1
|
Liu X, Liao N, Tang X, Wang K, Wang W, Khan A, Wang C, Yuan L, Chen G. TMT-label comparative proteomics reveals the vernalization mechanism in Wucai (Brassica campestris L.). J Proteomics 2025; 314:105398. [PMID: 39922279 DOI: 10.1016/j.jprot.2025.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To investigate the molecular basis of vernalization in Wucai [Brassica campestris L. (Syn. Brassica rapa L.) ssp. chinensis var. rosularis Tsen], we performed differential proteomic analysis using a tandem mass tags (TMT)-based approach. Proteins from shoot apices subjected to 0, 15, and 30 days of vernalization (V0, V15, and V30) were analyzed to identify differentially abundant proteins (DAPs). A total of 8066 proteins were obtained, and 507 shared DAPs were involved in both initiation and progression of vernalization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed functional enrichment in cellular processes, metabolic pathways, and translation-related activities, including photosynthesis, glucosinolate biosynthesis, and flavonoid biosynthesis. Proteomic data showed reduced abundance of photosynthesis-related proteins and upregulation of flavonoid biosynthesis during vernalization. Transcriptional validation of 24 proteins across metabolic and regulatory pathways corroborated proteomic findings, with notable peaks in genes associated with flavonoid biosynthesis at 15 days of vernalization, such as VESR1,CH13, CHS1, FHT, and FLS1. The functions of these genes in vernalization will be further analyzed. SIGNIFICANCE: Wucai is prone to premature bolting and flowering under cold conditions, as vernalization plays a key role in controlling flowering time in Chinese cabbage crops. However, the proteomic basis of vernalization remains poorly understood. In this study, TMT-based proteomic analysis identified DAPs associated with vernalization. Pathway enrichment analysis highlighted key DAPs and their roles in significantly enriched pathways relevant to vernalization. Notably, genes in the flavonoid biosynthesis pathway genes, including VESR1, CH13, CHS1, FHT, and FLS1, respond to vernalization. These findings offer novel insights into the molecular mechanisms underlying flowering time regulation in Wucai.
Collapse
Affiliation(s)
- Xueqing Liu
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Na Liao
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China
| | - Xiaoyan Tang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Kang Wang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China
| | - Wenjie Wang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China.
| | - Afrasyab Khan
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China
| | - Chenggang Wang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Lingyun Yuan
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China.
| | - Guohu Chen
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Liu X, Deng M, Shi B, Zhu K, Chen J, Xu S, Bie X, Zhang X, Lin X, Xiao J. Distinct roles of H3K27me3 and H3K36me3 in vernalization response, maintenance, and resetting in winter wheat. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2251-2266. [PMID: 38987431 DOI: 10.1007/s11427-024-2664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Winter plants rely on vernalization, a crucial process for adapting to cold conditions and ensuring successful reproduction. However, understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited. In this study, we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field. Two core histone modifications, H3K27me3 and H3K36me3, exhibited opposite patterns on the key vernalization gene VERNALIZATION1 (VRN1), correlating with its induction during cold exposure. Moreover, the H3K36me3 level remained high at VRN1 after cold exposure, which may maintain its active state. Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM (TaFIE) and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS (TaSDG8/TaEFS), components of the writer complex for H3K27me3 and H3K36me3, respectively, affected flowering time. Intriguingly, VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3. During embryo development, VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat, with selective restoration of H3K27me3 in winter wheat. The mutant of Tafie-cr-87, a component of H3K27me3 "writer" complex, did not influence the silence of VRN1 during embryo development, but rather attenuated the cold exposure requirement of winter wheat. Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering. This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response, maintenance, and resetting in winter wheat.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Deng
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Shi
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Xu
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, 3400, Austria
| | - Xiaomin Bie
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China.
| |
Collapse
|
4
|
Jo L, Nodine MD. "To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos". CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102612. [PMID: 39098309 DOI: 10.1016/j.pbi.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.
Collapse
Affiliation(s)
- Leonardo Jo
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Michael D Nodine
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Liang Z, Zhu T, Yu Y, Wu C, Huang Y, Hao Y, Song X, Fu W, Yuan L, Cui Y, Huang S, Li C. PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation. Mol Cell 2024; 84:3438-3454.e8. [PMID: 39232583 DOI: 10.1016/j.molcel.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in Arabidopsis thaliana that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.
Collapse
Affiliation(s)
- Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yisui Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4180-4194. [PMID: 38457356 DOI: 10.1093/jxb/erae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
The timing of the developmental transition from the vegetative to the reproductive stage is critical for angiosperms, and is fine-tuned by the integration of endogenous factors and external environmental cues to ensure successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, and these can be mediated by hormones to coordinate flowering time. Phytohormones such as gibberellin, auxin, cytokinin, jasmonate, abscisic acid, ethylene, and brassinosteroids and the cross-talk among them are critical for the precise regulation of flowering time. Recent studies of the model flowering plant Arabidopsis have revealed that diverse transcription factors and epigenetic regulators play key roles in relation to the phytohormones that regulate floral transition. This review aims to summarize our current knowledge of the genetic and epigenetic mechanisms that underlie the phytohormonal control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
9
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
10
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
11
|
Tang M, Gao X, Meng W, Lin J, Zhao G, Lai Z, Lin Y, Chen Y. Transcription factors NF-YB involved in embryogenesis and hormones responses in Dimocarpus Longan Lour. FRONTIERS IN PLANT SCIENCE 2023; 14:1255436. [PMID: 37841620 PMCID: PMC10570845 DOI: 10.3389/fpls.2023.1255436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Introduction NF-YB transcription factor is an important regulatory factor in plant embryonic development. Results In this study, 15 longan NF-YB (DlNF-YB) family genes were systematically identified in the whole genome of longan, and a comprehensive bioinformatics analysis of DlNF-YB family was performed. Comparative transcriptome analysis of DlNF-YBs expression in different tissues, early somatic embryogenesis (SE), and under different light and temperature treatments revealed its specific expression profiles and potential biological functions in longan SE. The qRT-PCR results implied that the expression patterns of DlNF-YBs were different during SE and the zygotic embryo development of longan. Supplementary 2,4-D, NPA, and PP333 in longan EC notably inhibited the expression of DlNF-YBs; ABA, IAA, and GA3 suppressed the expressions of DlNF-YB6 and DlNF-YB9, but IAA and GA3 induced the other DlNF-YBs. Subcellular localization indicated that DlNF-YB6 and DlNF-YB9 were located in the nucleus. Furthermore, verification by the modified 5'RNA Ligase Mediated Rapid Amplification of cDNA Ends (5' RLM-RACE) method demonstrated that DlNF-YB6 was targeted by dlo-miR2118e, and dlo-miR2118e regulated longan somatic embryogenesis (SE) by targeting DlNF-YB6. Compared with CaMV35S- actuated GUS expression, DlNF-YB6 and DlNF-YB9 promoters significantly drove GUS expression. Meanwhile, promoter activities were induced to the highest by GA3 but suppressed by IAA. ABA induced the activities of the promoter of DlNF-YB9, whereas it inhibited the promoter of DlNF-YB6. Discussion Hence, DlNF-YB might play a prominent role in longan somatic and zygotic embryo development, and it is involved in complex plant hormones signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Auge G, Hankofer V, Groth M, Antoniou-Kourounioti R, Ratikainen I, Lampei C. Plant environmental memory: implications, mechanisms and opportunities for plant scientists and beyond. AOB PLANTS 2023; 15:plad032. [PMID: 37415723 PMCID: PMC10321398 DOI: 10.1093/aobpla/plad032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.
Collapse
Affiliation(s)
| | - Valentin Hankofer
- Institute of Biochemical Plant Pathology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, University of Glasgow, Sir James Black Building, University Ave, Glasgow G12 8QQ, UK
| | - Irja Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Christian Lampei
- Department of Biology (FB17), Plant Ecology and Geobotany Group, University of Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
13
|
Zhang Z, Luo X, Yang Y, He Y. Cold induction of nuclear FRIGIDA condensation in Arabidopsis. Nature 2023; 619:E27-E32. [PMID: 37438599 DOI: 10.1038/s41586-023-06189-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/10/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yupeng Yang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
14
|
Zhu D, Wen Y, Yao W, Zheng H, Zhou S, Zhang Q, Qu LJ, Chen X, Wu Z. Distinct chromatin signatures in the Arabidopsis male gametophyte. Nat Genet 2023; 55:706-720. [PMID: 36864100 DOI: 10.1038/s41588-023-01329-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Epigenetic reprogramming in the germline contributes to the erasure of epigenetic inheritance across generations in mammals but remains poorly characterized in plants. Here we profiled histone modifications throughout Arabidopsis male germline development. We find that the sperm cell has widespread apparent chromatin bivalency, which is established by the acquisition of H3K27me3 or H3K4me3 at pre-existing H3K4me3 or H3K27me3 regions, respectively. These bivalent domains are associated with a distinct transcriptional status. Somatic H3K27me3 is generally reduced in sperm, while dramatic loss of H3K27me3 is observed at only ~700 developmental genes. The incorporation of the histone variant H3.10 facilitates the establishment of sperm chromatin identity without a strong impact on resetting of somatic H3K27me3. Vegetative nuclei harbor thousands of specific H3K27me3 domains at repressed genes, while pollination-related genes are highly expressed and marked by gene body H3K4me3. Our work highlights putative chromatin bivalency and restricted resetting of H3K27me3 at developmental regulators as key features in plant pluripotent sperm.
Collapse
Affiliation(s)
- Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yi Wen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wanyue Yao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, USA
| | - Sixian Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qiqi Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
15
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
16
|
Ornelas-Ayala D, Cortés-Quiñones C, Olvera-Herrera J, García-Ponce B, Garay-Arroyo A, Álvarez-Buylla ER, Sanchez MDLP. A Green Light to Switch on Genes: Revisiting Trithorax on Plants. PLANTS (BASEL, SWITZERLAND) 2022; 12:75. [PMID: 36616203 PMCID: PMC9824250 DOI: 10.3390/plants12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in plants; nevertheless, little is known about their interactions and if they can form TrxG complexes. Recent evidence suggests the existence of new TrxG components as well as new interactions of some TrxG complexes that may be acting in specific tissues in plants. In this review, we bring together the latest research on the topic, exploring the interactions and roles of TrxG proteins at different developmental stages, required for the fine-tuned transcriptional activation of genes at the right time and place. Shedding light on the molecular mechanism by which TrxG is recruited and regulates transcription.
Collapse
|
17
|
Chen Z, Li Z. Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Gao Z, Zhou Y, He Y. Molecular epigenetic mechanisms for the memory of temperature stresses in plants. J Genet Genomics 2022; 49:991-1001. [PMID: 35870761 DOI: 10.1016/j.jgg.2022.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of 'remembering of prolonged cold in winter' or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| |
Collapse
|
19
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Ming H, Yan G, Zhang X, Pei X, Fu L, Zhou D. Harsh temperature induces Microcystis aeruginosa growth enhancement and water deterioration during vernalization. WATER RESEARCH 2022; 223:118956. [PMID: 35985140 DOI: 10.1016/j.watres.2022.118956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms are seasonal phenomena in eutrophic water. Cyanobacteria grow fast in the warm spring/summer while disappearing in cold autumn/winter. The temperature change induces algal vernalization. However, whether vernalization affects cyanobacterial blooms, and the regulatory signaling mechanisms are unclear. This study used Microcystis aeruginosa as the model cyanobacteria, and 4 °C and 10 °C as the low-temperature stimulation to explore the cell growth, metabolites, and signaling pathways in cyanobacteria vernalization. Low temperatures induced M. aeruginosa vernalization; the growth rate and cell density increased by 35±4% and 33±2%. Vernalization influenced peptidoglycan synthesis and cell permeability. Soluble microbial products (SMPs) in water increased by 109±5%, resulting in water deterioration. Polysaccharides were the predominant SMPs during the initial term of vernalization. Tryptophan protein-like & humic acid-like substances became the main increased SMPs in the middle-later period of vernalization. Harsh temperatures triggered quorum sensing and two-component system. Signaling sensing systems upregulated photosynthesis, glycolysis, TCA cycle, oxidative phosphorylation, and DNA replication, enhancing M. aeruginosa growth and metabolism during vernalization. This study verified that low temperature stimulates cyanobacteria growth and metabolism, and vernalization possibly aggravates cyanobacterial blooms and water deterioration. It provides new insights into the mechanism of seasonal cyanobacterial blooms and the pivotal role of signaling regulation.
Collapse
Affiliation(s)
- Hao Ming
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Xue Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Xiaofen Pei
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| |
Collapse
|
21
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Xue Y, Xue J, Ren X, Li C, Sun K, Cui L, Lyu Y, Zhang X. Nutrient Supply Is Essential for Shifting Tree Peony Reflowering Ahead in Autumn and Sugar Signaling Is Involved. Int J Mol Sci 2022; 23:ijms23147703. [PMID: 35887047 PMCID: PMC9315773 DOI: 10.3390/ijms23147703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The flowering time of tree peony is short and concentrated in spring, which limits the development of its industry. We previously achieved tree peony reflowering in autumn. Here, we further shifted its reflowering time ahead through proper gibberellin (GA) treatment plus nutrient supply. GA treatment alone initiated bud differentiation, but it aborted later, whereas GA plus nutrient (G + N) treatment completed the opening process 38 days before the control group. Through microstructural observation of bud differentiation and starch grains, we concluded that GA plays a triggering role in flowering induction, whereas the nutriment supply ensured the continuous developing for final opening, and both are necessary. We further determined the expression of five floral induction pathway genes and found that PsSOC1 and PsLFY probably played key integral roles in flowering induction and nutrient supply, respectively. Considering the GA signaling, PsGA2ox may be mainly involved in GA regulation, whereas PsGAI may regulate further flower formation after nutrient application. Furthermore, G + N treatment, but not GA alone, inhibited the expression of PsTPS1, a key restricting enzyme in sugar signaling, at the early stage, indicating that sugar signaling is also involved in this process; in addition, GA treatment induced high expression of PsSnRK1, a major nutrient insufficiency indicator, and the induction of PsHXK1, a rate-limiting enzyme for synthesis of sugar signaling substances, further confirmed the nutrient shortage. In short, besides GA application, exogenous nutrient supply is essential to shift tree peony reflowering ahead in autumn under current forcing culture technologies.
Collapse
Affiliation(s)
- Yuqian Xue
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China;
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Xiuxia Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Changyue Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Kairong Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Litao Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China;
- Correspondence: (Y.L.); (X.Z.); Tel.: +86-130-5191-3339 (Y.L.); +86-10-8210-5944 (X.Z.)
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.X.); (X.R.); (C.L.); (K.S.); (L.C.)
- Correspondence: (Y.L.); (X.Z.); Tel.: +86-130-5191-3339 (Y.L.); +86-10-8210-5944 (X.Z.)
| |
Collapse
|