1
|
Lev-Yadun S. Regulating the Vascular Cambium: Do Not Forget the Vascular Ray Initials and Their Derivatives. PLANTS (BASEL, SWITZERLAND) 2025; 14:971. [PMID: 40265917 PMCID: PMC11945688 DOI: 10.3390/plants14060971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025]
Abstract
The secondary lateral meristem-the vascular cambium (hereafter cambium)-is the largest meristem of the plant kingdom. It is almost always composed of two types of stem cells: (1) the axial (fusiform) initials, the most common and better known and studied, and (2) the ray initials that give rise to the vascular rays (hereafter rays), i.e., the radial component of the secondary xylem and phloem, which are less common and much less studied, and in many studies ignored. There is great flexibility in switching from axial initials to ray initials and vice versa. Ray initials commonly compose ca. 10-40% of the cambium of mature tree trunks, but nothing or very little in typical young model plants used for molecular cambial studies, such as Arabidopsis thaliana and young internodes of Populus spp. cuttings. I suggest paying more attention to the regulation of the differentiation of ray initials and their derivatives, and to the little-known complicated relations between the axial and ray cambial initials when they contact each other, as well as the special development of pits in their derivatives in cambial molecular studies by using mature trunks of various large woody plants rather than studying A. thaliana or young internodes of Populus cuttings.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
2
|
Ding W, Wang C, Mei M, Li X, Zhang Y, Lin H, Li Y, Ma Z, Han J, Song X, Wu M, Zheng C, Lin J, Zhao Y. Phytohormones involved in vascular cambium activity in woods: current progress and future challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1508242. [PMID: 39741679 PMCID: PMC11685017 DOI: 10.3389/fpls.2024.1508242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Vascular cambium is the continuation of meristem activity at the top of plants, which promotes lateral growth of plants. The vascular cambium evolved as an adaptation for secondary growth, initially in early seed plants, and became more refined in the evolution of gymnosperms and angiosperms. In angiosperms, it is crucial for plant growth and wood formation. The vascular cambium is regulated by a complex interplay of phytohormones, which are chemical messengers that coordinate various aspects of plant growth and development. This paper synthesizes the current knowledge on the regulatory effects of primary plant hormones and peptide signals on the development of the cambium in forest trees, and it outlines the current research status and future directions in this field. Understanding these regulatory mechanisms holds significant potential for enhancing our ability to manage and cultivate forest tree species in changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chencan Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, Hebei, China
| | - Man Mei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuqian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Hongxia Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yang Li
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Zhiqiang Ma
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Jianwei Han
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Xiaoxia Song
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Minjie Wu
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Caixia Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Furuya T, Ohashi-Ito K, Kondo Y. Multiple Roles of Brassinosteroid Signaling in Vascular Development. PLANT & CELL PHYSIOLOGY 2024; 65:1601-1607. [PMID: 38590039 DOI: 10.1093/pcp/pcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signaling pathways. Genetic studies have revealed that mutants that are defective in BR biosynthesis or the BR signaling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
4
|
Rasheed H, Shi L, Winarsih C, Jakada BH, Chai R, Huang H. Plant Growth Regulators: An Overview of WOX Gene Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:3108. [PMID: 39520025 PMCID: PMC11548557 DOI: 10.3390/plants13213108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The adaptation of plants to land requires sophisticated biological processes and signaling. Transcription factors (TFs) regulate several cellular and metabolic activities, as well as signaling pathways in plants during stress and growth and development. The WUSCHEL-RELATED HOMEOBOX (WOX) genes are TFs that are part of the homeodomain (HD) family, which is important for the maintenance of apical meristem, stem cell niche, and other cellular processes. The WOX gene family is divided into three clades: ancient, intermediate, and modern (WUS) based on historical evolution linkage. The number of WOX genes in the plant body increases as plants grow more complex and varies in different species. Numerous research studies have discovered that the WOX gene family play a role in the whole plant's growth and development, such as in the stem, embryo, root, flower, and leaf. This review comprehensively analyzes roles of the WOX gene family across various plant species, highlighting the evolutionary significance and potential biotechnological applications in stress resistance and crop improvement.
Collapse
Affiliation(s)
- Haroon Rasheed
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Lin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Chichi Winarsih
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Haping Road 105, Harbin 150040, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| |
Collapse
|
5
|
Zhang Y, Li J, Guo K, Wang T, Gao L, Sun Z, Ma C, Wang C, Tian Y, Zheng X. Strigolactones alleviate AlCl 3 stress by vacuolar compartmentalization and cell wall blocking in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:197-217. [PMID: 38565306 DOI: 10.1111/tpj.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 μm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Collapse
Affiliation(s)
- Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kexin Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Lijie Gao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
6
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Lv J, Feng Y, Zhai L, Jiang L, Wu Y, Huang Y, Yu R, Wu T, Zhang X, Wang Y, Han Z. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. HORTICULTURE RESEARCH 2024; 11:uhae051. [PMID: 38706578 PMCID: PMC11069427 DOI: 10.1093/hr/uhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/17/2023] [Indexed: 05/07/2024]
Abstract
Apple rootstock dwarfing and dense planting are common practices in apple farming. However, the dwarfing mechanisms are not understood. In our study, the expression of MdARF3 in the root system of dwarfing rootstock 'M9' was lower than in the vigorous rootstock from Malus micromalus due to the deletion of the WUSATAg element in the promoter of the 'M9' genotype. Notably, this deletion variation was significantly associated with dwarfing rootstocks. Subsequently, transgenic tobacco (Nicotiana tabacum) cv. Xanthi was generated with the ARF3 promoter from 'M9' and M. micromalus genotypes. The transgenic apple with 35S::MdARF3 was also obtained. The transgenic tobacco and apple with the highly expressed ARF3 had a longer root system and a higher plant height phenotype. Furthermore, the yeast one-hybrid, luciferase, electrophoretic mobility shift assays, and Chip-qPCR identified MdWOX4-1 in apples that interacted with the pMm-ARF3 promoter but not the pM9-ARF3 promoter. Notably, MdWOX4-1 significantly increased the transcriptional activity of MdARF3 and MdLBD16-2. However, MdARF3 significantly decreased the transcriptional activity of MdLBD16-2. Further analysis revealed that MdARF3 and MdLBD16-2 were temporally expressed during different stages of lateral root development. pMdLBD16-2 was mainly expressed during the early stage of lateral root development, which promoted lateral root production. On the contrary, pMmARF3 was expressed during the late stage of lateral root development to promote elongation. The findings in our study will shed light on the genetic causes of apple plant dwarfism and provide strategies for molecular breeding of dwarfing apple rootstocks.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Longmei Zhai
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yue Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yimei Huang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Runqi Yu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
8
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
9
|
Narutaki A, Kahar P, Shimadzu S, Maeda S, Furuya T, Ishizaki K, Fukaki H, Ogino C, Kondo Y. Sucrose Signaling Contributes to the Maintenance of Vascular Cambium by Inhibiting Cell Differentiation. PLANT & CELL PHYSIOLOGY 2023; 64:1511-1522. [PMID: 37130085 DOI: 10.1093/pcp/pcad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Plants produce sugars by photosynthesis and use them for growth and development. Sugars are transported from source-to-sink organs via the phloem in the vasculature. It is well known that vascular development is precisely controlled by plant hormones and peptide hormones. However, the role of sugars in the regulation of vascular development is poorly understood. In this study, we examined the effects of sugars on vascular cell differentiation using a vascular cell induction system named 'Vascular Cell Induction Culture System Using Arabidopsis Leaves' (VISUAL). We found that sucrose has the strongest inhibitory effect on xylem differentiation, among several types of sugars. Transcriptome analysis revealed that sucrose suppresses xylem and phloem differentiation in cambial cells. Physiological and genetic analyses suggested that sucrose might function through the BRI1-EMS-SUPPRESSOR1 transcription factor, which is the central regulator of vascular cell differentiation. Conditional overexpression of cytosolic invertase led to a decrease in the number of cambium layers due to an imbalance between cell division and differentiation. Taken together, our results suggest that sucrose potentially acts as a signal that integrates environmental conditions with the developmental program.
Collapse
Affiliation(s)
- Aoi Narutaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Prihardi Kahar
- Department of Chemical and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | - Shunji Shimadzu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shota Maeda
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Tomoyuki Furuya
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Chiaki Ogino
- Department of Chemical and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
10
|
Sun Y, Yang B, De Rybel B. Hormonal control of the molecular networks guiding vascular tissue development in the primary root meristem of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6964-6974. [PMID: 37343122 PMCID: PMC7615341 DOI: 10.1093/jxb/erad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.
Collapse
Affiliation(s)
- Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
11
|
Fal K, Berr A, Le Masson M, Faigenboim A, Pano E, Ishkhneli N, Moyal NL, Villette C, Tomkova D, Chabouté ME, Williams LE, Carles CC. Lysine 27 of histone H3.3 is a fine modulator of developmental gene expression and stands as an epigenetic checkpoint for lignin biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1085-1100. [PMID: 36779574 DOI: 10.1111/nph.18666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.
Collapse
Affiliation(s)
- Kateryna Fal
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie Le Masson
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO Volcani Center, PO Box 15159, Rishon LeZion, 7528809, Israel
| | - Emeline Pano
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Nickolay Ishkhneli
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Netta-Lee Moyal
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Denisa Tomkova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Leor Eshed Williams
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Cristel C Carles
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| |
Collapse
|
12
|
Shimadzu S, Furuya T, Kondo Y. Molecular Mechanisms Underlying the Establishment and Maintenance of Vascular Stem Cells in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:274-283. [PMID: 36398989 PMCID: PMC10599399 DOI: 10.1093/pcp/pcac161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The vascular system plays pivotal roles in transporting water and nutrients throughout the plant body. Primary vasculature is established as a continuous strand, which subsequently initiates secondary growth through cell division. Key factors regulating primary and secondary vascular developments have been identified in numerous studies, and the regulatory networks including these factors have been elucidated through omics-based approaches. However, the vascular system is composed of a variety of cells such as xylem and phloem cells, which are commonly generated from vascular stem cells. In addition, the vasculature is located deep inside the plant body, which makes it difficult to investigate the vascular development while distinguishing between vascular stem cells and developing xylem and phloem cells. Recent technical advances in the tissue-clearing method, RNA-seq analysis and tissue culture system overcome these problems by enabling the cell-type-specific analysis during vascular development, especially with a special focus on stem cells. In this review, we summarize the recent findings on the establishment and maintenance of vascular stem cells.
Collapse
Affiliation(s)
- Shunji Shimadzu
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku,
Tokyo, 113-0033 Japan
| | - Tomoyuki Furuya
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- College of Life Sciences, Ritsumeikan
University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
13
|
Rani V, Sengar RS, Garg SK, Mishra P, Shukla PK. RETRACTED ARTICLE: Physiological and Molecular Role of Strigolactones as Plant Growth Regulators: A Review. Mol Biotechnol 2023:10.1007/s12033-023-00694-2. [PMID: 36802323 DOI: 10.1007/s12033-023-00694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Varsha Rani
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - R S Sengar
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - Sanjay Kumar Garg
- M. J. P. Rohilkhand University, Bareilly, Uttar Pradesh, 243006, India
| | - Pragati Mishra
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Pradeep Kumar Shukla
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
14
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
15
|
Zhang L, Fang W, Chen F, Song A. The Role of Transcription Factors in the Regulation of Plant Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2022; 11:1997. [PMID: 35956475 PMCID: PMC9370718 DOI: 10.3390/plants11151997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
Transcription factors, also known as trans-acting factors, balance development and stress responses in plants. Branching plays an important role in plant morphogenesis and is closely related to plant biomass and crop yield. The apical meristem produced during plant embryonic development repeatedly produces the body of the plant, and the final aerial structure is regulated by the branching mode generated by axillary meristem (AM) activities. These branching patterns are regulated by two processes: AM formation and axillary bud growth. In recent years, transcription factors involved in regulating these processes have been identified. In addition, these transcription factors play an important role in various plant hormone pathways and photoresponses regulating plant branching. In this review, we start from the formation and growth of axillary meristems, including the regulation of hormones, light and other internal and external factors, and focus on the transcription factors involved in regulating plant branching and development to provide candidate genes for improving crop architecture through gene editing or directed breeding.
Collapse
Affiliation(s)
| | | | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| |
Collapse
|
16
|
Galibina NA, Moshchenskaya YL, Tarelkina TV, Chirva OV, Nikerova KM, Serkova AA, Semenova LI, Ivanova DS. Changes in the Activity of the CLE41/PXY/WOX Signaling Pathway in the Birch Cambial Zone under Different Xylogenesis Patterns. PLANTS 2022; 11:plants11131727. [PMID: 35807679 PMCID: PMC9269193 DOI: 10.3390/plants11131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
The balance between cell proliferation and differentiation into other cell types is crucial for meristem indeterminacy, and both growth aspects are under genetic control. The peptide-receptor signaling module regulates the activity of the cambial stem cells and the differentiation of their derivatives, along with cytokinins and auxin. We identified the genes encoding the signaling module CLE41-PXY and the regulator of vascular cambium division WOX4 and studied their expression during the period of cambial growth in the radial row: the conducting phloem/cambial zone and the differentiating xylem in two forms of Betula pendula, silver birch and Karelian birch. We have shown that the expression maximum of the BpCLE41/44a gene precedes the expression maximum of the BpPXY gene. Non-figured Karelian birch plants with straight-grained wood are characterized by a more intensive growth and the high expression of CLE41/44-PXY-WOX4. Figured Karelian birch plants, where the disturbed ratio and spatial orientation of structural elements characterizes the wood, have high levels of BpWOX4 expression and a decrease in xylem growth as well as the formation of xylem with a lower vessel density. The mutual influences of CLE41-PXY signaling and auxin signaling on WOX4 gene activity and the proliferation of cambium stem cells are discussed.
Collapse
|