1
|
Zhang T, Wu H, Sun Y, Zhang P, Li L, Luo D, Wu Z. Identification of the GST Gene Family and Functional Analysis of RcGSTF2 Related to Anthocyanin in Rosa chinensis 'Old Blush'. PLANTS (BASEL, SWITZERLAND) 2025; 14:932. [PMID: 40265850 DOI: 10.3390/plants14060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
The rose (Rosa chinensis), with its rich color variations and elegant form, holds a significant position in the global floriculture industry, where the color of its petals and the content of anthocyanins are crucial for enhancing the plant's ornamental value and market competitiveness. Nevertheless, the precise roles of the GST gene family in roses, especially regarding their participation in anthocyanin transport and the modulation of petal color, remain poorly elucidated. In the present investigation, we identified 83 rose glutathione S-transferase (GST) genes through whole-genome analysis. The identification and functional analysis of RcGSTF2 were conducted exclusively in the 'Old Blush' cultivar of Rosa chinensis. We employed bioinformatics, tissue expression analysis, subcellular localization, and transient expression validation to explore the function of the RcGSTF2 gene in anthocyanin transport and accumulation. We found that RcGSTF2 is closely related to anthocyanin-associated GSTs and demonstrated a conserved domain with high sequence similarity. Molecular docking analysis revealed potential binding modes between RcGSTF2 and cyanidin-3,5-diglucoside, suggesting a role in anthocyanin transport. Subcellular localization indicated that RcGSTF2 is associated with the cell membrane. Overexpression of RcGSTF2 in rose plants significantly increased anthocyanin accumulation, while silencing RcGSTF2 reduced anthocyanin content, highlighting its crucial role in regulating anthocyanin accumulation. This research investigates the functions of the GST gene family in roses, laying the groundwork for developing more colorful and resilient rose cultivars, with the functional analysis of RcGSTF2 being a key contribution to the floriculture industry's genetic enhancement efforts.
Collapse
Affiliation(s)
- Ting Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou 324000, China
| | - Han Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Yujia Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Peiheng Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Dan Luo
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhe Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
2
|
Teixeira RT, Marchese D, Duckney PJ, Dias FV, Carapeto AP, Louro M, Silva MS, Cordeiro C, Rodrigues MS, Malhó R. Functional characterization reveals the importance of Arabidopsis ECA4 and EPSIN3 in clathrin mediated endocytosis and wall structure in apical growing cells. THE NEW PHYTOLOGIST 2025; 245:1056-1071. [PMID: 39555685 DOI: 10.1111/nph.20282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
Localized clathrin mediated endocytosis is vital for secretion and wall deposition in apical growing plant cells. Adaptor and signalling proteins, along with phosphoinositides, are known to play a regulatory, yet poorly defined role in this process. Here we investigated the function of Arabidopsis ECA4 and EPSIN3, putative mediators of the process, in pollen tubes and root hairs. Homozygous eca4 and epsin3 plants exhibited altered pollen tube morphology (in vitro) and self-pollination led to fewer seeds and shorter siliques. These effects were augmented in eca4/epsin3 double mutant and quantitative polymerase chain reaction data revealed changes in phosphoinositide metabolism and flowering genes suggestive of a synergistic action. No visible changes were observed in root morphology, but atomic force microscopy in mutant root hairs showed altered structural stiffness. Imaging and FRET-FLIM analysis of ECA4 and EPSIN3 X-FP constructs revealed that both proteins interact at the plasma membrane but exhibit slightly different intracellular localization. FT-ICR-MS metabolomic analysis of mutant cells showed changes in lipids, amino acids and carbohydrate composition consistent with a role in secretion and growth. Characterization of double mutants of eca4 and epsin3 with phospholipase C genes (plc5, plc7) indicates that phosphoinositides (e.g. PtdIns(4,5)P2) are fundamental for a combined and complementary role of ECA4-EPSIN3 in cell secretion.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Dario Marchese
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | | | - Fernando Vaz Dias
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Ana P Carapeto
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mariana Louro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mário S Rodrigues
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
3
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2025; 358:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
4
|
Watson IJ, Maranas C, Nemhauser JL, Leydon AR. A Hot-Swappable Genetic Switch: Building an inducible and trackable functional assay for the essential gene MEDIATOR 21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628800. [PMID: 39763940 PMCID: PMC11702731 DOI: 10.1101/2024.12.16.628800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Essential genes, estimated at approximately 20% of the Arabidopsis genome, are broadly expressed and required for reproductive success. They are difficult to study, as interfering with their function leads to premature death. Transcription is one of the essential functions of life, and the multi-protein Mediator complex coordinates the regulation of gene expression at nearly every eukaryotic promoter. In this study, we focused on a core Mediator component called MEDIATOR21 (MED21), which is required for activation of transcription. Our previous work has also shown a role for MED21 in repression of gene expression through its interaction with a corepressor protein. Here, we sought to differentiate the role MED21 plays in activation versus repression using the model plant Arabidopsis. As mutations in MED21 lead to embryo lethal phenotypes, we constructed a set of synthetic switches using PhiC31 serine integrases to create an "on-to-off" inducible loss of function MED21 in a non-essential tissue. Our technology, which we call Integrase Erasers, made it possible for med21 mutant plants to survive into adulthood by ablating protein expression selectively in lateral root primordia, allowing quantification and characterization of med21 mutant phenotypes in a post-embryonic context. In addition, we engineered chemical induction of the Integrase Eraser to ablate MED21 expression in whole seedlings at a user-specified timepoint. Finally, we extended this technology to build a hot swappable Integrase Isoform Switch where expression of the integrase toggled cells from expressing wildtype MED21 to expressing MED21 sequence variants. Our analysis of the entire set of new integrase-based tools demonstrates that this is a highly efficient and robust approach to the study of essential genes.
Collapse
Affiliation(s)
- Isabella J Watson
- Department of Biology, University of Washington, Seattle, WA 98195-1800 USA
| | - Cassandra Maranas
- Department of Biology, University of Washington, Seattle, WA 98195-1800 USA
| | | | - Alexander R Leydon
- Department of Biology, University of Washington, Seattle, WA 98195-1800 USA
| |
Collapse
|
5
|
Cuadrado AF, Van Damme D. Unlocking protein-protein interactions in plants: a comprehensive review of established and emerging techniques. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5220-5236. [PMID: 38437582 DOI: 10.1093/jxb/erae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Protein-protein interactions orchestrate plant development and serve as crucial elements for cellular and environmental communication. Understanding these interactions offers a gateway to unravel complex protein networks that will allow a better understanding of nature. Methods for the characterization of protein-protein interactions have been around over 30 years, yet the complexity of some of these interactions has fueled the development of new techniques that provide a better understanding of the underlying dynamics. In many cases, the application of these techniques is limited by the nature of the available sample. While some methods require an in vivo set-up, others solely depend on protein sequences to study protein-protein interactions via an in silico set-up. The vast number of techniques available to date calls for a way to select the appropriate tools for the study of specific interactions. Here, we classify widely spread tools and new emerging techniques for the characterization of protein-protein interactions based on sample requirements while providing insights into the information that they can potentially deliver. We provide a comprehensive overview of commonly used techniques and elaborate on the most recent developments, showcasing their implementation in plant research.
Collapse
Affiliation(s)
- Alvaro Furones Cuadrado
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
6
|
Han J, Liu CX, Liu J, Wang CR, Wang SC, Miao G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. PLANT PHYSIOLOGY 2024; 195:1835-1850. [PMID: 38535832 DOI: 10.1093/plphys/kiae186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/28/2024] [Indexed: 06/30/2024]
Abstract
Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chang-Xin Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jian Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Cheng-Run Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shun-Chang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| |
Collapse
|
7
|
Salgania HK, Metz J, Jeske M. ReLo is a simple and rapid colocalization assay to identify and characterize direct protein-protein interactions. Nat Commun 2024; 15:2875. [PMID: 38570497 PMCID: PMC10991417 DOI: 10.1038/s41467-024-47233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The characterization of protein-protein interactions (PPIs) is fundamental to the understanding of biochemical processes. Many methods have been established to identify and study direct PPIs; however, screening and investigating PPIs involving large or poorly soluble proteins remains challenging. Here, we introduce ReLo, a simple, rapid, and versatile cell culture-based method for detecting and investigating interactions in a cellular context. Our experiments demonstrate that ReLo specifically detects direct binary PPIs. Furthermore, we show that ReLo bridging experiments can also be used to determine the binding topology of subunits within multiprotein complexes. In addition, ReLo facilitates the identification of protein domains that mediate complex formation, allows screening for interfering point mutations, and it is sensitive to drugs that mediate or disrupt an interaction. In summary, ReLo is a simple and rapid alternative for the study of PPIs, especially when studying structurally complex proteins or when established methods fail.
Collapse
Affiliation(s)
- Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Dragwidge JM, Wang Y, Brocard L, De Meyer A, Hudeček R, Eeckhout D, Grones P, Buridan M, Chambaud C, Pejchar P, Potocký M, Winkler J, Vandorpe M, Serre N, Fendrych M, Bernard A, De Jaeger G, Pleskot R, Fang X, Van Damme D. Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants. Nat Cell Biol 2024; 26:438-449. [PMID: 38347182 PMCID: PMC7615741 DOI: 10.1038/s41556-024-01354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Clathrin-mediated endocytosis is an essential cellular internalization pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. The evolutionarily ancient TSET-TPLATE complex (TPC) plays an essential, but ill-defined role in endocytosis in plants. Here we show that two highly disordered TPC subunits, AtEH1 and AtEH2, function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, as well as early- and late-stage endocytic accessory proteins. Importantly, condensation promotes ordered clathrin assemblies. TPC-driven biomolecular condensation thereby facilitates dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, we show that a disordered region of AtEH1 controls the material properties of endocytic condensates in vivo. Alteration of these material properties disturbs the recruitment of accessory proteins, influences endocytosis dynamics and impairs plant responsiveness. Our findings reveal how collective interactions shape endocytosis.
Collapse
Affiliation(s)
- Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Yanning Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lysiane Brocard
- Bordeaux Imaging Center, INSERM, CNRS, Université de Bordeaux, Bordeaux, France
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Hudeček
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Matthieu Buridan
- Bordeaux Imaging Center, INSERM, CNRS, Université de Bordeaux, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, CNRS, Université de Bordeaux, Bordeaux, France
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michaël Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nelson Serre
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Amelie Bernard
- Laboratoire de Biogenèse Membranaire, CNRS, Université de Bordeaux, Bordeaux, France
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
9
|
Kim P, Mahboob S, Nguyen HT, Eastman S, Fiala O, Sousek M, Gaussoin RE, Brungardt JL, Jackson-Ziems TA, Roston R, Alfano JR, Clemente TE, Guo M. Characterization of Soybean Events with Enhanced Expression of the Microtubule-Associated Protein 65-1 (MAP65-1). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:62-71. [PMID: 37889205 DOI: 10.1094/mpmi-09-23-0134-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Microtubule-associated protein 65-1 (MAP65-1) protein plays an essential role in plant cellular dynamics through impacting stabilization of the cytoskeleton by serving as a crosslinker of microtubules. The role of MAP65-1 in plants has been associated with phenotypic outcomes in response to various environmental stresses. The Arabidopsis MAP65-1 (AtMAP65-1) is a known virulence target of plant bacterial pathogens and is thus a component of plant immunity. Soybean events were generated that carry transgenic alleles for both AtMAP65-1 and GmMAP65-1, the soybean AtMAP65-1 homolog, under control of cauliflower mosaic virus 35S promoter. Both AtMAP65-1 and GmMAP65-1 transgenic soybeans are more resistant to challenges by the soybean bacterial pathogen Pseudomonas syringae pv. glycinea and the oomycete pathogen Phytophthora sojae, but not the soybean cyst nematode, Heterodera glycines. Soybean plants expressing AtMAP65-1 and GmMAP65-1 also display a tolerance to the herbicide oryzalin, which has a mode of action to destabilize microtubules. In addition, GmMAP65-1-expressing soybean plants show reduced cytosol ion leakage under freezing conditions, hinting that ectopic expression of GmMAP65-1 may enhance cold tolerance in soybean. Taken together, overexpression of AtMAP65-1 and GmMAP65-1 confers tolerance of soybean plants to various biotic and abiotic stresses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Panya Kim
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Samira Mahboob
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Hanh T Nguyen
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Olivia Fiala
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Matthew Sousek
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Roch E Gaussoin
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Jae L Brungardt
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Tamra A Jackson-Ziems
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Rebecca Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - James R Alfano
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A. (deceased)
| | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Ming Guo
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
10
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
11
|
Safi A, Smagghe W, Gonçalves A, Wang Q, Xu K, Fernandez AI, Cappe B, Riquet FB, Mylle E, Eeckhout D, De Winne N, Van De Slijke E, Persyn F, Persiau G, Van Damme D, Geelen D, De Jaeger G, Beeckman T, Van Leene J, Vanneste S. Phase separation-based visualization of protein-protein interactions and kinase activities in plants. THE PLANT CELL 2023; 35:3280-3302. [PMID: 37378595 PMCID: PMC10473206 DOI: 10.1093/plcell/koad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.
Collapse
Affiliation(s)
- Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- VIB, Bioimaging Core, B-9052 Ghent, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Benjamin Cappe
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Wybouw B, Arents HE, Yang B, Nolf J, Smet W, Vandorpe M, Minne M, Luo X, De Clercq I, Van Damme D, Glanc M, De Rybel B. The transcription factor AtMYB12 is part of a feedback loop regulating cell division orientation in the root meristem vasculature. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1940-1956. [PMID: 36651677 PMCID: PMC7614412 DOI: 10.1093/jxb/erad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Transcriptional networks are crucial to integrate various internal and external signals into optimal responses during plant growth and development. In Arabidopsis thaliana, primary root vasculature patterning and proliferation are controlled by a network centred around the basic Helix-Loop-Helix transcription factor complex, formed by TARGET OF MONOPTEROS 5 (TMO5) and LONESOME HIGHWAY (LHW), which control cell proliferation and division orientation by modulating the cytokinin response and other downstream factors. Despite recent progress, many aspects of the TMO5/LHW pathway are not fully understood. In particular, the upstream regulators of TMO5/LHW activity remain unknown. Here, using a forward genetics approach to identify new factors of the TMO5/LHW pathway, we discovered a novel function of the MYB-type transcription factor, MYB12. MYB12 physically interacts with TMO5 and dampens the TMO5/LHW-mediated induction of direct target gene expression, as well as the periclinal/radial cell divisions. The expression of MYB12 is activated by the cytokinin response, downstream of TMO5/LHW, resulting in a novel MYB12-mediated negative feedback loop that restricts TMO5/LHW activity, to ensure optimal cell proliferation rates during root vascular development.
Collapse
Affiliation(s)
- Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Helena E Arents
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Jonah Nolf
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wouter Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Michael Vandorpe
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Xiaopeng Luo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Inge De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Matouš Glanc
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
13
|
Investigating Plant Protein-Protein Interactions Using FRET-FLIM with a Focus on the Actin Cytoskeleton. Methods Mol Biol 2023; 2604:353-366. [PMID: 36773249 DOI: 10.1007/978-1-0716-2867-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The study of protein-protein interactions is fundamental to understanding how actin-dependent processes are controlled through the regulation of actin-binding proteins by their interactors. FRET-FLIM (Förster resonance energy transfer-fluorescence lifetime imaging microscopy) is a sensitive bioimaging method to detect protein-protein interactions in living cells through measurement of FRET, facilitated by the interactions of fluorophore-tagged fusion protein. As a sensitive and noninvasive method for the spatiotemporal visualization of dynamic protein-protein interactions, FRET-FLIM holds several advantages over other methods of protein interaction assays. FRET-FLIM has been widely employed to characterize many plant protein interactions, including interactions between actin-regulatory proteins and their binding partners. As we increasingly understand the plant actin cytoskeleton to coordinate a diverse number of complex functions, the study of actin-regulatory proteins and their interactors becomes increasingly technically challenging. Sophisticated and sensitive in vivo methods such as FRET-FLIM are likely to be crucial to the study of protein-protein interactions as more complex and challenging hypotheses are addressed.
Collapse
|
14
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
15
|
Méteignier LV, Nützmann HW, Papon N, Osbourn A, Courdavault V. Emerging mechanistic insights into the regulation of specialized metabolism in plants. NATURE PLANTS 2023; 9:22-30. [PMID: 36564633 DOI: 10.1038/s41477-022-01288-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants biosynthesize a broad range of natural products through specialized and species-specific metabolic pathways that are fuelled by core metabolism, together forming a metabolic network. Specialized metabolites have important roles in development and adaptation to external cues, and they also have invaluable pharmacological properties. A growing body of evidence has highlighted the impact of translational, transcriptional, epigenetic and chromatin-based regulation and evolution of specialized metabolism genes and metabolic networks. Here we review the forefront of this research field and extrapolate to medicinal plants that synthetize rare molecules. We also discuss how this new knowledge could help in improving strategies to produce useful plant-derived pharmaceuticals.
Collapse
Affiliation(s)
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Nicolas Papon
- IRF, SFR ICAT, Université Angers and Université de Bretagne-Occidentale, Angers, France
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK.
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France.
| |
Collapse
|
16
|
Couée I, Gouesbet G. Protein-Protein Interactions in Abiotic Stress Signaling: An Overview of Biochemical and Biophysical Methods of Characterization. Methods Mol Biol 2023; 2642:319-330. [PMID: 36944886 DOI: 10.1007/978-1-0716-3044-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The identification and characterization of bona fide abiotic stress signaling proteins can occur at different levels of the complete in vivo signaling cascade or network. Knowledge of a particular abiotic stress signaling protein could theoretically lead to the characterization of complete networks through the analysis of unknown proteins that interact with the previously known protein. Such signaling proteins of interest can indeed be experimentally used as bait proteins to catch interacting prey proteins, provided that the association of bait proteins and prey proteins should yield a biochemical or biophysical signal that can be detected. To this end, several biochemical and biophysical techniques are available to provide experimental evidence for specific protein-protein interactions, such as co-immunoprecipitation, bimolecular fluorescence complementation, tandem affinity purification coupled to mass spectrometry, yeast two hybrid, protein microarrays, Förster resonance energy transfer, or fluorescence correlation spectroscopy. This array of methods can be implemented to establish the biochemical reality of putative protein-protein interactions between two proteins of interest or to identify previously unknown partners related to an initially known protein of interest. The ultimate validity of these methods however depends on the in vitro/in vivo nature of the approach and on the heterologous/homologous context of the analysis. This chapter will review the application and success of some classical methods of protein-protein interaction analysis in the field of plant abiotic stress signaling.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), CNRS, Université de Rennes, Brittany, France.
| | - Gwenola Gouesbet
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), CNRS, Université de Rennes, Brittany, France
| |
Collapse
|
17
|
Grones P, De Meyer A, Pleskot R, Mylle E, Kraus M, Vandorpe M, Yperman K, Eeckhout D, Dragwidge JM, Jiang Q, Nolf J, Pavie B, De Jaeger G, De Rybel B, Van Damme D. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. NATURE PLANTS 2022; 8:1467-1483. [PMID: 36456802 PMCID: PMC7613989 DOI: 10.1038/s41477-022-01280-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.
Collapse
Affiliation(s)
- Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
18
|
TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. Nat Commun 2022; 13:5658. [PMID: 36163196 PMCID: PMC9513094 DOI: 10.1038/s41467-022-33402-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. In Arabidopsis, there are three TraB family isoforms and the trb1/trb2 double mutant exhibits abnormal mitochondrial morphology, strong starch accumulation, and impaired energy metabolism, indicating that these proteins are essential for normal mitochondrial function. Moreover, TRB1 and TRB2 proteins also interact with ATG8 in order to regulate mitochondrial degradation (mitophagy). The turnover of depolarised mitochondria is significantly reduced in both trb1/trb2 and VAP27 mutants (vap27-1,3,4,6) under mitochondrial stress conditions, with an increased population of dysfunctional mitochondria present in the cytoplasm. Consequently, plant recovery after stress is significantly perturbed, suggesting that TRB1-regulated mitophagy and ER-mitochondrial interaction are two closely related processes. Taken together, we ascribe a dual role to TraB family proteins which are component of the EMCS complex in eukaryotes, regulating both interaction of the mitochondria to the ER and mitophagy.
Collapse
|
19
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
20
|
Strotmann VI, Stahl Y. Visualization of in vivo protein-protein interactions in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3866-3880. [PMID: 35394544 PMCID: PMC9232200 DOI: 10.1093/jxb/erac139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Molecular processes depend on the concerted and dynamic interactions of proteins, either by one-on-one interactions of the same or different proteins or by the assembly of larger protein complexes consisting of many different proteins. Here, not only the protein-protein interaction (PPI) itself, but also the localization and activity of the protein of interest (POI) within the cell is essential. Therefore, in all cell biological experiments, preserving the spatio-temporal state of one POI relative to another is key to understanding the underlying complex and dynamic regulatory mechanisms in vivo. In this review, we examine some of the applicable techniques to measure PPIs in planta as well as recent combinatorial advances of PPI methods to measure the formation of higher order complexes with an emphasis on in vivo imaging techniques. We compare the different methods and discuss their benefits and potential pitfalls to facilitate the selection of appropriate techniques by providing a comprehensive overview of how to measure in vivo PPIs in plants.
Collapse
Affiliation(s)
- Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Park J, Demirer GS, Cheung LS. Toolboxes for plant systems biology research. Curr Opin Biotechnol 2022; 75:102692. [PMID: 35144172 DOI: 10.1016/j.copbio.2022.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
The terms 'systems' and 'synthetic biology' are often used together, with most scientists striding between the two fields rather than adhering to a single side. Often too, scientists want to understand a system to inform the design of gene circuits that could endow it with new functions. However, this does not need to be the progression of research, as synthetic constructs can help improve our understanding of a system. Here, we review synthetic biology tool kits with the potential to overcome pleiotropic effects, compensatory mechanisms, and redundancy in plants. Combined with -omics techniques, these tools could reveal novel insights on plant growth and development, an aim that has gained renewed urgency given the impact of climate change on crop productivity.
Collapse
Affiliation(s)
- Jihyun Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gozde S Demirer
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
22
|
Pfeiffer ML, Winkler J, Van Damme D, Jacobs TB, Nowack MK. Conditional and tissue-specific approaches to dissect essential mechanisms in plant development. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102119. [PMID: 34653951 PMCID: PMC7612331 DOI: 10.1016/j.pbi.2021.102119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 05/19/2023]
Abstract
Reverse genetics approaches are routinely used to investigate gene function. However, mutations, especially in critical genes, can lead to pleiotropic effects as severe as lethality, thus limiting functional studies in specific contexts. Approaches that allow for modifications of genes or gene products in a specific spatial or temporal setting can overcome these limitations. The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has not only revolutionized targeted genome modification in plants but also enabled new possibilities for inducible and tissue-specific manipulation of gene functions at the DNA and RNA levels. In addition, novel approaches for the direct manipulation of target proteins have been introduced in plant systems. Here, we review the current development in tissue-specific and conditional manipulation approaches at the DNA, RNA, and protein levels.
Collapse
Affiliation(s)
- Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
23
|
Doumane M, Caillaud MC, Jaillais Y. Experimental manipulation of phosphoinositide lipids: from cells to organisms. Trends Cell Biol 2022; 32:445-461. [DOI: 10.1016/j.tcb.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|
24
|
Cai Y. Knocksideways in plants: an inducible system for in planta visualization of protein interactions. THE PLANT CELL 2021; 33:1085-1086. [PMID: 35234962 PMCID: PMC8889998 DOI: 10.1093/plcell/koab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
25
|
Winkler J, De Meyer A, Mylle E, Storme V, Grones P, Van Damme D. Nanobody-Dependent Delocalization of Endocytic Machinery in Arabidopsis Root Cells Dampens Their Internalization Capacity. FRONTIERS IN PLANT SCIENCE 2021; 12:538580. [PMID: 33815429 PMCID: PMC8018273 DOI: 10.3389/fpls.2021.538580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/23/2021] [Indexed: 05/08/2023]
Abstract
Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.
Collapse
Affiliation(s)
- Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
26
|
Yperman K, Wang J, Eeckhout D, Winkler J, Vu LD, Vandorpe M, Grones P, Mylle E, Kraus M, Merceron R, Nolf J, Mor E, De Bruyn P, Loris R, Potocký M, Savvides SN, De Rybel B, De Jaeger G, Van Damme D, Pleskot R. Molecular architecture of the endocytic TPLATE complex. SCIENCE ADVANCES 2021; 7:eabe7999. [PMID: 33637534 PMCID: PMC7909872 DOI: 10.1126/sciadv.abe7999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Eukaryotic cells rely on endocytosis to regulate their plasma membrane proteome and lipidome. Most eukaryotic groups, except fungi and animals, have retained the evolutionary ancient TSET complex as an endocytic regulator. Unlike other coatomer complexes, structural insight into TSET is lacking. Here, we reveal the molecular architecture of plant TSET [TPLATE complex (TPC)] using an integrative structural approach. We identify crucial roles for specific TSET subunits in complex assembly and membrane interaction. Our data therefore generate fresh insight into the differences between the hexameric TSET in Dictyostelium and the octameric TPC in plants. Structural elucidation of this ancient adaptor complex represents the missing piece in the coatomer puzzle and vastly advances our functional as well as evolutionary insight into the process of endocytosis.
Collapse
Affiliation(s)
- Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Romain Merceron
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Eliana Mor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Pieter De Bruyn
- Vrije Universiteit Brussel, Structural Biology Brussels, Department of Biotechnology, 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, Structural Biology Research Center, Molecular Recognition Unit, 1050 Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Structural Biology Research Center, Molecular Recognition Unit, 1050 Brussels, Belgium
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Savvas N Savvides
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| |
Collapse
|
27
|
Winkler J, De Meyer A, Mylle E, Storme V, Grones P, Van Damme D. Nanobody-Dependent Delocalization of Endocytic Machinery in Arabidopsis Root Cells Dampens Their Internalization Capacity. FRONTIERS IN PLANT SCIENCE 2021. [PMID: 33815429 DOI: 10.1101/2020.02.27.968446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.
Collapse
Affiliation(s)
- Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|