1
|
Tucci A, Flores-Vergara MA, Franks RG. Machine Learning Inference of Gene Regulatory Networks in Developing Mimulus Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3297. [PMID: 39683091 DOI: 10.3390/plants13233297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation. This property of the angiosperm seed is exemplified in the Mimulus genus. In order to further the understanding of the gene regulatory mechanisms important in the Mimulus seed, we performed gene regulatory network (GRN) inference analysis by using time-series RNA-seq data from developing hybrid seeds from a viable cross between Mimulus guttatus and Mimulus pardalis. GRN inference has the capacity to identify active regulatory mechanisms in a sample and highlight genes of potential biological importance. In our case, GRN inference also provided the opportunity to uncover active regulatory relationships and generate a reference set of putative gene regulations. We deployed two GRN inference algorithms-RTP-STAR and KBoost-on three different subsets of our transcriptomic dataset. While the two algorithms yielded GRNs with different regulations and topologies when working with the same data subset, there was still significant overlap in the specific gene regulations they inferred, and they both identified potential novel regulatory mechanisms that warrant further investigation.
Collapse
Affiliation(s)
- Albert Tucci
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Miguel A Flores-Vergara
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
3
|
Runemark A, Moore EC, Larson EL. Hybridization and gene expression: Beyond differentially expressed genes. Mol Ecol 2024:e17303. [PMID: 38411307 DOI: 10.1111/mec.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Gene expression has a key role in reproductive isolation, and studies of hybrid gene expression have identified mechanisms causing hybrid sterility. Here, we review the evidence for altered gene expression following hybridization and outline the mechanisms shown to contribute to altered gene expression in hybrids. Transgressive gene expression, transcending that of both parental species, is pervasive in early generation sterile hybrids, but also frequently observed in viable, fertile hybrids. We highlight studies showing that hybridization can result in transgressive gene expression, also in established hybrid lineages or species. Such extreme patterns of gene expression in stabilized hybrid taxa suggest that altered hybrid gene expression may result in hybridization-derived evolutionary novelty. We also conclude that while patterns of misexpression in hybrids are well documented, the understanding of the mechanisms causing misexpression is lagging. We argue that jointly assessing differences in cell composition and cell-specific changes in gene expression in hybrids, in addition to assessing changes in chromatin and methylation, will significantly advance our understanding of the basis of altered gene expression. Moreover, uncovering to what extent evolution of gene expression results in altered expression for individual genes, or entire networks of genes, will advance our understanding of how selection moulds gene expression. Finally, we argue that jointly studying the dual roles of altered hybrid gene expression, serving both as a mechanism for reproductive isolation and as a substrate for hybrid ecological adaptation, will lead to significant advances in our understanding of the evolution of gene expression.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
| | - Emily C Moore
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
4
|
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int J Mol Sci 2024; 25:1226. [PMID: 38279225 PMCID: PMC10817076 DOI: 10.3390/ijms25021226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Hybrid lethality, a type of postzygotic reproductive isolation, is an obstacle to wide hybridization breeding. Here, we report the hybrid lethality that was observed in crosses between the cultivated tobacco, Nicotiana tabacum (section Nicotiana), and the wild tobacco species, Nicotiana simulans (section Suaveolentes). Reciprocal hybrid seedlings were inviable at 28 °C, and the lethality was characterized by browning of the hypocotyl and roots, suggesting that hybrid lethality is due to the interaction of nuclear genomes derived from each parental species, and not to a cytoplasmic effect. Hybrid lethality was temperature-sensitive and suppressed at 36 °C. However, when hybrid seedlings cultured at 36 °C were transferred to 28 °C, all of them showed hybrid lethality. After crossing between an N. tabacum monosomic line missing one copy of the Q chromosome and N. simulans, hybrid seedlings with or without the Q chromosome were inviable and viable, respectively. These results indicated that gene(s) on the Q chromosome are responsible for hybrid lethality and also suggested that N. simulans has the same allele at the Hybrid Lethality A1 (HLA1) locus responsible for hybrid lethality as other species in the section Suaveolentes. Haplotype analysis around the HLA1 locus suggested that there are at least six and two haplotypes containing Hla1-1 and hla1-2 alleles, respectively, in the section Suaveolentes.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Shota Nagai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
| | - Chihiro Matsuo
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Toshiaki Okamori
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
| | - Wataru Marubashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| |
Collapse
|
5
|
Dong X, Luo H, Bi W, Chen H, Yu S, Zhang X, Dai Y, Cheng X, Xing Y, Fan X, Zhu Y, Guo Y, Meng D. Transcriptome-wide identification and characterization of genes exhibit allele-specific imprinting in maize embryo and endosperm. BMC PLANT BIOLOGY 2023; 23:470. [PMID: 37803280 PMCID: PMC10557216 DOI: 10.1186/s12870-023-04473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Genomic imprinting refers to a subset of genes that are expressed from only one parental allele during seed development in plants. Studies on genomic imprinting have revealed that intraspecific variations in genomic imprinting expression exist in naturally genetic varieties. However, there have been few studies on the functional analysis of allele-specific imprinted genes. RESULTS Here, we generated three reciprocal crosses among the B73, Mo17 and CAU5 inbred lines. Based on the transcriptome-wide analysis of allele-specific expression using RNA sequencing technology, 305 allele-specific imprinting genes (ASIGs) were identified in embryos, and 655 ASIGs were identified in endosperms from three maize F1 hybrids. Of these ASIGs, most did not show consistent maternal or paternal bias between the same tissue from different hybrids or different tissues from one hybrid cross. By gene ontology (GO) analysis, five and eight categories of GO exhibited significantly higher functional enrichments for ASIGs identified in embryo and endosperm, respectively. These functional categories indicated that ASIGs are involved in intercellular nutrient transport, signaling pathways, and transcriptional regulation of kernel development. Finally, the mutation and overexpression of one ASIG (Zm305) affected the length and width of the kernel. CONCLUSION In this study, our data will be helpful in gaining further knowledge of genes exhibiting allele-specific imprinting patterns in seeds. The gain- and loss-of-function phenotypes of ASIGs associated with agronomically important seed traits provide compelling evidence for ASIGs as crucial targets to optimize seed traits in crop plants.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjing Bi
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hanyu Chen
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yupeng Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoqin Fan
- Manas Agricultural Experimental Station of Xinjiang Academy of Agricultural Sciences, Changji, 832200, Xinjiang, China
| | - Yanbin Zhu
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Yanling Guo
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
6
|
Bjerkan KN, Alling RM, Myking IV, Brysting AK, Grini PE. Genetic and environmental manipulation of Arabidopsis hybridization barriers uncovers antagonistic functions in endosperm cellularization. FRONTIERS IN PLANT SCIENCE 2023; 14:1229060. [PMID: 37600172 PMCID: PMC10433385 DOI: 10.3389/fpls.2023.1229060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Speciation involves reproductive isolation, which can occur by hybridization barriers acting in the endosperm of the developing seed. The nuclear endosperm is a nutrient sink, accumulating sugars from surrounding tissues, and undergoes coordinated cellularization, switching to serve as a nutrient source for the developing embryo. Tight regulation of cellularization is therefore vital for seed and embryonic development. Here we show that hybrid seeds from crosses between Arabidopsis thaliana as maternal contributor and A. arenosa or A. lyrata as pollen donors result in an endosperm based post-zygotic hybridization barrier that gives rise to a reduced seed germination rate. Hybrid seeds display opposite endosperm cellularization phenotypes, with late cellularization in crosses with A. arenosa and early cellularization in crosses with A. lyrata. Stage specific endosperm reporters display temporally ectopic expression in developing hybrid endosperm, in accordance with the early and late cellularization phenotypes, confirming a disturbance of the source-sink endosperm phase change. We demonstrate that the hybrid barrier is under the influence of abiotic factors, and show that a temperature gradient leads to diametrically opposed cellularization phenotype responses in hybrid endosperm with A. arenosa or A. lyrata as pollen donors. Furthermore, different A. thaliana accession genotypes also enhance or diminish seed viability in the two hybrid cross-types, emphasizing that both genetic and environmental cues control the hybridization barrier. We have identified an A. thaliana MADS-BOX type I family single locus that is required for diametrically opposed cellularization phenotype responses in hybrid endosperm. Loss of AGAMOUS-LIKE 35 significantly affects the germination rate of hybrid seeds in opposite directions when transmitted through the A. thaliana endosperm, and is suggested to be a locus that promotes cellularization as part of an endosperm based mechanism involved in post-zygotic hybrid barriers. The role of temperature in hybrid speciation and the identification of distinct loci in control of hybrid failure have great potential to aid the introduction of advantageous traits in breeding research and to support models to predict hybrid admixture in a changing global climate.
Collapse
Affiliation(s)
- Katrine N. Bjerkan
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Renate M. Alling
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida V. Myking
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne K. Brysting
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Paul E. Grini
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Characterization and expression analysis of bHLH transcription factors reveal their putative regulatory effects on nectar spur development in Aquilegia species. Gene 2023; 852:147057. [PMID: 36410606 DOI: 10.1016/j.gene.2022.147057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Nectar spur is a hollow extension of certain flower parts and shows strikingly diverse size and shape in Aquilegia. Nectar spur development is involved in cell division and expansion processes. The basic helix-loop-helix (bHLH) transcription factors (TFs) control a diversity of organ morphogenesis, including cell division and cell expansion processes. However, the role of bHLH genes in nectar spur development in Aquilegia is mainly unknown. We conducted a genome-wide identification of the bHLH gene family in Aquilegia to determine structural characteristics and phylogenetic relationships, and to analyze expression profiles of these genes during the development of nectar spur in spurless and spurred species. A total of 120 AqbHLH genes were identified from the Aquilegia coerulea genome. The phylogenetic tree showed that AqbHLH proteins were divided into 15 subfamilies, among which S7 and S8 subfamilies occurred marked expansion. The AqbHLH genes in the same clade had similar motif composition and gene structure characteristics. Conserved residue analysis indicated nineteen residues with conservation of more than 50% were found in the four conserved regions. In the upstream sequence of AqbHLH genes, the light-responsive element was the most abundant cis-acting element. Eighteen AqbHLH genes showed syntenic relationships, and eight genes from four syntenic pairs underwent tandem duplications. According to the expression profiling analysis by public RNA-Seq data and qRT-PCR results, five AqbHLH genes, including AqbHLH027, AqbHLH046, AqbHLH082, AqbHLH083 and AqbHLH092, were differentially expressed between different tissues in A. coerulea at early developmental stages, as well as between spurless and spurred Aquilegia species. Of them, AqbHLH046 was not only highly expressed in spur compared with blade, but also showed higher expression levels in spurred species than spurless specie, suggesting it plays an essential role in the development of spur by regulating cell division. This study lays a foundation to investigate the function of AqbHLH genes family in nectar spur development, and has potential implications for speciation and genetic breeding in the genus Aquilegia.
Collapse
|
8
|
Sandstedt GD, Sweigart AL. Developmental evidence for parental conflict in driving Mimulus species barriers. THE NEW PHYTOLOGIST 2022; 236:1545-1557. [PMID: 35999713 PMCID: PMC9826125 DOI: 10.1111/nph.18438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
The endosperm, a tissue that nourishes the embryo in the seeds of flowering plants, is often disrupted in inviable hybrid seeds of closely related species. A key question is whether parental conflict is a major driver of this common form of reproductive isolation. Here, we performed reciprocal crosses between pairs of three monkeyflower species (Mimulus caespitosa, Mimulus tilingii, and Mimulus guttatus). The severity of hybrid seed inviability varies among these crosses, which we inferred to be due to species divergence in effective ploidy. By performing a time series experiment of seed development, we discovered parent-of-origin phenotypes that provide strong evidence for parental conflict in shaping endosperm evolution. We found that the chalazal haustorium, a tissue within the endosperm that is found at the maternal-filial boundary, shows pronounced differences between reciprocal hybrid seeds formed from Mimulus species that differ in effective ploidy. These parent-of-origin effects suggest that the chalazal haustorium might act as a mediator of parental conflict, potentially by controlling sucrose movement from the maternal parent into the endosperm. Our study suggests that parental conflict in the endosperm may function as a driver of speciation by targeting regions and developmental stages critical for resource allocation and thus proper seed development.
Collapse
|
9
|
He H, Sadahisa K, Yokoi S, Tezuka T. Parental Genome Imbalance Causes Hybrid Seed Lethality as Well as Ovary Abscission in Interspecific and Interploidy Crosses in Nicotiana. FRONTIERS IN PLANT SCIENCE 2022; 13:899206. [PMID: 35665169 PMCID: PMC9161172 DOI: 10.3389/fpls.2022.899206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Enhanced ovary abscission after pollination and hybrid seed lethality result in post-zygotic reproductive isolation in plant interspecific crosses. However, the connection between these barriers remains unclear. Here, we report that an imbalance in parental genomes or endosperm balance number (EBN) causes hybrid seed lethality and ovary abscission in both interspecific and intraspecific-interploidy crosses in the genus Nicotiana. Auxin treatment suppressed ovary abscission, but not hybrid seed lethality, in an interspecific cross between Nicotiana suaveolens and N. tabacum, suggesting that ovary abscission-related genes are located downstream of those involved in hybrid seed lethality. We performed interploidy crosses among N. suaveolens tetraploids, octoploids, and neopolyploids and revealed hybrid seed lethality and ovary abscission in interploid crosses. Furthermore, a higher maternal EBN than paternal EBN caused these barriers, as previously observed in N. suaveolens × N. tabacum crosses. Altogether, these results suggest that maternal excess of EBN causes hybrid seed lethality, which in turn leads to ovary abscission through the same mechanism in both interspecific and interploidy crosses.
Collapse
Affiliation(s)
- Hai He
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kumi Sadahisa
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shuji Yokoi
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Metropolitan University, Sakai, Japan
| | - Takahiro Tezuka
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
10
|
Zhang Z, Yu S, Li J, Zhu Y, Jiang S, Xia H, Zhou Y, Sun D, Liu M, Li C, Zhu Y, Ruan Y, Dong X. Epigenetic modifications potentially controlling the allelic expression of imprinted genes in sunflower endosperm. BMC PLANT BIOLOGY 2021; 21:570. [PMID: 34863098 PMCID: PMC8642925 DOI: 10.1186/s12870-021-03344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. RESULTS Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. CONCLUSION Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.
Collapse
Affiliation(s)
- Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haoran Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yue Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
| |
Collapse
|
11
|
Andreuzza S. Genome shock in monkeyflower hybrids. THE PLANT CELL 2021; 33:2097-2098. [PMID: 35233602 PMCID: PMC8364231 DOI: 10.1093/plcell/koab118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 06/14/2023]
|