5
|
Sakamoto Y, Kawamura A, Suzuki T, Segami S, Maeshima M, Polyn S, De Veylder L, Sugimoto K. Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. THE PLANT CELL 2022; 34:4348-4365. [PMID: 35922895 PMCID: PMC9614439 DOI: 10.1093/plcell/koac218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 05/26/2023]
Abstract
Plant cells exhibit remarkable plasticity of their differentiation states, enabling regeneration of whole plants from differentiated somatic cells. How they revert cell fate and express pluripotency, however, remains unclear. In this study, we demonstrate that transcriptional activation of auxin biosynthesis is crucial for reprogramming differentiated Arabidopsis (Arabidopsis thaliana) leaf cells. Our data show that interfering with the activity of histone acetyltransferases dramatically reduces callus formation from leaf mesophyll protoplasts. Histone acetylation permits transcriptional activation of PLETHORAs, leading to the induction of their downstream YUCCA1 gene encoding an enzyme for auxin biosynthesis. Auxin biosynthesis is in turn required to accomplish initial cell division through the activation of G2/M phase genes mediated by MYB DOMAIN PROTEIN 3-RELATED (MYB3Rs). We further show that the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19 and INDOLE-3-ACETIC ACID INDUCIBLE 3 (IAA3)/IAA18-mediated auxin signaling pathway is responsible for cell cycle reactivation by transcriptionally upregulating MYB3R4. These findings provide a mechanistic model of how differentiated plant cells revert their fate and reinitiate the cell cycle to become pluripotent.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Ayako Kawamura
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masayoshi Maeshima
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | |
Collapse
|
6
|
Yuan J, Cheng L, Li H, An C, Wang Y, Zhang F. Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC PLANT BIOLOGY 2022; 22:481. [PMID: 36210448 PMCID: PMC9549635 DOI: 10.1186/s12870-022-03852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Jasmonates (JAs) are one of important phytohormones regulating potato tuber development. It is a complex process and the underlying molecular mechanism regulating tuber development by JAs is still limited. This study attempted to illuminate it through the potential proteomic dynamics information about tuber development in vitro regulated by exogenous JA. RESULTS A combined analysis of physiological and iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic approach was performed in tuber development in vitro under exogenous JA treatments (0, 0.5, 5 and 50 μΜ). Physiological results indicated that low JA concentration (especially 5 μM) promoted tuber development, whereas higher JA concentration (50 μM) showed inhibition effect. A total of 257 differentially expressed proteins (DEPs) were identified by iTRAQ, which provided a comprehensive overview on the functional protein profile changes of tuber development regulated by JA. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that low JA concentration (especially 5 μM) exhibited the promotion effects on tuber development in various cellular processes. Some cell wall polysaccharide synthesis and cytoskeleton formation-related proteins were up-regulated by JA to promote tuber cell expansion. Some primary carbon metabolism-related enzymes were up-regulated by JA to provide sufficient metabolism intermediates and energy for tuber development. And, a large number of protein biosynthesis, degradation and assembly-related were up-regulated by JA to promote tuber protein biosynthesis and maintain strict protein quality control during tuber development. CONCLUSIONS This study is the first to integrate physiological and proteomic data to provide useful information about the JA-signaling response mechanism of potato tuber development in vitro. The results revealed that the levels of a number of proteins involved in various cellular processes were regulated by JA during tuber development. The proposed hypothetical model would explain the interaction of these DEPs that associated with tuber development in vitro regulated by JA.
Collapse
Affiliation(s)
- Jianlong Yuan
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lixiang Cheng
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huijun Li
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Congcong An
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Hadizadeh I, Peivastegan B, Wang J, Sipari N, Nielsen KL, Pirhonen M. Gene expression and phytohormone levels in the asymptomatic and symptomatic phases of infection in potato tubers inoculated with Dickeya solani. PLoS One 2022; 17:e0273481. [PMID: 36037153 PMCID: PMC9423618 DOI: 10.1371/journal.pone.0273481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Dickeya solani is a soft rot bacterium with high virulence. In potato, D. solani, like the other potato-infecting soft rot bacteria, causes rotting and wilting of the stems and rotting of tubers in the field and in storage. Latent, asymptomatic infections of potato tubers are common in harvested tubers, and if the storage conditions are not optimal, the latent infection turns into active rotting. We characterized potato gene expression in artificially inoculated tubers in nonsymptomatic, early infections 1 and 24 hours post-inoculation (hpi) and compared the results to the response in symptomatic tuber tissue 1 week (168 hpi) later with RNA-Seq. In the beginning of the infection, potato tubers expressed genes involved in the detection of the bacterium through pathogen-associated molecular patterns (PAMPs), which induced genes involved in PAMPs-triggered immunity, resistance, production of pathogenesis-related proteins, ROS, secondary metabolites and salicylic acid (SA) and jasmonic acid (JA) biosynthesis and signaling genes. In the symptomatic tuber tissue one week later, the PAMPs-triggered gene expression was downregulated, whereas primary metabolism was affected, most likely leading to free sugars fueling plant defense but possibly also aiding the growth of the pathogen. In the symptomatic tubers, pectic enzymes and cell wall-based defenses were activated. Measurement of hormone production revealed increased SA concentration and almost no JA in the asymptomatic tubers at the beginning of the infection and high level of JA and reduced SA in the symptomatic tubers one week later. These findings suggest that potato tubers rely on different defense strategies in the different phases of D. solani infection even when the infection takes place in fully susceptible plants incubated in conditions leading to rotting. These results support the idea that D. solani is a biotroph rather than a true necrotroph.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Hebei, China
| | - Nina Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| | | | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
8
|
Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, Vlot AC, Wiermer M, Haughn G, Ischebeck T. Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea. PLANT PHYSIOLOGY 2022; 189:1794-1813. [PMID: 35485198 PMCID: PMC9237713 DOI: 10.1093/plphys/kiac165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 05/15/2023]
Abstract
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
Collapse
Affiliation(s)
| | - Robert McGee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
| | | | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- UMK Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
- Freie Universität Berlin, Institute of Biology, Dahlem Centre of Plant Sciences, Biochemistry of Plant-Microbe Interactions, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
9
|
Ali M, Ahmad H, Amin B, Atif MJ, Cheng Z. Induce defense response of DADS in eggplants during the biotrophic phase of Verticillium dahliae. BMC PLANT BIOLOGY 2022; 22:172. [PMID: 35379184 PMCID: PMC8981950 DOI: 10.1186/s12870-022-03527-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE Verticillium wilt is a destructive vascular disease in eggplants. The complex defensive mechanisms of eggplant against this disease are very limited. METHODS Our work examined the bioactive properties of garlic allelochemical diallyl disulfide (DADS) as potential biostimulants for defense against V. dahliae in eggplant seedlings. We, therefore, foliar sprayed DADS on eggplants to study the defense response during the early biotrophic phase of V. dahliae (a hemibiotroph). RESULTS DADS application significantly increased root peroxidase (POD), phenylalanine-ammonia lyase (PAL) enzyme activity, and reduced H2O2 levels after 24 h of fungal inoculation. Salicylic acid (SA) in leaves and roots was significantly increased while, the jasmonic acid (JA), indole acetic acid (IAA), and abscisic acid (ABA) levels were decreased. The microscopic examinations of V. dahliae infection in roots displayed that the progression of infection was restricted in DADS-treated plants. Depositions of lignin and phenolic compounds such as ferulic acid, p-coumaric acid, and caffeic acid content were significantly higher in DADS-treated plants at 48 h post-inoculation. Similarly, the DADS application up-regulated pathogenesis-related (PR1, PR2, and PR5), mitogen-activated protein kinase (MPK1), and lipoxygenase (LOX) genes. Furthermore, DADS-treated plants exhibited a lower disease severity index (23.3% vs. 57.0% in controls), indicating successful defense against V. dahliae. CONCLUSIONS Our findings concluded that the biological function of garlic allelochemical DADS has a prominent role in the higher defense resistance of eggplants during the early infection of V. dahliae.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Husain Ahmad
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Zhu Y, Hu X, Wang P, Wang H, Ge X, Li F, Hou Y. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. Int J Biol Macromol 2022; 201:580-591. [DOI: 10.1016/j.ijbiomac.2022.01.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
|
11
|
Jakšová J, Rác M, Bokor B, Petřík I, Novák O, Reichelt M, Mithöfer A, Pavlovič A. Anaesthetic diethyl ether impairs long-distance electrical and jasmonate signaling in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:311-321. [PMID: 34826706 DOI: 10.1016/j.plaphy.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
General volatile anaesthetics (GVA) inhibit electrical signal propagation in animal neurons. Although plants do not have neurons, they generate and propagate electrical signals systemically from a local damaged leaf to neighbouring leaves. This systemic electrical signal propagation is mediated by ligand-gated glutamate receptor-like (GLR) channels. Here, we investigated the effect of GVA diethyl ether on the systemic electrical and further downstream responses in Arabidopsis thaliana. We monitored electrical signals, cytoplasmic Ca2+ level ([Ca2+]cyt), ultra-weak photon emission, amino acid contents, phytohormone response as well as gene expression in response to heat wounding during diethyl ether anaesthesia. We found complete suppression of electrical and [Ca2+]cyt signal propagation from damaged leaf to neighbouring systemic leaves upon diethyl ether treatment. Concomitantly, jasmonates (JAs) did not accumulate and expression of JA-responsive genes (AOS, OPR3, JAZ10) was not detected in systemic leaves. However local damaged leaves still showed increased [Ca2+]cyt and accumulated high level of JAs and JA-inducible transcripts. An exogenously added GLR ligand, L-glutamate, was not able to trigger Ca2+ wave in etherized plants indicating that GLRs are targeted by diethyl ether, but not specifically. The fact that GVA inhibit electrical signal propagation not only in animals but also in plants is intriguing. However, the cellular response is completely blocked only in systemic leaves; the local damaged leaf still senses damaging stimuli.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 2021; 64:401-421. [PMID: 32618335 PMCID: PMC7517362 DOI: 10.1042/ebc20190082] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.
Collapse
|
13
|
Mielke S, Zimmer M, Meena MK, Dreos R, Stellmach H, Hause B, Voiniciuc C, Gasperini D. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. SCIENCE ADVANCES 2021; 7:7/7/eabf0356. [PMID: 33568489 PMCID: PMC7875531 DOI: 10.1126/sciadv.abf0356] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/22/2020] [Indexed: 05/15/2023]
Abstract
Despite the vital roles of jasmonoyl-isoleucine (JA-Ile) in governing plant growth and environmental acclimation, it remains unclear what intracellular processes lead to its induction. Here, we provide compelling genetic evidence that mechanical and osmotic regulation of turgor pressure represents a key elicitor of JA-Ile biosynthesis. After identifying cell wall mutant alleles in KORRIGAN1 (KOR1) with elevated JA-Ile in seedling roots, we found that ectopic JA-Ile resulted from cell nonautonomous signals deriving from enlarged cortex cells compressing inner tissues and stimulating JA-Ile production. Restoring cortex cell size by cell type-specific KOR1 complementation, by isolating a genetic kor1 suppressor, and by lowering turgor pressure with hyperosmotic treatments abolished JA-Ile signaling. Conversely, hypoosmotic treatment activated JA-Ile signaling in wild-type plants. Furthermore, constitutive JA-Ile levels guided mutant roots toward greater water availability. Collectively, these findings enhance our understanding on JA-Ile biosynthesis initiation and reveal a previously undescribed role of JA-Ile in orchestrating environmental resilience.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Mukesh Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
14
|
Zheng Y, Zhang X, Liu X, Qin N, Xu K, Zeng R, Liu J, Song Y. Nitrogen Supply Alters Rice Defense Against the Striped Stem Borer Chilo suppressalis. FRONTIERS IN PLANT SCIENCE 2021; 12:691292. [PMID: 34381479 PMCID: PMC8351598 DOI: 10.3389/fpls.2021.691292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 05/08/2023]
Abstract
Plant nutrition status is closely associated with plant defense against insect herbivores. However, the way nitrogen supply regulates rice anti-herbivore is not clear. This study investigated the effects of low (LN, 0.3 mM) and high (HN, 3 mM) nitrate levels on rice resistance against the striped stem borer Chilo suppressalis (SSB), one of the major destructive rice pests. Seven-day-old rice seedlings were cultured with different nitrate levels for 30 days and then inoculated with third instars of SSB. LN significantly enhanced rice anti-herbivore defense and lowered the total nitrogen content in the plants, but increased the content of free amino acids after SSB infestation. Additionally, LN significantly increased the accumulation of phenolic acids and flavonoids, especially lignin, resulting in enhanced constitutive defense in SSB-infested plants. SSB feeding led to a rapid accumulation of secondary metabolites. HN application led to the accumulation of metabolites derived from cinnamic acid, p-coumaric acid, p-coumaric CoA, feruloyl CoA, and apigenin, while LN led to the accumulation of metabolites derived from 3-dehydroquinic acid, phenylalanine, acetyl CoA, and aspartic acid. Collectively, our finding suggests that nitrogen deficiency enhances rice anti-herbivore defense via constitutive defense by the accumulation of phenolic acids and flavonoids.
Collapse
Affiliation(s)
- Yueqin Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiyong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaifang Xu
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Liu
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jian Liu,
| | - Yuanyuan Song
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanyuan Song,
| |
Collapse
|
15
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
16
|
Del Corpo D, Fullone MR, Miele R, Lafond M, Pontiggia D, Grisel S, Kieffer‐Jaquinod S, Giardina T, Bellincampi D, Lionetti V. AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2020; 21:1620-1633. [PMID: 33029918 PMCID: PMC7694680 DOI: 10.1111/mpp.13002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/13/2023]
Abstract
Pectin is synthesized in a highly methylesterified form in the Golgi cisternae and partially de-methylesterified in muro by pectin methylesterases (PMEs). Arabidopsis thaliana produces a local and strong induction of PME activity during the infection of the necrotrophic fungus Botrytis cinerea. AtPME17 is a putative A. thaliana PME highly induced in response to B. cinerea. Here, a fine tuning of AtPME17 expression by different defence hormones was identified. Our genetic evidence demonstrates that AtPME17 strongly contributes to the pathogen-induced PME activity and resistance against B. cinerea by triggering jasmonic acid-ethylene-dependent PDF1.2 expression. AtPME17 belongs to group 2 isoforms of PMEs characterized by a PME domain preceded by an N-terminal PRO region. However, the biochemical evidence for AtPME17 as a functional PME is still lacking and the role played by its PRO region is not known. Using the Pichia pastoris expression system, we demonstrate that AtPME17 is a functional PME with activity favoured by an increase in pH. AtPME17 performs a blockwise pattern of pectin de-methylesterification that favours the formation of egg-box structures between homogalacturonans. Recombinant AtPME17 expression in Escherichia coli reveals that the PRO region acts as an intramolecular inhibitor of AtPME17 activity.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
| | - Maria R. Fullone
- Department of Biochemical Sciences “A. Rossi Fanelli”Pasteur Institute‐Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”Pasteur Institute‐Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| | | | - Daniela Pontiggia
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
| | - Sacha Grisel
- Biodiversité et Biotechnologie FongiquesINRAAix Marseille University, UMR1163MarseilleFrance
| | | | | | - Daniela Bellincampi
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
| |
Collapse
|
17
|
Farmer EE, Gao YQ, Lenzoni G, Wolfender JL, Wu Q. Wound- and mechanostimulated electrical signals control hormone responses. THE NEW PHYTOLOGIST 2020; 227:1037-1050. [PMID: 32392391 DOI: 10.1111/nph.16646] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/21/2020] [Indexed: 05/23/2023]
Abstract
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H+ -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.
Collapse
Affiliation(s)
- Edward E Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Yong-Qiang Gao
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Gioia Lenzoni
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Qian Wu
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
18
|
Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O, Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). ANNALS OF BOTANY 2020; 125:173-183. [PMID: 31677265 PMCID: PMC6948209 DOI: 10.1093/aob/mcz177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovakia
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|