1
|
Gao Y, Shi Y, Jahan T, Huda MN, Hao L, He Y, Quinet M, Chen H, Zhang K, Zhou M. Buckwheat UDP-Glycosyltransferase FtUGT71K6 and FtUGT71K7 Tandem Repeats Contribute to Drought Tolerance by Regulating Epicatechin Synthesis. PLANT, CELL & ENVIRONMENT 2025; 48:4066-4082. [PMID: 39887720 DOI: 10.1111/pce.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferase genes are organised as tandem repeats in the buckwheat genome, yet the functional implications and evolutionary significance of duplicated genes remain largely unexplored. In this study, gene family analysis revealed that FtUGT71K6 and FtUGT71K7 are tandem repeats in the buckwheat genome. Moreover, GWAS results for epicatechin suggested that this tandem repeat function was associated with epicatechin content of Tartary buckwheat germplasm, highlighting variations in the promoter haplotypes of FtUGT71K7 influenced epicatechin levels. FtUGT71K6 and FtUGT71K7 were shown to catalyse UDP-glucose conjugation to cyanidin and epicatechin. Furthermore, overexpression of FtUGT71K6 and FtUGT71K7 increased total antioxidant capacity and altered metabolite content of the epicatechin biosynthesis pathway, contributing to improved drought tolerance, while overexpression of FtUGT71K6 significantly improved salt stress tolerance. However, overexpression of these two genes did not contribute to resistance against Rhizoctonia solani. Evolutionary selection pressure analysis suggested positive selection of a critical amino acid ASP-53 in FtUGT71K6 and FtUGT71K7 during the duplication event. Overall, our study indicated that FtUGT71K6 and FtUGT71K7 play crucial roles in drought stress tolerance via modulating epicatechin synthesis in buckwheat.
Collapse
Affiliation(s)
- Yuanfen Gao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Tanzim Jahan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Md Nurul Huda
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Lin Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| |
Collapse
|
2
|
Fan BL, Chen LH, Chen LL, Guo H. Integrative Multi-Omics Approaches for Identifying and Characterizing Biological Elements in Crop Traits: Current Progress and Future Prospects. Int J Mol Sci 2025; 26:1466. [PMID: 40003933 PMCID: PMC11855028 DOI: 10.3390/ijms26041466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The advancement of multi-omics tools has revolutionized the study of complex biological systems, providing comprehensive insights into the molecular mechanisms underlying critical traits across various organisms. By integrating data from genomics, transcriptomics, metabolomics, and other omics platforms, researchers can systematically identify and characterize biological elements that contribute to phenotypic traits. This review delves into recent progress in applying multi-omics approaches to elucidate the genetic, epigenetic, and metabolic networks associated with key traits in plants. We emphasize the potential of these integrative strategies to enhance crop improvement, optimize agricultural practices, and promote sustainable environmental management. Furthermore, we explore future prospects in the field, underscoring the importance of cutting-edge technological advancements and the need for interdisciplinary collaboration to address ongoing challenges. By bridging various omics platforms, this review aims to provide a holistic framework for advancing research in plant biology and agriculture.
Collapse
Affiliation(s)
| | | | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| |
Collapse
|
3
|
Mahadevan N, Fernanda R, Kouzai Y, Kohno N, Nagao R, Nyein KT, Watanabe M, Sakata N, Matsui H, Toyoda K, Ichinose Y, Mochida K, Hisano H, Noutoshi Y. Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley. Life (Basel) 2025; 15:235. [PMID: 40003643 PMCID: PMC11856681 DOI: 10.3390/life15020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy.
Collapse
Affiliation(s)
- Niranjan Mahadevan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Tea Research Institute of Sri Lanka, St. Coombs, Talawakelle 22100, Sri Lanka
| | - Rozi Fernanda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
| | - Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Natsuka Kohno
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Reiko Nagao
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Khin Thida Nyein
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
| | - Megumi Watanabe
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
| | - Nanami Sakata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan;
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Yoshiteru Noutoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Gong A, Dong Y, Xu S, Mu Y, Li X, Li C, Liang Q, Liu JN, Wang C, Yang KQ, Fang H. Multi-omics analysis reveals the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against anthracnose (Colletotrichum gloeosporioides) in walnut (Juglans regia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17254. [PMID: 39911012 DOI: 10.1111/tpj.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Walnut anthracnose induced by Colletotrichum gloeosporioides is a devastating disease that seriously threatens walnut cultivation. Screening novel resistance genes and exploring the molecular mechanisms are essential for disease-resistant genetic improvement of walnut. We conducted a genome-wide association studies of disease resistance traits based on the relative resistance index and single nucleotide polymorphisms (SNPs) obtained from 182 resequenced walnut accessions and 10 loci and corresponding candidate genes associated with resistance against C. gloeosporioides were identified. Then, through combined transcriptome analysis during C. gloeosporioides infection and qRT-PCR, we identified JrWDRC2A9 in SNP Chr13_36265784 loci and JrGPIAP in SNP Chr07_10106470 loci as two walnut anthracnose resistance genes. The validation of the disease resistance function of transgenic strains indicated that both JrWDRC2A9 and JrGPIAP promote walnut resistance to anthracnose. SNP Chr13_36265784 (A>G) is located in the coding region of JrWDRC2A9 causing a glutamine (JrWDRC2A9HapI) to arginine (JrWDRC2A9HapII). Allelic variation in the WD domain attenuates JrWDRC2A9-mediated resistance against C. gloeosporioides and the binding affinity of JrWDRC2A9 for JrTLP1. On the contrary, the allelic variation caused by SNP Chr07_10106470 (T>G) increased the walnut accessions resistance to C. gloeosporioides by promoting the expression level of JrGPIAP. Functional genomics revealed that JrGPIAP binds to the promoter of JrPR1L and activates its transcription, which is strengthened by the interaction between JrGPIAP and JrEMP24. These findings reveal the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against C. gloeosporioides, providing a genetic basis for walnut disease resistance breeding in the future.
Collapse
Affiliation(s)
- Andi Gong
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| |
Collapse
|
5
|
Li M, Pu J, Jia C, Luo D, Zhou Q, Fang X, Nie B, Liu W, Nan Z, Searle IR, Fang L, Liu Z. The genome of Vicia sativa ssp. amphicarpa provides insights into the role of terpenoids in antimicrobial resistance within subterranean fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2654-2671. [PMID: 39039964 DOI: 10.1111/tpj.16939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Vicia sativa ssp. amphicarpa is a unique forage crop capable of simultaneously producing fruits above and below ground, representing a typical amphicarpic plant. In this study, we sequenced and assembled seven pseudo-chromosomes of the genome of V. sativa ssp. amphicarpa (n = 7) yielding a genome size of 1.59 Gb, with a total annotation of 48 932 protein-coding genes. Long terminal repeat (LTR) elements constituted 62.28% of the genome, significantly contributing to the expansion of genome size. Phylogenetic analysis revealed that the divergence between V. sativa ssp. amphicarpa and V. sativa was around 0.88 million years ago (MYA). Comparative transcriptomic and metabolomic analysis of aerial and subterranean pod shells showed biosynthesis of terpenoids in the subterranean pod shells indicating a correlation between the antimicrobial activity of subterranean pod shells and the biosynthesis of terpenoids. Furthermore, functional validation indicates that overexpression of VsTPS5 and VsTPS16 enhances terpenoid biosynthesis for antibacterial activity. Metabolomic analysis suggests the involvement of terpenoids in the antimicrobial properties of subterranean pod shells. Deciphering the genome of V. sativa ssp. amphicarpa elucidated the molecular mechanisms behind the antimicrobial properties of subterranean fruits in amphicarpic plants, providing valuable insights for the study of amphicarpic plant biology.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jun Pu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chenglin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Bin Nie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wenxian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
6
|
Chen M, Wang Z, He H, He W, Zhang Z, Sun S, Wang W. Multi-Omics Analysis Reveals the Regulatory Mechanism of Different Probiotics on Growth Performance and Intestinal Health of Salmo trutta ( S. trutta). Microorganisms 2024; 12:1410. [PMID: 39065178 PMCID: PMC11278557 DOI: 10.3390/microorganisms12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics play an important role in animal production, providing health benefits to the host by improving intestinal microbial balance. In this study, we added three different probiotics, Saccharomyces cerevisiae (SC), Bacillus licheniformis (BL), and lactic acid bacteria (LAB), and compared them with the control group (CON), to investigate the effects of probiotic supplementation on growth performance, gut microbiology, and gut flora of S. trutta. Our results showed that feeding probiotics improved the survival, growth, development, and fattening of S. trutta. Additionally, probiotic treatment causes changes in the gut probiotic community, and the gut flora microorganisms that cause significant changes vary among the probiotic treatments. However, in all three groups, the abundance of Pseudomonas, Acinetobacter, and Rhizophagus bacterial genera was similar to that in the top three comparative controls. Furthermore, differences in the composition of intestinal microbiota among feed types were directly associated with significant changes in the metabolomic landscape, including lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. The probiotic treatment altered the gut microbiome, gut metabolome, and growth performance of S. trutta. Using a multi-omics approach, we discovered that the addition of probiotics altered the composition of gut microbiota, potentially leading to modifications in gut function and host phenotype. Overall, our results highlight the importance of probiotics as a key factor in animal health and productivity, enabling us to better evaluate the functional potential of probiotics.
Collapse
Affiliation(s)
- Mengjuan Chen
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhitong Wang
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui He
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenjia He
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuaijie Sun
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wanliang Wang
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- Indigenous Fish Breeding and Utilization Engineering Research Center of Xizang, Lhasa 850032, China
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lhasa 850032, China
| |
Collapse
|
7
|
Lai D, Zhang K, He Y, Fan Y, Li W, Shi Y, Gao Y, Huang X, He J, Zhao H, Lu X, Xiao Y, Cheng J, Ruan J, Georgiev MI, Fernie AR, Zhou M. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1206-1223. [PMID: 38062934 PMCID: PMC11022807 DOI: 10.1111/pbi.14259] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 04/18/2024]
Abstract
Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.
Collapse
Affiliation(s)
- Dili Lai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- School of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfen Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jiayue He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yawen Xiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Jingjun Ruan
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
He Y, Zhang K, Shi Y, Lin H, Huang X, Lu X, Wang Z, Li W, Feng X, Shi T, Chen Q, Wang J, Tang Y, Chapman MA, Germ M, Luthar Z, Kreft I, Janovská D, Meglič V, Woo SH, Quinet M, Fernie AR, Liu X, Zhou M. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol 2024; 25:61. [PMID: 38414075 PMCID: PMC10898187 DOI: 10.1186/s13059-024-03203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhirong Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xibo Feng
- Tibet Key Experiments of Crop Cultivation and Farming/College of Plant Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Junzhen Wang
- Xichang Institute of Agricultural Science, Liangshan Yi People Autonomous Prefecture, Liangshan, Sichuan, 615000, China
| | - Yu Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000, Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|