1
|
Zhou F, Gao Y, Wang H, Gou S, Zhao Y, Wei Z, Gong C, Bai J. CsERF21-l-CsASA2 module positively regulates cold tolerance by promoting tryptophan biosynthesis in tea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109610. [PMID: 39946911 DOI: 10.1016/j.plaphy.2025.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 03/11/2025]
Abstract
Cold stress is a widely distributed abiotic stress that severely limits the yield and quality of tea plants. Tryptophan (Trp) and downstream indole compounds play an important role in plant growth and stress response. However, beyond its involvement in indole compounds synthesis, the other physiological functions of Trp in tea plants remain unknown. In this study, anthranilate synthetase (ASA2) was a positive regulator to enhance cold stress tolerance in Camellia sinensis. The expression of CsASA2 was strongly induced by cold stress. Suppression of CsASA2 expression in C. sinensis reduced the accumulation of Trp, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold stress tolerance. Heterologous overexpression of CsASA2 increased the endogenous Trp and melatonin content in response to cold stress and then showed the opposite cold resistance trend. Further study revealed that CsASA2 expression was positively regulated by the transcription factor CsERF21-l. Low temperature induced and kept CsERF21-l expression at a relatively high level. Suppression of CsERF21-l expression in tea plant reduced the accumulation of IAA and melatonin, increased the extent of cytoplasmic membrane damage, and weakened the cold tolerance of tea plant. Further, our study demonstrated that CsERF21-l enhanced cold tolerance in tea plants by promoting CsASA2 transcription. Overall, our results showed that the CsERF21-l-CsASA2 model balances the growth and cold tolerance in tea plants by regulating melatonin and IAA levels by recruiting Trp under cold stress.
Collapse
Affiliation(s)
- Fang Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yingrui Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Haonan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shiyu Gou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yumeng Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhengze Wei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Gahlowt P, Singh S, Gupta R, Zheng BS, Tripathi DK, Singh VP. Arsenite in plant biology: How plants tackle it? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109332. [PMID: 39637707 DOI: 10.1016/j.plaphy.2024.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Among toxic elements, arsenic (As) comes under group 1 carcinogenic metalloid. Its presence in the soil and irrigation water in a higher concentration than permissible limit has become a threat to crop production and human livelihood. Crop plants, specifically those used as staple foods, exhibit the highest As accumulation which subsequently accumulates in the human body after their consumption, leading to severe fatal diseases. As occurs in two main inorganic forms including trivalent (As(III)) and pentavalent (As(V)), of which the trivalent form is more toxic. In plants, uptake of As(III) is affected by oxidizing or reducing environment of the soil and the pH and is mediated by various transporters such as Nodulin-26-like aquaporins (such as Lsi1 and Lsi2). Plants utilize various strategies that help them to withstand the toxic effect of As(III) including reshuffling in many biochemical and physiological processes. These strategies include the use of endogenously generated or exogenously applied chemicals or plant growth regulators. This review article discusses the uptake, transport, and various mechanisms to tolerate higher As(III) in plants. Besides, an update on the use of protectants in curtailing As(III) toxicity in crop plants has also been described.
Collapse
Affiliation(s)
- Priya Gahlowt
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- Plant Stress Physiology and Proteomics Laboratory, College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Bing Song Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida-201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Guo Y, Liu L, Shi X, Yu P, Zhang C, Liu Q. Overexpression of the RAV Transcription Factor OsAAT1 Confers Enhanced Arsenic Tolerance by Modulating Auxin Hemostasis in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24576-24586. [PMID: 39436822 DOI: 10.1021/acs.jafc.4c04334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Characterization of arsenic (As)-responsive genes is fundamental to solving the issue of As contamination in rice. Herein, we establish the involvement of an RAV transcription factor OsAAT1 (Arsenic Accumulation and Tolerance 1) in regulating As response in rice. The expression of OsAAT1 is significantly higher in roots and stems of rice seedlings and is clearly upregulated by higher concentrations of arsenite [As(III)]. Compared with wild-type (WT) plants, OsAAT1-overexpressed transgenic lines (OE-OsAAT1) exhibit tolerance, while OsAAT1-knockout mutants (Osaat1) are sensitive to As(III) stress. Notably, the application of exogenous 1-naphthylacetic acid (NAA) greatly enhances the As tolerance of WT and transgenic lines, with stronger effects on OE-OsAAT1. The change in OsAAT1 expression leads to the alteration of As and auxin accumulation in transgenic plants by regulating the expression of OsLsi1, OsLsi2, OsCRL4, and OsAUX1 genes. Moreover, overexpression of OsAAT1 accelerates ROS scavenging and phytochelatins (PCs) synthesis, especially with the addition of exogenous NAA. OsAAT1 localizes in the nucleus and works as a transcriptional suppressor. OsGH3-12, belonging to the auxin-responsive GH3 gene family, is the downstream target gene of OsAAT1, whose expression is extensively downregulated by As(III). These findings provide new insights into As response via auxin signaling pathway in rice.
Collapse
Affiliation(s)
- Yao Guo
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Linlin Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xinyu Shi
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Peiyao Yu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Chen Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Qingpo Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| |
Collapse
|
4
|
Zhang P, Liu F, Abdelrahman M, Song Q, Wu F, Li R, Wu M, Herrera-Estrella L, Tran LSP, Xu J. ARR1 and ARR12 modulate arsenite toxicity responses in Arabidopsis roots by transcriptionally controlling the actions of NIP1;1 and NIP6;1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1536-1551. [PMID: 39378328 DOI: 10.1111/tpj.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Cytokinin is central to coordinating plant adaptation to environmental stresses. Here, we first demonstrated the involvement of cytokinin in Arabidopsis responses to arsenite [As(III)] stress. As(III) treatment reduced cytokinin contents, while cytokinin treatment repressed further primary root growth in Arabidopsis plants under As(III) stress. Subsequently, we revealed that the cytokinin signaling members ARR1 and ARR12, the type-B ARABIDOPSIS RESPONSE REGULATORs, participate in cytokinin signaling-mediated As(III) responses in plants as negative regulators. A comprehensive transcriptome analysis of the arr1 and arr12 single and arr1,12 double mutants was then performed to decipher the cytokinin signaling-mediated mechanisms underlying plant As(III) stress adaptation. Results revealed important roles for ARR1 and ARR12 in ion transport, nutrient responses, and secondary metabolite accumulation. Furthermore, using hierarchical clustering and regulatory network analyses, we identified two NODULIN 26-LIKE INTRINSIC PROTEIN (NIP)-encoding genes, NIP1;1 and NIP6;1, potentially involved in ARR1/12-mediated As(III) uptake and transport in Arabidopsis. By analyzing various combinations of arr and nip mutants, including high-order triple and quadruple mutants, we demonstrated that ARR1 and ARR12 redundantly function as negative regulators of As(III) tolerance by acting upstream of NIP1;1 and NIP6;1 to modulate their function in arsenic accumulation. ChIP-qPCR, EMSA, and transient dual-LUC reporter assays revealed that ARR1 and ARR12 transcriptionally activate the expression of NIP1;1 and NIP6;1 by directly binding to their promoters and upregulating their expression, leading to increased arsenic accumulation under As(III) stress. These findings collectively provide insights into cytokinin signaling-mediated plant adaptation to excessive As(III), contributing to the development of crops with low arsenic accumulation.
Collapse
Affiliation(s)
- Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Fei Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Ruishan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato, 36821, Mexico
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, P. R. China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, P. R. China
| |
Collapse
|
5
|
Zhao H, Sun N, Xu J, Li Y, Lin X, Sun C, Zhu Y. Pseudomonas chlororaphis subsp. aurantiaca Stimulates Lateral Root Development by Integrating Auxin and Reactive Oxygen Species Signaling in Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23776-23789. [PMID: 39415482 DOI: 10.1021/acs.jafc.4c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote lateral root formation, while the underlying mechanisms are not fully understood. Here, we found that Pseudomonas chlororaphis subsp. aurantiaca inoculation enhanced auxin accumulation in lateral root primordia (LRP). Upon reaching LRPs, auxin activated the AUXIN RESPONSE FACTOR 7 and 19 (ARF7/19) and promoted lateral root formation in Arabidopsis. Moreover, we found that reactive oxygen species (ROS) is required for auxin-dependent lateral root emergence, and P. chlororaphis upregulated the expression of RESPIRATORY BURST OXIDASE D and F (RBOHD/F), leading to the accumulation of ROS in LRP. Although scavenging ROS or rbohd/f mutants exhibited decreased lateral roots after P. chlororaphis inoculation, the bacteria-triggered auxin signals were not altered. Conversely, the application of auxin or mutants defective in auxin signaling disturbed P. chlororaphis-derived ROS accumulation in lateral roots. Collectively, these results suggest that ARF7/19-dependent auxin signaling activates RBOHD/F to produce ROS, coordinately facilitating lateral root development after P. chlororaphis treatment.
Collapse
Affiliation(s)
- Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongguan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Biswas S, Ganesan M. Evaluation of arsenic phytoremediation potential in Azolla filiculoides Lam. plants under low pH stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108956. [PMID: 39053312 DOI: 10.1016/j.plaphy.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The Azolla filiculoides plants were challenged with different arsenic (As) concentration under low pH stress conditions. The growth rate and doubling time of the plants were severely affected by higher As treatments at pH 5.00 when compared with stress pH 4.75 treatments. Hence, pH 5.00 was considered for further studies. In 10-30 μM As treated cultures, after 6 days, the relative growth rate (RGR) of Azolla plants was significantly reduced and in higher concentration of As, the RGR was negatively regulated. The root trait parameters were also significantly affected by increasing concentrations of As. Further, photosynthetic performance indicators also show significant decline with increasing As stress. Overall, the plants treated with 40 and 50 μM of As displayed stress phenotypes like negative RGR, reduced doubling time and root growth, browning of leaves and root withering. The total proline, H2O2, POD and Catalase activities were significantly affected by As treatments. Meantime, 30 μM of As treated cultures displayed 15 μg/g/Fw As accumulation and moderate growth rate. Thus, the Azolla plants are suitable for the phytoremediation of As (up to 30 μM concentration) in the aquatic environment under low pH conditions (5.00). Furthermore, the transcriptome studies on revealed that the importance of positively regulated transporters like ACR3, AceTr family, ABC transporter super family in As (10 μM) stress tolerance, uptake and accumulation. The transporters like CPA1, sugar transporters, PiT were highly down-regulated. Further, expression analysis showed that the MATE1, CIP31, HAC1 and ACR3 were highly altered during the As stress conditions.
Collapse
Affiliation(s)
- Satyaki Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Markkandan Ganesan
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
7
|
Fan W, Yu H, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Variety-dependent responses of common tobacco with differential cadmium resistance: Cadmium uptake and distribution, antioxidative activity, and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116596. [PMID: 38896899 DOI: 10.1016/j.ecoenv.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Cadmium (Cd), which accumulates in tobacco leaves, enters the human body through inhalation of smoke, causing harmful effects on health. Therefore, identifying the pivotal factors that govern the absorption and resistance of Cd in tobacco is crucial for mitigating the harmful impact of Cd. In the present study, four different Cd-sensitive varieties, namely, ZhongChuan208 (ZC) with resistance, ZhongYan100 (ZY), K326 with moderate resistance, and YunYan87 (YY) with sensitivity, were cultivated in hydroponic with different Cd concentrations (20 µM, 40 µM, 60 µM and 80 µM). The results indicated that plant growth was significantly decreased by Cd. Irrespective of the Cd concentration, ZC exhibited the highest biomass, while YY had the lowest biomass; ZY and K326 showed intermediate levels. Enzymatic (APX, CAT, POD) and nonenzymatic antioxidant (Pro, GSH) systems showed notable variations among varieties. The multifactor analysis suggested that the ZC and ZY varieties, with higher levels of Pro and GSH content, contribute to a decrease in the levels of MDA and ROS. Among all the Cd concentrations, ZC exhibited the lowest Cd accumulation, while YY showed the highest. Additionally, there were significant differences observed in Cd distribution and translocation factors among the four different varieties. In terms of Cd distribution, cell wall Cd accounted for the highest proportion of total Cd, and organelles had the lowest proportion. Among the varieties, ZC showed lower Cd levels in the cell wall, soluble fraction, and organelles. Conversely, YY exhibited the highest Cd accumulation in all tissues; K326 and ZY had intermediate levels. Translocation factors (TF) varied among the varieties under Cd stress, with ZC and ZY showing lower TF compared to YY and K326. This phenomenon mainly attributed to regulation of the NtNramp3 and NtNramp5 genes, which are responsible for the absorption and transport of Cd. This study provides a theoretical foundation for the selection and breeding of tobacco varieties that are resistant to or accumulate less Cd.
Collapse
Affiliation(s)
- Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Hua Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China.
| |
Collapse
|
8
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Xue Y, Qian F, Guan W, Ji G, Geng R, Li M, Li L, Ullah N, Zhang C, Cai G, Wu X. Genome-wide identification of the ICS family genes and its role in resistance to Plasmodiophora brassicae in Brassica napus L. Int J Biol Macromol 2024; 270:132206. [PMID: 38735610 DOI: 10.1016/j.ijbiomac.2024.132206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.
Collapse
Affiliation(s)
- Yujun Xue
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fang Qian
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wenjie Guan
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gaoxiang Ji
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rudan Geng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lixia Li
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Naseeb Ullah
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangqin Cai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaoming Wu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
10
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
11
|
Wang Y, Xing M, Gao X, Wu M, Liu F, Sun L, Zhang P, Duan M, Fan W, Xu J. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165676. [PMID: 37481082 DOI: 10.1016/j.scitotenv.2023.165676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The main forms of inorganic arsenic (As) in soil are arsenate [As(V)] and arsenite [As(III)]. Both forms inhibit plant growth. Here, we investigate the effects of As(III) toxicity on the growth of tomatoes by integrating physiological and transcriptomic analyses. As(III) toxicity induces oxidative damage, inhibits photosynthetic efficiency, and reduces soluble sugar levels. As(III) toxicity leads to reductions in auxin, cytokinin and jasmonic acid contents by 29 %, 39 % and 55 %, respectively, but leads to increases in the ethylene precursor 1-amino-cyclopropane carboxylic acid, abscisic acid and salicylic acid contents in roots, by 116 %, 79 % and 39 %, respectively, thereby altering phytohormone signalling pathways. The total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG) contents are reduced by 59 %, 49 % and 94 % in roots; moreover, a high GSH/GSSG ratio is maintained through increased glutathione reductase activity (increased by 214 %) and decreased glutathione peroxidase activity (decreased by 40 %) in the roots of As(III)-treated tomato seedlings. In addition, As(III) toxicity affects the expression of genes related to the endoplasmic reticulum stress response. The altered expression of aquaporins and ABCC transporters changes the level of As(III) accumulation in plants. A set of hub genes involved in modulating As(III) toxicity responses in tomatoes was identified via a weighted gene coexpression network analysis. Taken together, these results elucidate the physiological and molecular regulatory mechanism underlying As(III) toxicity and provide a theoretical basis for selecting and breeding tomato varieties with low As(III) accumulation. Therefore, these findings are expected to be helpful in improving food safety and to developing sustainable agricultural.
Collapse
Affiliation(s)
- Yingzhi Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Menglu Xing
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xinru Gao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ming Duan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Weixin Fan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
12
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
13
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
14
|
Navarro C, Navarro MA, Leyva A. Arsenic perception and signaling: The yet unexplored world. FRONTIERS IN PLANT SCIENCE 2022; 13:993484. [PMID: 36119603 PMCID: PMC9479143 DOI: 10.3389/fpls.2022.993484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most potent carcinogens in the biosphere, jeopardizing the health of millions of people due to its entrance into the human food chain through arsenic-contaminated waters and staple crops, particularly rice. Although the mechanisms of arsenic sensing are widely known in yeast and bacteria, scientific evidence concerning arsenic sensors or components of early arsenic signaling in plants is still in its infancy. However, in recent years, we have gained understanding of the mechanisms involved in arsenic uptake and detoxification in different plant species and started to get insights into arsenic perception and signaling, which allows us to glimpse the possibility to design effective strategies to prevent arsenic accumulation in edible crops or to increase plant arsenic extraction for phytoremediation purposes. In this context, it has been recently described a mechanism according to which arsenite, the reduced form of arsenic, regulates the arsenate/phosphate transporter, consistent with the idea that arsenite functions as a selective signal that coordinates arsenate uptake with detoxification mechanisms. Additionally, several transcriptional and post-translational regulators, miRNAs and phytohormones involved in arsenic signaling and tolerance have been identified. On the other hand, studies concerning the developmental programs triggered to adapt root architecture in order to cope with arsenic toxicity are just starting to be disclosed. In this review, we compile and analyze the latest advances toward understanding how plants perceive arsenic and coordinate its acquisition with detoxification mechanisms and root developmental programs.
Collapse
|
15
|
Ghate T, Soneji K, Barvkar V, Ramakrishnan P, Prusty D, Islam SR, Manna SK, Srivastava AK. Thiourea mediated ROS-metabolites reprogramming restores root system architecture under arsenic stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129020. [PMID: 35650738 DOI: 10.1016/j.jhazmat.2022.129020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a ubiquitous carcinogenic metalloid that enters into human food chain, through rice consumption. To unravel the conundrum of oxidative vs. reductive stress, the differential root-system architecture (RSA) was studied under As (a ROS producer) and thiourea (TU; a ROS scavenger) alone treatments, which indicated 0.80- and 0.74-fold reduction in the number of lateral roots (NLR), respectively compared with those of control. In case of As+TU treatment, NLR was increased by 4.35-fold compared with those of As-stress, which coincided with partial restoration of redox-status and auxin transport towards the root-tip. The expression levels of 16 ROS related genes, including RBOHC, UPB-1 C, SHR1, PUCHI, were quantified which provided the molecular fingerprint, in accordance with endogenous ROS signature. LC-MS based untargeted and targeted metabolomics data revealed that As-induced oxidative stress was metabolically more challenging than TU alone-induced reductive stress. Cis/trans-ferruloyl putrescine and γ-glutamyl leucine were identified as novel As-responsive metabolites whose levels were decreased and increased, respectively under As+TU than As-treated roots. In addition, the overall amino acid accumulation was increased in As+TU than As-treated roots, indicating the improved nutritional availability. Thus, the study revealed dynamic interplay between "ROS-metabolites-RSA", to the broader context of TU-mediated amelioration of As-stress in rice.
Collapse
Affiliation(s)
- Tejashree Ghate
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; School of Biological sciencesUM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari 400098, Mumbai
| | - Kanchan Soneji
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Division of crop production, ICAR- Indian Institute of Soybean Research, Khandwa Road, Indore 452001, (M.P), India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India
| | - Padma Ramakrishnan
- Centre for Cellular and Molecular Platforms, GKVK Post, Bengaluru 560065, India
| | - Debasish Prusty
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Sk Ramiz Islam
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Soumen Kanti Manna
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
16
|
Zaheer MS, Ali HH, Erinle KO, Wani SH, Okon OG, Nadeem MA, Nawaz M, Bodlah MA, Waqas MM, Iqbal J, Raza A. Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33909-33919. [PMID: 35031990 DOI: 10.1007/s11356-021-18106-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Due to increased industrialization, arsenic (As) in the soil has become a serious issue for wheat production since past few decades. We investigated the role of Azospirillum brasilense and trans-zeatin riboside (tZR) in the mitigation of arsenic toxicity in wheat for 2 years (2018-2019 and 2019-2020) in pot experiments. Wheat plants grown in soil artificially spiked with arsenic (50, 70, and 100 μM) was left alone or amended with A. brasilense, tZR, or their combination as mitigation strategies. A treatment without arsenic or amendments was maintained as control. Arsenic-induced physiological damages were noticed in the wheat plants. Detrimental effects on the plant physiological functions, such as disruption of cell membrane stability, reduced water uptake, and stomatal functions, were noticed with increase in As toxicity. Application of biological amendments reversed the effects of As toxicity by increasing wheat plant growth rate, leaf area, and photosynthesis and also yield. Therefore, application of tZR and wheat seed inoculation with A. brasilense could be a sustainable and environmentally friendly strategy to mitigate arsenic-induced crop physiological damages.
Collapse
Affiliation(s)
- Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Hafiz Haider Ali
- Sustainable Development Study Center (SDSC), Government College University, Katchery Road, Lahore, Pakistan.
| | - Kehinde O Erinle
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Khudwani, Anantnag, 192101, India
| | - Okon Godwin Okon
- Department of Botany, Akwa Ibom State University, Ikot Akpaden, Nigeria
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Adnan Bodlah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Javaid Iqbal
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ali Raza
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
| |
Collapse
|
17
|
Nabi A, Aftab T, Masroor M, Khan A, Naeem M. Exogenous triacontanol provides tolerance against arsenic-induced toxicity by scavenging ROS and improving morphology and physiological activities of Mentha arvensis L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118609. [PMID: 34896400 DOI: 10.1016/j.envpol.2021.118609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As), recognized as a toxic metalloid globally, has posed a serious threat to soil, plants and aquatic resources. Arsenic restrain fundamental processes of plant grown under the As-contaminated soil which are the worst sufferers for their sustenance. Thus, various scientific strategies are being continuously employed for reducing the soil As. In this regard, use of well-known plant growth regulators (PGRs) like triacontanol (TRIA) shown great efficiency towards heavy metals stress tolerance. TRIA is a plant growth promoter that has been proved effective for growth and development of plants under diverse environmental conditions for many decades. The research work was carried out to examine the toxic effects of As on various morphological, physio-biochemical, yield and quality parameters of Mentha arvensis L. and amelioration of the As toxicity through exogenous application of TRIA. Mentha plants were supplemented with various treatments (i) 0 (control), (ii) TRIA (10-6 M), (iii) As (60 mg kg-1), (iv) As (80 mg kg-1), (v) TRIA (10-6 M) + As (60 mg kg-1), and (vi) TRIA (10-6 M) + As (80 mg kg-1). Several parameters studied during the present investigation were plant height, fresh and dry weights, herbage yield, chlorophyll and carotenoid content, carbonic anhydrase (CA) activity, several chlorophyll fluorescence parameters, superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), proline (PRO), H2O2 content, TBARS content, electrolyte leakage (EL), essential oil content (EO) and yield and microscopic analyses as well as PCA analysis. Arsenic treatment exhibited deleterious effects on the overall growth, photosynthetic, and quality parameters of M. arvensis. However, the toxicity of As was mitigated by the leaf-applied TRIA to the plants, proved advantageous in combating the ROS generation.
Collapse
Affiliation(s)
- Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
18
|
Zhang M, Wang F, Wang X, Feng J, Yi Q, Zhu S, Zhao X. Mining key genes related to root morphogenesis through genome-wide identification and expression analysis of RR gene family in citrus. FRONTIERS IN PLANT SCIENCE 2022; 13:1068961. [PMID: 36483961 PMCID: PMC9725114 DOI: 10.3389/fpls.2022.1068961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Morphogenesis of root is a vital factor to determine the root system architecture. Cytokinin response regulators (RRs) are the key transcription factors in cytokinin signaling, which play important roles in regulating the root morphogenesis. In this study, 29 RR proteins, including 21 RRs and 8 pseudo RRs, were identified from the genome of citrus, and termed as CcRR1-21 and CcPRR1-8, respectively. Phylogenetic analysis revealed that the 29 CcRRs could be classified into four types according to their representative domains. Analysis of cis-elements of CcRRs indicated that they were possibly involved in the regulation of growth and abiotic stress resistance in citrus. Within the type A and type B CcRRs, CcRR4, CcRR5, CcRR6 and CcRR16 highly expressed in roots and leaves, and dramatically responded to the treatments of hormones and abiotic stresses. CcRR2, CcRR10, CcRR14 and CcRR19 also highly expressed in roots under different treatments. Characteristic analysis revealed that the above 8 CcRRs significantly and differentially expressed in the three zones of root, suggesting their functional differences in regulating root growth and development. Further investigation of the 3 highly and differentially expressed CcRRs, CcRR5, CcRR10 and CcRR14, in 9 citrus rootstocks showed that the expression of CcRR5, CcRR10 and CcRR14 was significantly correlated to the length of primary root, the number of lateral roots, and both primary root and the number of lateral roots, respectively. Results of this study indicated that CcRRs were involved in regulating the growth and development of the root in citrus with different functions among the members.
Collapse
Affiliation(s)
- Manman Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
| | - Fusheng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
| | - Xiaoli Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
| | - Jipeng Feng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
| | - Qian Yi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
| | - Shiping Zhu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
- *Correspondence: Shiping Zhu, ; Xiaochun Zhao,
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
- *Correspondence: Shiping Zhu, ; Xiaochun Zhao,
| |
Collapse
|
19
|
Mishra V, Singh VP. Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:117958. [PMID: 34547656 DOI: 10.1016/j.envpol.2021.117958] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H2S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H2S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H2S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H2S in the presence of L - NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H2S could independently mitigate As(V) stress.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|