1
|
Zhao Y, Wang X, Lei Q, Zhang X, Wang Y, Ji H, Ma C, Wang P, Song CP, Zhu X. The SnRK1-JMJ15-CRF6 module integrates energy and mitochondrial signaling to balance growth and the oxidative stress response in Arabidopsis. THE NEW PHYTOLOGIST 2025. [PMID: 39909830 DOI: 10.1111/nph.20425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Mitochondria support plant growth and adaptation via energy production and signaling pathways. However, how mitochondria control the transition between growth and stress response is largely unknown in plants. Using molecular approaches, we identified the histone H3K4me3 demethylase JMJ15 and the transcription factor CRF6 as targets of SnRK1 in Arabidopsis. By analyzing antimycin A (AA)-triggered mitochondrial stress, we explored how SnRK1, JMJ15, and CRF6 form a regulatory module that gauges mitochondrial status to balance growth and the oxidative stress response. SnRK1a1, a catalytic α-subunit of SnRK1, phosphorylates and destabilizes JMJ15 to inhibit its H3K4me3 demethylase activity. While SnRK1a1 does not phosphorylate CRF6, it promotes its degradation via the proteasome pathway. CRF6 interacts with JMJ15 and prevents its SnRK1a1 phosphorylation-dependent degradation, forming an antagonistic feedback loop. SnRK1a1, JMJ15, and CRF6 are required for transcriptional reprogramming in response to AA stress. The transcriptome profiles of jmj15 and crf6 mutants were highly correlated with those of plants overexpressing SnRK1a1 under both normal and AA stress conditions. Genetic analysis revealed that CRF6 acts downstream of SnRK1 and JMJ15. Our findings identify the SnRK1-JMJ15-CRF6 module that integrates energy and mitochondrial signaling for the growth-defense trade-off, highlighting an epigenetic mechanism underlying mitonuclear communication.
Collapse
Affiliation(s)
- Yanming Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Xinying Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Qianyan Lei
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Xiaoyan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Yubei Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huijia Ji
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Chongyang Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Bio-breeding and Integrated Utilization, Henan University, Kaifeng, 475004, China
| |
Collapse
|
2
|
Zhang Y, Zhang H, Zhang Y, Wang D, Meng X, Chen J. Utilizing physiologies, transcriptomics, and metabolomics to unravel key genes and metabolites of Salvia miltiorrhiza Bge. seedlings in response to drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1484688. [PMID: 39877738 PMCID: PMC11772496 DOI: 10.3389/fpls.2024.1484688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Drought stress inhibits Salvia miltiorrhiza Bunge (S. miltiorrhiza) seedling growth and yield. Here, we studied the effects of drought stress on the different parts of S. miltiorrhiza seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (H2O2), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in S. miltiorrhiza seedlings, and inhibited the growth of S. miltiorrhiza plants. Transcriptome analyses revealed 383 genes encoding transcription factors and 80 genes encoding plant hormones as hypothetical regulators of drought resistance in S. miltiorrhiza plants. Moreover, differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) are involved in a variety of biological processes, such as proline and glycine betaine metabolism, and biosynthesis of tanshinones and phenolic acids. Additionally, it has barely been reported that the AHL gene family may be involved in regulating the neocryptotanshinone biosynthesis. In conclusion, our results suggest that drought stress inhibits S. miltiorrhiza seedling growth by enhancing membrane lipid peroxidation, attenuating the antioxidant system, photosynthesis, and regulating proline and glycine betaine metabolism, transcription factors and plant hormones, and tanshinones and phenolic acid metabolism pathways. This study provides new insights into the complex mechanisms by which S. miltiorrhiza responds to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Chen
- Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese
Medicine, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Li J, Yu G, Wang X, Guo C, Wang Y, Wang X. Jasmonic acid plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense. PLANT COMMUNICATIONS 2025; 6:101133. [PMID: 39277791 PMCID: PMC11784291 DOI: 10.1016/j.xplc.2024.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Proper mitochondrial function is crucial to plant growth and development. Inhibition of mitochondrial translation leads to mitochondrial proteotoxic stress, which triggers a protective transcriptional response that regulates nuclear gene expression, commonly referred to as the mitochondrial unfolded protein response (UPRmt). Although the UPRmt has been extensively studied in yeast and mammals, very little is known about the UPRmt in plants. Here, we show that mitochondrial translational stress inhibits plant growth and development by inducing jasmonic acid (JA) biosynthesis and signaling. The inhibitory effect of mitochondrial translational stress on plant growth was alleviated in the JA-signaling-defective mutants coi1-2, myc2, and myc234. Genetic analysis indicated that Arabidopsis mitochondrial ribosomal protein L1 (MRPL1), a key factor in the UPRmt, regulates plant growth in a CORONATINE-INSENSITIVE 1 (COI1)-dependent manner. Moreover, under mitochondrial translational stress, MYC2 shows direct binding to G boxes in the ETHYLENE RESPONSE FACTOR 109 (ERF109) promoter. The induction of ERF109 expression enhances hydrogen peroxide production, which acts as a feedback loop to inhibit root growth. In addition, mutation of MRPL1 increases JA accumulation, reduces plant growth, and enhances biotic stress resistance. Overall, our findings reveal that JA plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.
Collapse
Affiliation(s)
- Jiahao Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guolong Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Yan J, Feng Z, Xiao Y, Zhou M, Zhao X, Lin X, Shi W, Busch W, Li B. ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems. Proc Natl Acad Sci U S A 2025; 122:e2411579122. [PMID: 39793035 PMCID: PMC11725852 DOI: 10.1073/pnas.2411579122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems. Here, we found that in the absence of GSNOR, exposure to high Fe treatment results in DNA damage-dependent cell death specifically in vascular stem cells in root meristems within 48 h. Through a series of time-course transcriptomic analyses, we unveil that in the absence of GSNOR, mitochondrial dysfunction emerges as the most prominent response to high Fe treatment. Consistently, the application of mitochondrial respiratory inhibitors leads to stem cell death in root meristems, and pharmacological blockage of the voltage-dependent anion channel that is responsible for the release of mitochondrial-derived molecules into the cytosol or genetic changes that abolish the ANAC017- and ANAC013-mediated mitochondrial retrograde signaling effectively eliminate Fe-induced stem cell death in gsnor root meristems. We further identify the nuclear transcription factor ANAC044 as a mediator of this mitochondrial retrograde signaling. Disruption of ANAC044 completely abolishes the GSNOR-dependent, Fe-induced stem cell death in root meristems, while ectopic expression of ANAC044 causes severe root stem cell death. Collectively, our findings reveal a mechanism responsible for initiating Fe-induced stem cell death in the root meristem, which is the ANAC044-mediated GSNOR-regulated mitochondrial stress signaling pathway.
Collapse
Affiliation(s)
- Juanmei Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhihang Feng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Yihui Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaobo Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xianyong Lin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Baohai Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
5
|
Coronel FP, Gras DE, Canal MV, Roldan F, Welchen E, Gonzalez DH. Cytochrome c levels link mitochondrial function to plant growth and stress responses through changes in SnRK1 pathway activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17215. [PMID: 39676593 DOI: 10.1111/tpj.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Energy is required for growth as well as for multiple cellular processes. During evolution, plants developed regulatory mechanisms to adapt energy consumption to metabolic reserves and cellular needs. Reduced growth is often observed under stress, leading to a growth-stress trade-off that governs plant performance under different conditions. In this work, we report that plants with reduced levels of the mitochondrial respiratory chain component cytochrome c (CYTc), required for electron transport coupled to oxidative phosphorylation and ATP production, show impaired growth and increased global expression of stress-responsive genes, similar to those observed after inhibiting the respiratory chain or the mitochondrial ATP synthase. CYTc-deficient plants also show activation of the SnRK1 pathway, which regulates growth, metabolism, and stress responses under carbon starvation conditions, even though their carbohydrate levels are not significantly different from wild-type. Notably, loss-of-function of the gene encoding the SnRK1α1 subunit restores the growth of CYTc-deficient plants, as well as autophagy, free amino acid and TOR pathway activity levels, which are affected in these plants. Moreover, increasing CYTc levels decreases SnRK1 pathway activation, reflected in reduced SnRK1α1 phosphorylation, with no changes in total SnRK1α1 protein levels. Under stress imposed by mannitol, the growth of CYTc-deficient plants is relatively less affected than that of wild-type plants, which is also related to the activation of the SnRK1 pathway. Our results indicate that SnRK1 function is affected by CYTc levels, thus providing a molecular link between mitochondrial function and plant growth under normal and stress conditions.
Collapse
Affiliation(s)
- Florencia P Coronel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - M Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Facundo Roldan
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
6
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
7
|
Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers RR. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. PLANT PHYSIOLOGY 2024; 197:kiae596. [PMID: 39530170 DOI: 10.1093/plphys/kiae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Oxygen deficiency (hypoxia) occurs naturally in many developing plant tissues but can become a major threat during acute flooding stress. Consequently, plants as aerobic organisms must rapidly acclimate to hypoxia and the associated energy crisis to ensure cellular and ultimately organismal survival. In plants, oxygen sensing is tightly linked with oxygen-controlled protein stability of group VII ETHYLENE-RESPONSE FACTORs (ERFVII), which, when stabilized under hypoxia, act as key transcriptional regulators of hypoxia-responsive genes (HRGs). Multiple signaling pathways feed into hypoxia signaling to fine-tune cellular decision-making under stress. First, ATP shortage upon hypoxia directly affects the energy status and adjusts anaerobic metabolism. Secondly, altered redox homeostasis leads to reactive oxygen and nitrogen species (ROS and RNS) accumulation, evoking signaling and oxidative stress acclimation. Finally, the phytohormone ethylene promotes hypoxia signaling to improve acute stress acclimation, while hypoxia signaling in turn can alter ethylene, auxin, abscisic acid, salicylic acid, and jasmonate signaling to guide development and stress responses. In this Update, we summarize the current knowledge on how energy, redox, and hormone signaling pathways are induced under hypoxia and subsequently integrated at the molecular level to ensure stress-tailored cellular responses. We show that some HRGs are responsive to changes in redox, energy, and ethylene independently of the oxygen status, and we propose an updated HRG list that is more representative for hypoxia marker gene expression. We discuss the synergistic effects of hypoxia, energy, redox, and hormone signaling and their phenotypic consequences in the context of both environmental and developmental hypoxia.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Rim Chaudhury
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Nie Y, Li Y, Yuan P, Wu C, Wang X, Wang C, Xu X, Shen Z, Hu Z. Arabidopsis Pentatricopeptide Repeat Protein GEND2 Participates in Mitochondrial RNA Editing. PLANT & CELL PHYSIOLOGY 2024; 65:1849-1861. [PMID: 39301683 DOI: 10.1093/pcp/pcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In Arabidopsis, RNA editing alters more than 500 cytidines (C) to uridines (U) in mitochondrial transcripts, a process involving the family of pentatricopeptide repeat (PPR) proteins. Here, we report a previously uncharacterized mitochondrial PLS-type PPR protein, GEND2, which functions in the mitochondrial RNA editing. The T-DNA insertion in the 5'-untranslated region of GEND2, referred to as gend2-1, results in defective root development compared to wild-type (WT) plants. A comprehensive examination of mitochondrial RNA-editing sites revealed a significant reduction in the gend2-1 mutant compared to WT plants, affecting six specific mitochondrial RNA editing sites, notably within the mitochondrial genes CcmFn-1, RPSL2 and ORFX. These genes encode critical components of cytochrome protein maturation pathway, mitochondrial ribosomal subunit and twin arginine translocation subunits, respectively. Further analysis of the transcriptional profile of the gend2-1 mutant and WT revealed a striking induction of expression in a cluster of genes associated with mitochondrial dysfunction and regulated by ANAC017, a key regulator coordinating organelle functions and stress responses. Intriguingly, the gend2-1 mutation activated an ANAC017-dependent signaling aimed at countering cell wall damage induced by cellulose synthase inhibitors, as well as an ANAC017-independent pathway that retarded root growth under normal condition. Collectively, our findings identify a novel mitochondrial PLS-type PPR protein GEND2, which participates in the editing of six specific mitochondrial RNA editing sites. Furthermore, the gend2-1 mutation triggers two distinct pathways in plants: an ANAC017-dependent pathway and ANAC017-independent pathway.
Collapse
Affiliation(s)
- Yaqing Nie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Penglai Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoqing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chunfei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
9
|
Selinski J, Frings S, Schmidt-Schippers R. Perception and processing of stress signals by plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2337-2355. [PMID: 39527570 DOI: 10.1111/tpj.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
Collapse
Affiliation(s)
- Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, D-24118, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| |
Collapse
|
10
|
Yu G, Huang Z, Guo C, Li J, Wang X, Wang Y, Wang X. Heat Shock Factor HSFA6b Mediates Mitochondrial Unfolded Protein Response in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3116. [PMID: 39599325 PMCID: PMC11597222 DOI: 10.3390/plants13223116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
Mitochondria are important organelles in eukaryotes and are involved in various metabolic processes. Mitochondrial proteotoxic stress triggers the mitochondrial unfolded protein response (UPRmt) to restore mitochondrial protein homeostasis and maintain normal life activities. However, the regulatory mechanism of plant UPRmt remains to be revealed in Arabidopsis. Based on the fact that UPRmt activates heat shock protein (HSP) genes, we identified the heat shock transcription factor HSFA6b as a key regulator mediating UPRmt through reverse genetics. HSFA6b responded to mitochondrial proteotoxic stress and regulated mitochondrial heat shock proteins' genes' (mtHSPs) expression. HSFA6b translocated to the nuclear after treatment with doxycycline (Dox)-a mitochondrial ribosome translation inhibitor. HSFA6b binds to the mtHSPs promoters and activates mtHSPs expression. The HSFA6b mutation blocked the UPRmt signals to promote root growth under mitochondrial proteotoxic stress and accelerated leaf senescence during development. Our study reveals a novel signal-regulating mechanism in the UPRmt pathways and provides new insights regarding the regulation of plant growth and development and stress resistance by the UPRmt pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Ding R, Li J, Wang J, Li Y, Ye W, Yan G, Yin Z. Molecular traits of MAPK kinases and the regulatory mechanism of GhMAPKK5 alleviating drought/salt stress in cotton. PLANT PHYSIOLOGY 2024; 196:2030-2047. [PMID: 39140753 PMCID: PMC11531841 DOI: 10.1093/plphys/kiae415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
Mitogen-activated protein kinase kinases (MAPKKs) play a critical role in the mitogen-activated protein kinase (MAPK) signaling pathway, transducing external stimuli into intracellular responses and enabling plant adaptation to environmental challenges. Most research has focused on the model plant Arabidopsis (Arabidopsis thaliana). The systematic analysis and characterization of MAPKK genes across different plant species, particularly in cotton (Gossypium hirsutum), are somewhat limited. Here, we identified MAPKK family members from 66 different species, which clustered into five different sub-groups, and MAPKKs from four cotton species clustered together. Through further bioinformatic and expression analyses, GhMAPKK5 was identified as the most responsive MAPKK member to salt and drought stress among the 23 MAPKKs identified in Gossypium hirsutum. Silencing GhMAPKK5 in cotton through virus-induced gene silencing (VIGS) led to quicker wilting under salt and drought conditions, while overexpressing GhMAPKK5 in Arabidopsis enhanced root growth and seed germination under these stresses, demonstrating GhMAPKK5's positive role in stress tolerance. Transcriptomics and Yeast-Two-Hybrid assays revealed a MAPK cascade signal module comprising GhMEKK (mitogen-activated protein kinase kinase kinases)3/8/31-GhMAPKK5-GhMAPK11/23. This signaling cascade may play a role in managing drought and salt stress by regulating transcription factor genes, such as WRKYs, which are involved in the biosynthesis and transport pathways of ABA, proline, and RALF. This study is highly important for further understanding the regulatory mechanism of MAPKK in cotton, contributing to its stress tolerance and offering potential in targets for genetic enhancement.
Collapse
Affiliation(s)
- Rui Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junhua Li
- Xinjiang Tarim River Seed Industry Co., Ltd., Xinjiang 518120, China
| | - Jie Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Gentu Yan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
12
|
Song C, Li Y, Yang M, Li T, Hou Y, Liu Y, Xu C, Liu J, Millar AH, Wang N, Li L. Protein aggregation in plant mitochondria lacking Lon1 inhibits translation and induces unfolded protein responses. PLANT, CELL & ENVIRONMENT 2024; 47:4383-4397. [PMID: 38988259 DOI: 10.1111/pce.15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.
Collapse
Affiliation(s)
- Ce Song
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengmeng Yang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tiantian Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqi Hou
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinyin Liu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Xu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ningning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Zhang F, Wang J, Chen Y, Huang J, Liang W. Genome-Wide Identification of MKK Gene Family and Response to Hormone and Abiotic Stress in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2922. [PMID: 39458871 PMCID: PMC11510841 DOI: 10.3390/plants13202922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades are pivotal and highly conserved signaling modules widely distributed in eukaryotes; they play essential roles in plant growth and development, as well as biotic and abiotic stress responses. With the development of sequencing technology, the complete genome assembly of rice without gaps, T2T (Telomere-to-Telomere)-NIP (version AGIS-1.0), has recently been released. In this study, we used bioinformatic approaches to identify and analyze the rice MPK kinases (MKKs) based on the complete genome. A total of seven OsMKKs were identified, and their physical and chemical properties, chromosome localization, gene structure, subcellular localization, phylogeny, family evolution, and cis-acting elements were evaluated. OsMKKs can be divided into four subgroups based on phylogenetic relationships, and the family members located in the same evolutionary branch have relatively similar gene structures and conserved domains. Quantitative real-time PCR (qRT-PCR) revealed that all OsMKKs were highly expressed in rice seedling leaves. The expression levels of all OsMKKs were more or less altered under exogenous hormone and abiotic stress treatments, with OsMKK1, OsMKK6, and OsMKK3 being induced under almost all treatments, while the expression of OsMKK4 and OsMKK10-2 was repressed under salt and drought treatments and IAA treatment, respectively. In this study, we also summarized the recent progress in rice MPK cascades, highlighted their diverse functions, and outlined the potential MPK signaling network, facilitating further studies on OsMKK genes and rice MPK cascades.
Collapse
Affiliation(s)
- Fan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Jingjing Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Yiwei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Junjun Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Weihong Liang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| |
Collapse
|
14
|
Frohn S, Haas FB, Chavez BG, Dreyer BH, Reiss EV, Ziplys A, Weichert H, Hiltemann S, Ugalde JM, Meyer AJ, D'Auria JC, Rensing SA, Schippers JHM. Evolutionary Conserved and Divergent Responses to Copper Zinc Superoxide Dismutase Inhibition in Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400938 DOI: 10.1111/pce.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
After an initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutases (CuZnSODs) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia Polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homoeostasis in all plant species analysed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Collapse
Affiliation(s)
- Stephanie Frohn
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Bernd H Dreyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Erik V Reiss
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Ziplys
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heiko Weichert
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Saskia Hiltemann
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - José M Ugalde
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
15
|
Zhu Y, Narsai R, He C, Štaka Z, Bai C, Berkowitz O, Liew LC, Whelan J. Overexpression of the transcription factor ANAC017 results in a genomes uncoupled phenotype under lincomycin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:91-108. [PMID: 39145415 DOI: 10.1111/tpj.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Zorana Štaka
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Bai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
16
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
17
|
Shao Z, Bian L, Ahmadi SK, Daniel TJ, Belmonte MA, Burns JG, Kotla P, Bi Y, Shen Z, Xu SL, Wang ZY, Briggs SP, Qiao H. Nuclear pyruvate dehydrogenase complex regulates histone acetylation and transcriptional regulation in the ethylene response. SCIENCE ADVANCES 2024; 10:eado2825. [PMID: 39058774 PMCID: PMC11277378 DOI: 10.1126/sciadv.ado2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesizes nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme-mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Liangqiao Bian
- Shimadzu Center for Advanced Analytical Chemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shyon K. Ahmadi
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tyler J. Daniel
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Miguel A. Belmonte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jackson G. Burns
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Prashanth Kotla
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yang Bi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Steven P. Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Shao Z, Bian L, Ahmadi SK, Daniel TJ, Belmonte MA, Burns JG, Kotla P, Bi Y, Shen Z, Xu SL, Wang ZY, Briggs SP, Qiao H. Nuclear Pyruvate Dehydrogenase Complex Regulates Histone Acetylation and Transcriptional Regulation in the Ethylene Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.564010. [PMID: 37961310 PMCID: PMC10634830 DOI: 10.1101/2023.10.25.564010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene-hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesize nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.
Collapse
|
20
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
21
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Xiao J, Zhou Y, Xie Y, Li T, Su X, He J, Jiang Y, Zhu H, Qu H. ATP homeostasis and signaling in plants. PLANT COMMUNICATIONS 2024; 5:100834. [PMID: 38327057 PMCID: PMC11009363 DOI: 10.1016/j.xplc.2024.100834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
ATP is the primary form of energy for plants, and a shortage of cellular ATP is generally acknowledged to pose a threat to plant growth and development, stress resistance, and crop quality. The overall metabolic processes that contribute to the ATP pool, from production, dissipation, and transport to elimination, have been studied extensively. Considerable evidence has revealed that in addition to its role in energy supply, ATP also acts as a regulatory signaling molecule to activate global metabolic responses. Identification of the eATP receptor DORN1 contributed to a better understanding of how plants cope with disruption of ATP homeostasis and of the key points at which ATP signaling pathways intersect in cells or whole organisms. The functions of SnRK1α, the master regulator of the energy management network, in restoring the equilibrium of the ATP pool have been demonstrated, and the vast and complex metabolic network mediated by SnRK1α to adapt to fluctuating environments has been characterized. This paper reviews recent advances in understanding the regulatory control of the cellular ATP pool and discusses possible interactions among key regulators of ATP-pool homeostasis and crosstalk between iATP/eATP signaling pathways. Perception of ATP deficit and modulation of cellular ATP homeostasis mediated by SnRK1α in plants are discussed at the physiological and molecular levels. Finally, we suggest future research directions for modulation of plant cellular ATP homeostasis.
Collapse
Affiliation(s)
- Jiaqi Xiao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Yunyun Xie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Porcher A, Kangasjärvi S. Plant biology: Unlocking mitochondrial stress signals. Curr Biol 2024; 34:R59-R61. [PMID: 38262360 DOI: 10.1016/j.cub.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Environmental stress induces mitochondrial retrograde signals that prompt protective responses in plants. The elusive mitochondrial signal has now been uncovered in a new study, which identifies formation of reactive oxygen species inside mitochondria as the key trigger of stress signals.
Collapse
Affiliation(s)
- Alexis Porcher
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
24
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
25
|
Iven V, Vanbuel I, Hendrix S, Cuypers A. The glutathione-dependent alarm triggers signalling responses involved in plant acclimation to cadmium. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3300-3312. [PMID: 36882948 DOI: 10.1093/jxb/erad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) uptake from polluted soils inhibits plant growth and disturbs physiological processes, at least partly due to disturbances in the cellular redox environment. Although the sulfur-containing antioxidant glutathione is important in maintaining redox homeostasis, its role as an antioxidant can be overruled by its involvement in Cd chelation as a phytochelatin precursor. Following Cd exposure, plants rapidly invest in phytochelatin production, thereby disturbing the redox environment by transiently depleting glutathione concentrations. Consequently, a network of signalling responses is initiated, in which the phytohormone ethylene is an important player involved in the recovery of glutathione levels. Furthermore, these responses are intricately connected to organellar stress signalling and autophagy, and contribute to cell fate determination. In general, this may pave the way for acclimation (e.g. restoration of glutathione levels and organellar homeostasis) and plant tolerance in the case of mild stress conditions. This review addresses connections between these players and discusses the possible involvement of the gasotransmitter hydrogen sulfide in plant acclimation to Cd exposure.
Collapse
Affiliation(s)
- Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
26
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
27
|
Li J, Wang K, Yang Y, Lu Y, Cui K, Ji Y, Ma L, Cheng K, Ostersetzer-Biran O, Li F, Qu G, Zhu B, Fu D, Luo Y, Zhu H. SlRIP1b is a global organellar RNA editing factor, required for normal fruit development in tomato plants. THE NEW PHYTOLOGIST 2023; 237:1188-1203. [PMID: 36345265 DOI: 10.1111/nph.18594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
RNA editing in plant organelles involves numerous C-U conversions, which often restore evolutionarily conserved codons and may generate new translation initiation and termination codons. These RNA maturation events rely on a subset of nuclear-encoded protein cofactors. Here, we provide evidence of the role of SlRIP1b on RNA editing of mitochondrial transcripts in tomato (Solanum lycopersicum) plants. SlRIP1b is a RIP/MORF protein that was originally identified as an interacting partner of the organellar editing factor SlORRM4. Mutants of SlRIP1b, obtained by CRISPR/Cas9 strategy, exhibited abnormal carpel development and grew into fruit with more locules. RNA-sequencing revealed that SlRIP1b affects the C-U editing of numerous mitochondrial pre-RNA transcripts and in particular altered RNA editing of various cytochrome c maturation (CCM)-related genes. The slrip1b mutants display increased H2 O2 and aberrant mitochondrial morphologies, which are associated with defects in cytochrome c biosynthesis and assembly of respiratory complex III. Taken together, our results indicate that SlRIP1b is a global editing factor that plays a key role in CCM and oxidative phosphorylation system biogenesis during fruit development in tomato plants. These data provide important insights into the molecular roles of organellar RNA editing factors during fruit development.
Collapse
Affiliation(s)
- Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongfang Yang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kaicheng Cui
- Key Lab of Horticultural Plant Biology (MOE), College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Ji
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Feng Li
- Key Lab of Horticultural Plant Biology (MOE), College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
28
|
He C, Berkowitz O, Hu S, Zhao Y, Qian K, Shou H, Whelan J, Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms. PLANT COMMUNICATIONS 2023; 4:100496. [PMID: 36435968 PMCID: PMC9860188 DOI: 10.1016/j.xplc.2022.100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The metabolic interdependence, interactions, and coordination of functions between chloroplasts and mitochondria are established and intensively studied. However, less is known about the regulatory components that control these interactions and their responses to external stimuli. Here, we outline how chloroplastic and mitochondrial activities are coordinated via common components involved in signal transduction pathways, gene regulatory events, and post-transcriptional processes. The endoplasmic reticulum emerges as a point of convergence for both transcriptional and post-transcriptional pathways that coordinate chloroplast and mitochondrial functions. Although the identification of molecular components and mechanisms of chloroplast and mitochondrial signaling increasingly suggests common players, this raises the question of how these allow for distinct organelle-specific downstream pathways. Outstanding questions with respect to the regulation of post-transcriptional pathways and the cell and/or tissue specificity of organelle signaling are crucial for understanding how these pathways are integrated at a whole-plant level to optimize plant growth and its response to changing environmental conditions.
Collapse
Affiliation(s)
- Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shanshan Hu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yang Zhao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
29
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
30
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|