1
|
Xu Y, Wang H, Shi H. Genome-wide identification and molecular characterization of the MAPK family members in sand pear (Pyrus pyrifolia). BMC Genomics 2025; 26:485. [PMID: 40375131 PMCID: PMC12079992 DOI: 10.1186/s12864-025-11672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND 'Whangkeumbae', a highly regarded variety of sand pear, is celebrated in the market for its distinctive and superior flavor. However, the rapid production of ethylene after harvest significantly shortens its shelf life, becoming a major limiting factor for enhancing its commercial value. Mitogen-activated protein kinases (MAPKs) are a highly conserved family of transferases in eukaryotes. Although the importance of this family has been extensively studied in other plants, the precise composition and functional mechanisms of MAPK members in sand pear remain elusive. A genome-wide identification and molecular characterization of the MAPK gene family were conducted in Pyrus pyrifolia. This comprehensive analysis aimed to elucidate the genomic distribution, evolutionary relationships, and potential biological roles of MAPK genes in fruit senescence. RESULTS Four PpMAPKs were identified from our transcriptome data of sand pear, and 22 PpMAPK proteins were identified from the sand pear genome. Specifically, the transcriptomic PpMAPK3-L (GenBank accession number: PP992971), PpMAPK7-L (GenBank accession number: PP992972), PpMAPK10-L (GenBank accession number: PP992973), and PpMAPK16-L (GenBank accession number: PP992974) exhibited sequence homology values of 99.19%, 100%, 94.51%, and 95.75%, respectively, with their corresponding genomic counterparts (EVM0007944.1, EVM0004426.1, EVM0023771.1, EVM0027166.1). These findings indicate that the integrated analysis of transcriptomic and genomic data provides critical genetic insights into the MAPK genes in sand pear, culminating in the identification of a total of 25 PpMAPK genes in this species. Further phylogenetic analysis classified these genes into four subfamilies (A, B, C, and D), with subfamilies A and B each comprising six members, subfamily C with four members, and subfamily D with nine members. The potential functional differences among the gene members of each subfamily provide valuable clues for future research into MAPK signaling pathways. Further analysis by qRT-PCR revealed that the expression of four PpMAPK genes was positively correlated with fruit senescence in Pyrus pyrifolia. Additionally, interaction analysis revealed a significant interaction between PpMAPK3-L and PpbZIP2, which coordinatively regulate the senescence traits of fruits in sand pear through their joint influence during the senescence process. CONCLUSION The results of this study suggest that PpMAPK3-L, PpMAPK7-L, PpMAPK10-L, and PpMAPK16-L are likely to play pivotal roles in the maturation and senescence of sand pear fruit. Specifically, the interaction between PpMAPK3-L and PpbZIP2 could play a key role in the regulation of fruit senescence, indicating that the MAPK signaling pathway may modulate the fruit's physiological state through interactions with transcription factors. This finding offers significant insights for further investigation into the functions of MAPK genes in the maturation and senescence of sand pear fruit and provides a new direction for investigating biotechnological approaches for delaying senescence and prolonging shelf life.
Collapse
Affiliation(s)
- Yue Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Huiying Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Haiyan Shi
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
2
|
Liu R, Wang Y, Shu B, Xin J, Yu B, Gan Y, Liang Y, Qiu Z, Yan S, Cao B. SmHSFA8 Enhances the Heat Tolerance of Eggplant by Regulating the SmEGY3-SmCSD1 Module and Promoting SmF3H-mediated Flavonoid Biosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:3085-3104. [PMID: 39690517 DOI: 10.1111/pce.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
High temperature (HT) is a major environmental factor that restrains eggplant growth and production. Heat shock factors (HSFs) play a vital role in the response of plants to high-temperature stress (HTS). However, the molecular mechanism by which HSFs regulate heat tolerance in eggplants remains unclear. Previously, we reported that SmEGY3 enhanced the heat tolerance of eggplant. Herein, SmHSFA8 activated SmEGY3 expression and interacted with SmEGY3 protein to enhance the activation function of SmEGY3 on SmCSD1. Virus-induced gene silencing (VIGS) and overexpression assays suggested that SmHSFA8 positively regulated heat tolerance in plants. SmHSFA8 enhanced the heat tolerance of tomato plants by promoting SlEGY3 expression, H2O2 production and H2O2-mediated retrograde signalling pathway. DNA affinity purification sequencing (DAP-seq) analysis revealed that SmHSPs (SmHSP70, SmHSP70B and SmHSP21) and SmF3H were candidate downstream target genes of SmHSFA8. SmHSFA8 regulated the expression of HSPs and F3H and flavonoid content in plants. The silencing of SmF3H by VIGS reduced the flavonoid content and heat tolerance of eggplant. In addition, exogenous flavonoid treatment alleviated the HTS damage to eggplants. These results indicated that SmHSFA8 enhanced the heat tolerance of eggplant by activating SmHSPs exprerssion, mediating the SmEGY3-SmCSD1 module, and promoting SmF3H-mediated flavonoid biosynthesis.
Collapse
Affiliation(s)
- Renjian Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yuyuan Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bingbing Shu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jinyang Xin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Ji S, Li D, Yao J, Liu B, Han J, Wang Y, Liu Z. The assembly of a Malus sieversii regulatory network reveals gene resistance against Alternaria alternata f. sp. mali when colonized by Trichoderma biofertilizer. JOURNAL OF PLANT RESEARCH 2025; 138:483-496. [PMID: 40089645 DOI: 10.1007/s10265-025-01622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Trichoderma spp., as excellent biocontrol agents, can induce systemic resistance to protect plants from phytopathogen attacks. In a previous study, Trichoderma biofertilizer activated the MsERF105 transcription factor (TF), which further enhanced the resistance of Malus sieversii against Alternaria alternata f. sp. mali, but how resistance signals are transmitted is still unknown. In this study, it was found that the MsERF105-centered disease-resistant regulatory network was induced by Trichoderma in M. sieversii. The TF-centered yeast one-hybrid indicated that WRKY33 and WRKY40 bound to WBOXATNPR1 elements and GT1 bound to GT1CONSENSUS elements in the promoter of MsERF105 to activate its expression. In addition, the proteins that interacted with MsERF105 were identified by yeast two-hybrid, including FUBP2 and HSP17.8. Furthermore, the candidate target genes of MsERF105 were screened using RNA-Seq, and yeast one-hybrid and tobacco transient transformation further showed MsERF105 bound to GCCBOX elements to regulate the expression of bHLH162, ERF017, NAC83 and NAC104; bound to CCAATBOX elements to regulate the expression of HSFs, HSP70s and HSP20; and bound to ERS elements to regulate the expression of DRPs. Finally, the Trichoderma-induced MsERF105-centered regulatory network of M. sieversii against A. alternata f. sp. mali was built, which provided reliable theoretical guidance for the application of Trichoderma and the disease-resistance breeding of M. sieversii.
Collapse
Affiliation(s)
- Shida Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, 161000, China
| | - Dechen Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jin Yao
- Qiqihar City Landscape and Greening Center, Qiqihar, 161000, China
| | - Bin Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Han
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
4
|
Miao H, Zhang J, Zheng Y, Jia C, Hu Y, Wang J, Zhang J, Sun P, Jin Z, Zhou Y, Zheng S, Wang W, Rouard M, Xie J, Liu J. Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era. HORTICULTURE RESEARCH 2025; 12:uhaf044. [PMID: 40236735 PMCID: PMC11997438 DOI: 10.1093/hr/uhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Bananas (Musa spp.) are among the top-produced food crops, serving as a primary source of food for millions of people. Cultivated bananas originated primarily from the wild diploid species Musa acuminata (A genome) and Musa balbisiana (B genome) through intra- and interspecific hybridization and selections via somatic variation. Following the publication of complete A- and B-genome sequences, prospects for complementary studies on S- and T-genome traits, key gene identification for yield, ripening, quality, and stress resistance, and advances in molecular breeding have significantly expanded. In this review, latest research progress on banana A, B, S, and T genomes is briefly summarized, highlighting key advances in banana cytoplasmic inheritance, flower and fruit development, sterility, and parthenocarpy, postharvest ripening and quality regulation, and biotic and abiotic stress resistance associated with desirable economic traits. We provide updates on transgenic, gene editing, and molecular breeding. We also explore future directions for banana breeding and genetic improvement.
Collapse
Affiliation(s)
- Hongxia Miao
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jianbin Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yunke Zheng
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Caihong Jia
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xiuhu Road 1, Mazhang District, Zhanjiang 524000, China
| | - Jingyi Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jing Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Peiguang Sun
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Zhiqiang Jin
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Yongfeng Zhou
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road 7, Dapengxin District, Shenzhen 518000, China
| | - Sijun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
- Bioversity International, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
| | - Wei Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, Cedex 5, France
| | - Jianghui Xie
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Juhua Liu
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
5
|
Jia H, Shi Y, Dai Z, Sun Y, Shu X, Li B, Wu R, Lv S, Shou J, Yang X, Jiang G, Zhang Y, Allan AC, Chen K. Phosphorylation of the strawberry MADS-box CMB1 regulates ripening via the catabolism of abscisic acid. THE NEW PHYTOLOGIST 2025; 246:1627-1646. [PMID: 40172024 PMCID: PMC12018792 DOI: 10.1111/nph.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Research on the ripening of fleshy fruits has relied on techniques that measure transcriptional changes. How ripening is linked to posttranslational modifications such as protein phosphorylation remains less studied. Here, we characterize the MADS-box SEPALLATA 4 (SEP4) subfamily transcription factor FaCMB1, a key negative regulator controlling strawberry ripening, whose transcript and protein abundance decrease progressively with fruit development and are repressed by abscisic acid (ABA). Transient RNAi or overexpression of FaCMB1 significantly altered the fruit ripening process and affected the content of endogenous ABA and ripening-related quality. Transcriptome sequencing (RNA-seq) analysis suggested that manipulation of FaCMB1 expression levels affected the transcription of FaASR (ABA-, stress-, ripening-induced), while FaCMB1 can repress the gene expression of FaASR by directly binding to its promoter. Furthermore, FaASR inhibited the transcriptional activity of FaCYP707A4, a key ABA 8'-hydroxylase enzyme involved in ABA catabolism. We show that FaCMB1 can be phosphorylated by the kinase FaSTPK, and Phos-tag assays indicated that the phosphorylation level of FaCMB1 increases during fruit ripening. This phosphorylation of FaCMB1 affects the binding ability of FaCMB1 to the FaASR promoter and alleviates its transcriptional repression. In conclusion, we elucidated a feedback regulatory path involving FaCMB1-FaASR-FaCYP707A4-ABA. During the fruit ripening process, an increase in ABA content led to a decrease in FaCMB1 transcript and protein levels, which, combined with increased phosphorylation levels, collectively impaired the transcriptional repression of FaASR by FaCMB1. Meanwhile, the increased transcriptional level of FaASR further repressed the expression level of FaCYP707A4, leading to ABA accumulation and fruit ripening.
Collapse
Affiliation(s)
- Haoran Jia
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yanna Shi
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| | - Zhengrong Dai
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yunfan Sun
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiu Shu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Baijun Li
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of AgricultureGuangxi UniversityNanning530004China
| | - Rongrong Wu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Shouzheng Lv
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Jiahan Shou
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiaofang Yang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Guihua Jiang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Yuchao Zhang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research LtdPrivate Bag 92169Auckland1142New Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Kunsong Chen
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| |
Collapse
|
6
|
Ren T, Shi X, Zhou S, Fan K, Zhang R, Nie L, Zhao W. Transcriptome profiling reveals the mechanism of fruit navel development in melon (Cucumis melo L.). BMC PLANT BIOLOGY 2025; 25:420. [PMID: 40181289 PMCID: PMC11967141 DOI: 10.1186/s12870-025-06444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Melon is an important horticultural crop cultivated extensively worldwide. The size of the fruit navel, the terminal region of melon fruits, significantly influences the appearance quality of the fruit. However, the regulatory factors and molecular mechanisms governing the fruit navel development remain poorly understood in melon. RESULTS In this study, the regulators and mechanisms underlying fruit navel development were investigated through phenotypic analysis, RNA sequencing (RNA-seq) and RT-qPCR methods. The inbred line 'T03' and a big fruit navel mutant 'BFN' of melon were used as experimental materials. RNA-seq analysis identified 116 differentially expressed genes (DEGs), including 54 up-regulated and 62 down-regulated genes, in both the green bud (GB) and ovary at anthesis (OA) stages of the 'BFN' melon compared to the 'T03' melon. Functional enrichment analysis revealed that these 116 DEGs were significantly associated with "Sesquiterpenoid and triterpenoid biosynthesis", "Circadian rhythm-plant", "Galactose metabolism" and "Biosynthesis of various alkaloids" pathways. There were three (AP2/ERF, MYB and C2H2 types) and eight (AP2/ERF, MADS-box, homeobox domain and bZIP types) transcription factors presented in up-regulated and down-regulated DEGs, and their putative target genes were predicted. Based on KEGG and expression analyses, two terpene cyclase/mutase genes (MELO3 C001812 and MELO3 C004329) were identified as being involved in the "Sesquiterpenoid and triterpenoid biosynthesis" pathway, and their transcripts were significantly downregulated in all detected development stages (EGB, GB, GYB, YB and OA) of 'BFN' fruits compared with 'T03' fruits. CONCLUSIONS The findings of this study elucidate a fundamental regulatory mechanism underlying fruit navel formation, and identify two key negative regulators, MELO3C001812 and MELO3C004329, involved in the development of the fruit navel in melon.
Collapse
Affiliation(s)
- Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xuqian Shi
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Shuxin Zhou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Kanghui Fan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Rui Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
| |
Collapse
|
7
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
8
|
Sun Y, Zhang M, Geng M, Geng Z, Lu Z, Liu N, Liu Z, Zeng D, Yao G, Hu K, Zhang H. Hydrogen sulfide interferes with ethylene biosynthesis and signaling pathway in tomato by the mediation of SlERF.D2 persulfidation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70000. [PMID: 39962339 DOI: 10.1111/tpj.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 05/09/2025]
Abstract
Hydrogen sulfide (H2S), as a signaling molecule, is found to delay fruit ripening and senescence by antagonizing the biosynthesis and signaling of ethylene, whereas the mechanism remains unclear. In the current work, exogenous H2S fumigation could alleviate tomato fruit ripening and an ethylene response factor SlERF.D2 was found to be persulfidated at Cys35 by mass spectrometry analysis. Meanwhile, ethylene biosynthesis related genes SlACS1 and SlACO3 were significantly downregulated at gene expression level in H2S-treated fruit. By CRISPR/Cas9 and gene overexpression, we showed that overexpression of SlERF.D2 promoted fruit ripening by accelerating chlorophyll degradation and carotenoid accumulation and upregulating the expression of ripening related genes SlPAO, SlPPH, SlSGR1, SlACS1, SlACS2, SlACS4, SlEIN2, SlACO1, and SlACO3, while the mutation of slerf.d2 delayed fruit ripening. Additionally, slerf.d2 mutant showed delayed ethylene production during tomato fruit ripening. Moreover, SlERF.D2 was found to interact with the kinase SlMAPK4 and was phosphorylated at Ser42 by yeast two-hybrid screening, pull down and LC-MS/MS. By cis-element analysis, electrophoretic mobility shift assay and dual-luciferase assay, SlERF.D2 could activate the transcription of the ethylene pathway-associated gene SlACO3 and SlEIN2. Besides, we provided evidence that SlERF.D2 persulfidation weakened the transcriptional activity of SlERF.D2 on the target gene SlACO3 and SlEIN2. In contrast, SlMAPK4-mediated phosphorylation enhanced SlERF.D2's transcriptional activation activity on SlACO3 and SlEIN2. Therefore, the present research provides insights into the mechanism of H2S in antagonizing the biosynthesis and signaling transduction of ethylene and reveals the importance of SlERF.D2 persulfidation and phosphorylation in dynamically regulating tomato fruit ripening.
Collapse
Affiliation(s)
- Ying Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meihui Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhikun Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zixu Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Nannan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dexin Zeng
- Technical Center of Hefei Customs, Hefei, 230022, China
- Anhui Provincial Joint Construction Key Laboratory of Food Safety Monitoring and Quality Control, Hefei, 230022, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
9
|
Li Y, Chang Y, Wang Y, Gan C, Li C, Zhang X, Guo YD, Zhang N. Protein phosphatase PP2C2 dephosphorylates transcription factor ZAT5 and modulates tomato fruit ripening. PLANT PHYSIOLOGY 2024; 197:kiaf017. [PMID: 39797905 DOI: 10.1093/plphys/kiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.). Overexpression of SlZAT5 delayed ripening, while its knockout accelerated it, confirming its role as a negative regulator. SlZAT5 functions as a transcriptional repressor by directly inhibiting ripening-related genes, including SlACS4, SlPL8, and SlGRAS38, thereby delaying ripening. Furthermore, SlZAT5 interacts with the type 2C protein phosphatase SlPP2C2, which regulates the repressor activity of SlZAT5 by dephosphorylating SlZAT5 at Ser-65. This interaction is crucial in modulating ethylene production, thereby influencing the ripening process. These findings reveal a regulatory function of SlZAT5 in tomato fruit development, offering insights into the SlZAT5-SlPP2C2 module and potential targets for genetic modification to improve fruit quality and extend fruit shelf life.
Collapse
Affiliation(s)
- Yafei Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanan Chang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yiran Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chaolin Gan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chonghua Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Yang K, Li Z, Zhu C, Liu Y, Li H, Di X, Song X, Ren H, Gao Z. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis. PLANT PHYSIOLOGY 2024; 196:2565-2582. [PMID: 39250763 DOI: 10.1093/plphys/kiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The lignocellulosic feedstock of woody bamboo shows promising potential as an alternative to conventional wood, attributed to its excellent properties. The content and distribution of lignin serve as the foundation of these properties. While the regulation of lignin biosynthesis in bamboo has been extensively studied at the transcriptional level, its posttranslational control has remained poorly understood. This study provides a ubiquitinome dataset for moso bamboo (Phyllostachys edulis), identifying 13,015 ubiquitinated sites in 4,849 unique proteins. We further identified Kelch repeat F-box protein 9 (PeKFB9) that plays a negative role in lignin biosynthesis. Heterologous expression of PeKFB9 resulted in reduced accumulation of lignin and decreased phenylalanine ammonia lyase (PAL) activities. Both in vitro and in vivo assays identified interaction between PeKFB9 and PePAL10. Further examination revealed that SCFPeKFB9 mediated the ubiquitination and degradation of PePAL10 via the 26S proteasome pathway. Moreover, PebZIP28667 could bind to the PePAL10 promoter to significantly inhibit its transcription, and ubiquitination of PebZIP28667 weakened this inhibition. Collectively, our findings reveal a PeKFB9-PePAL10/PebZIP28667-PePAL10 module that acts as a negative regulator of lignin biosynthesis. This study advances our understanding of posttranslational regulation in plant lignification, which will facilitate the improvement of the properties of bamboo wood and the breeding of varieties.
Collapse
Affiliation(s)
- Kebin Yang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyang Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Haiqing Ren
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
11
|
Guo Z, Liu H, Zheng S, Qi K, Xie Z, Wang X, Hong Y, Cui Y, Liu X, Gu C, Zhang SL. The transcription factor PbbHLH164 is destabilized by PbRAD23C/D.1 and mediates ethylene biosynthesis during pear fruit ripening. J Adv Res 2024; 66:119-131. [PMID: 38190939 PMCID: PMC11674782 DOI: 10.1016/j.jare.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The phytohormone ethylene plays an important role in climacteric fruit ripening. However, the knowledge on molecular regulation of ethylene biosynthesis remains limited in pear fruit. Herein, a new basic helix-loop-helix transcription factor, PbbHLH164, was identified based on the transcriptome analysis of different developing and ripening fruits of two pear cultivars 'Sucui No. 1' and 'Cuiguan'. PbbHLH164 was more highly expressed in ripening fruit than in developing fruit and positively correlated with ethylene production in both cultivars. PbbHLH164 could directly bind to the promoter of 1-aminocyclopropane-1-carboxylate synthase, PbACS1b, to enhance the expression, leading to the increase of ethylene production and the acceleration of fruit ripening. Interestingly, PbbHLH164 physically interacted with an ubiquitin-like/ubiquitin-associated protein PbRAD23C/D.1, and the interaction of PbbHLH164 with PbRAD23C/D.1 attenuated the function of PbbHLH164 in enhancing the activity of the PbACS1b promoter. Notably, PbRAD23C/D.1 was involved in the degradation of PbbHLH164, and this degradation was inhibited by an ubiquitin proteasome inhibitor MG132. Different from PbbHLH164, PbRAD23C/D.1 was more highly expressed in developing fruit than in ripening fruit of both cultivars. These results suggest that the increase of ethylene production during pear fruit ripening results from the up-regulated expression of PbbHLH164 and the down-regulated expression of PbRAD23C/D.1. This information provided new insights into the molecular regulation of ethylene biosynthesis during fruit ripening.
Collapse
Affiliation(s)
- ZhiHua Guo
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - SiQi Zheng
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - KaiJie Qi
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - ZhiHua Xie
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - XuePing Wang
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - YeMei Hong
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - YanBo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Xiaoxiang Liu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shao-Ling Zhang
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Si J, Fan Z, Wu C, Yang Y, Shan W, Kuang J, Lu W, Wei W, Chen J. MaHsf24, a novel negative modulator, regulates cold tolerance in banana fruits by repressing the expression of HSPs and antioxidant enzyme genes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2873-2886. [PMID: 38856080 PMCID: PMC11536452 DOI: 10.1111/pbi.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.
Collapse
Affiliation(s)
- Jia Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Zhong‐qi Fan
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural/Institute of Postharvest Technology of Agricultural Products, College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao‐jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Ying‐ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
13
|
Zhang M, Hu K, Ma L, Geng M, Zhang C, Yao G, Zhang H. Persulfidation and phosphorylation of transcription factor SlWRKY6 differentially regulate tomato fruit ripening. PLANT PHYSIOLOGY 2024; 196:210-227. [PMID: 38728423 DOI: 10.1093/plphys/kiae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
Cysteine desulfhydrase catalyses the generation of the signaling molecule hydrogen sulfide (H2S) in plants. In this study, we found that H2S can inhibit tomato (Solanum lycopersicum) fruit ripening and SlWRKY6 undergoes differential protein persulfidation in SlLCD1-overexpressing leaves. Then, further study indicated that SlWRKY6 could be persulfidated by H2S at Cys396. By construction of slwrky6 mutants and SlWRKY6-OE lines, we found that SlWRKY6 positively regulates leaf senescence and fruit ripening by activating the transcription of ripening-related genes STAYGREEN 1 (SlSGR1) and Senescence-Associated Gene 12 (SlSAG12). In addition, SlWRKY6 interacted with kinase SlMAPK4 and was phosphorylated at Ser33. Dual-luciferase transient expression assays and electrophoretic mobility shift assays indicated that SlWRKY6 persulfidation attenuated its transcriptional regulation of target genes SlSGR1 and SlSAG12, whereas SlWRKY6 phosphorylation by SlMAPK4 activated the transcription of target genes to promote fruit ripening. Moreover, we provided evidence that SlWRKY6 persulfidation attenuated its SlMAPK4-mediated phosphorylation to inhibit tomato fruit ripening. By transient expression of SlWRKY6, SlWRKY6C396A, SlWRKY6S33A, and SlWRKY6S33D in slwrky6 fruits, we found that SlWRKY6 persulfidation attenuated the expression of SlSGR1 and SlSAG12 thereby delaying tomato fruit ripening, while SlWRKY6 phosphorylation increased the expression of target genes. As tomato fruits ripened, endogenous H2S production decreased, while SlMAPK4 expression increased. Therefore, our findings reveal a model in which SlWRKY6 persulfidation due to higher endogenous H2S levels in un-ripened fruit inhibits its ability to activate SlSGR1 and SlSAG12 expression, while SlWRKY6 phosphorylation by SlMAPK4 activates its transcriptional activity, thereby promoting tomato fruit ripening.
Collapse
Affiliation(s)
- Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meihui Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Conghe Zhang
- Winall Hi-Tech Seed Co., Ltd, Hefei 231283, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
14
|
Wang F, Liang Z, Ma X, He Z, Li J, Zhao M. LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi. MOLECULAR HORTICULTURE 2024; 4:29. [PMID: 39103914 DOI: 10.1186/s43897-024-00109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
16
|
Wang W, Ouyang J, Li Y, Zhai C, He B, Si H, Chen K, Rose JKC, Jia W. A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1106-1125. [PMID: 38558522 DOI: 10.1111/jipb.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yating Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changsheng Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huahan Si
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| |
Collapse
|
17
|
Wei W, Luo Q, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. E3 ubiquitin ligase MaRZF1 modulates high temperature-induced green ripening of banana by degrading MaSGR1. PLANT, CELL & ENVIRONMENT 2024; 47:1128-1140. [PMID: 38093692 DOI: 10.1111/pce.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/29/2023] [Indexed: 03/05/2024]
Abstract
High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Wu C, Cai D, Li J, Lin Z, Wei W, Shan W, Chen J, Lu W, Su X, Kuang J. Banana MabHLH28 positively regulates the expression of softening-related genes to mediate fruit ripening independently or via cooperating with MaWRKY49/111. HORTICULTURE RESEARCH 2024; 11:uhae053. [PMID: 38706579 PMCID: PMC11069428 DOI: 10.1093/hr/uhae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/17/2024] [Indexed: 05/07/2024]
Abstract
Texture softening is a physiological indicator of fruit ripening, which eventually contributes to fruit quality and the consumer's acceptance. Despite great progress having been made in identification of the genes related to fruit softening, the upstream transcriptional regulatory pathways of these softening-related genes are not fully elucidated. Here, a novel bHLH gene, designated as MabHLH28, was identified because of its significant upregulation in banana fruit ripening. DAP-Seq analysis revealed that MabHLH28 bound to the core sequence of 'CAYGTG' presented in promoter regions of fruit softening-associated genes, such as the genes related to cell wall modification (MaPG3, MaPE1, MaPL5, MaPL8, MaEXP1, MaEXP2, MaEXPA2, and MaEXPA15) and starch degradation (MaGWD1 and MaLSF2), and these bindings were validated by EMSA and DLR assays. Transient overexpression and knockdown of MabHLH28 in banana fruit resulted in up- and down-regulation of softening-related genes, thereby hastening and postponing fruit ripening. Furthermore, overexpression of MabHLH28 in tomato accelerated the ripening process by elevating the accumulation of softening-associated genes. In addition, MabHLH28 showed interaction withMaWRKY49/111 and itself to form protein complexes, which could combinatorically strengthen the transcription of softening-associated genes. Taken together, our findings suggest that MabHLH28 mediates fruit softening by upregulating the expression of softening-related genes either alone or in combination with MaWRKY49/111.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Agronomy Dean, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
20
|
Jin J, Wang W, Fan D, Hao Q, Jia W. Emerging Roles of Mitogen-Activated Protein Kinase Signaling Pathways in the Regulation of Fruit Ripening and Postharvest Quality. Int J Mol Sci 2024; 25:2831. [PMID: 38474080 DOI: 10.3390/ijms25052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wensuo Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Zhu S, Mo Y, Yang Y, Liang S, Xian S, Deng Z, Zhao M, Liu S, Liu K. Genome-wide identification of MAPK family in papaya (Carica papaya) and their involvement in fruit postharvest ripening. BMC PLANT BIOLOGY 2024; 24:68. [PMID: 38262956 PMCID: PMC10807106 DOI: 10.1186/s12870-024-04742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.
Collapse
Affiliation(s)
- Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China.
| | - Yuxing Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Yuyao Yang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Shiqi Liang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Shuqi Xian
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Zixin Deng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Miaoyu Zhao
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Shuyi Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China.
| |
Collapse
|
22
|
Ghorbel M, Zribi I, Haddaji N, Siddiqui AJ, Bouali N, Brini F. Genome-Wide Identification and Expression Analysis of Catalase Gene Families in Triticeae. PLANTS (BASEL, SWITZERLAND) 2023; 13:11. [PMID: 38202319 PMCID: PMC10781083 DOI: 10.3390/plants13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Aerobic metabolism in plants results in the production of hydrogen peroxide (H2O2), a significant and comparatively stable non-radical reactive oxygen species (ROS). H2O2 is a signaling molecule that regulates particular physiological and biological processes (the cell cycle, photosynthesis, plant growth and development, and plant responses to environmental challenges) at low concentrations. Plants may experience oxidative stress and ultimately die from cell death if excess H2O2 builds up. Triticum dicoccoides, Triticum urartu, and Triticum spelta are different ancient wheat species that present different interesting characteristics, and their importance is becoming more and more clear. In fact, due to their interesting nutritive health, flavor, and nutritional values, as well as their resistance to different parasites, the cultivation of these species is increasingly important. Thus, it is important to understand the mechanisms of plant tolerance to different biotic and abiotic stresses by studying different stress-induced gene families such as catalases (CAT), which are important H2O2-metabolizing enzymes found in plants. Here, we identified seven CAT-encoding genes (TdCATs) in Triticum dicoccoides, four genes in Triticum urartu (TuCATs), and eight genes in Triticum spelta (TsCATs). The accuracy of the newly identified wheat CAT gene members in different wheat genomes is confirmed by the gene structures, phylogenetic relationships, protein domains, and subcellular location analyses discussed in this article. In fact, our analysis showed that the identified genes harbor the following two conserved domains: a catalase domain (pfam00199) and a catalase-related domain (pfam06628). Phylogenetic analyses showed that the identified wheat CAT proteins were present in an analogous form in durum wheat and bread wheat. Moreover, the identified CAT proteins were located essentially in the peroxisome, as revealed by in silico analyses. Interestingly, analyses of CAT promoters in those species revealed the presence of different cis elements related to plant development, maturation, and plant responses to different environmental stresses. According to RT-qPCR, Triticum CAT genes showed distinctive expression designs in the studied organs and in response to different treatments (salt, heat, cold, mannitol, and ABA). This study completed a thorough analysis of the CAT genes in Triticeae, which advances our knowledge of CAT genes and establishes a framework for further functional analyses of the wheat gene family.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Nouha Bouali
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| |
Collapse
|
23
|
Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, Lu WJ, Shan W. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J Adv Res 2023; 53:33-47. [PMID: 36529351 PMCID: PMC10658243 DOI: 10.1016/j.jare.2022.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTIONS Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, Shen Y, Li B, Posé D, Qin G. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. THE PLANT CELL 2023; 35:4020-4045. [PMID: 37506031 PMCID: PMC10615214 DOI: 10.1093/plcell/koad210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Carmen Martín-Pizarro
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga 29071,Spain
| | - Leilei Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
| | - Bingzhu Hou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206,China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing 100193,China
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga 29071,Spain
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
- China National Botanical Garden, Beijing 100093,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| |
Collapse
|
25
|
Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. HORTICULTURE RESEARCH 2023; 10:uhad177. [PMID: 37868621 PMCID: PMC10585711 DOI: 10.1093/hr/uhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Zhu W, Li H, Dong P, Ni X, Fan M, Yang Y, Xu S, Xu Y, Qian Y, Chen Z, Lü P. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. PLANT PHYSIOLOGY 2023; 193:855-873. [PMID: 37279567 PMCID: PMC10469544 DOI: 10.1093/plphys/kiad322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.
Collapse
Affiliation(s)
- Wenjun Zhu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Li
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xueting Ni
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minlei Fan
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanbing Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangwen Qian
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Zhuo Chen
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Wu C, Deng W, Shan W, Liu X, Zhu L, Cai D, Wei W, Yang Y, Chen J, Lu W, Kuang J. Banana MKK1 modulates fruit ripening via the MKK1-MPK6-3/11-4-bZIP21 module. Cell Rep 2023; 42:112832. [PMID: 37498740 DOI: 10.1016/j.celrep.2023.112832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Wei Y, Liu Z, Lv T, Xu Y, Wei Y, Liu W, Liu L, Wang A, Li T. Ethylene enhances MdMAPK3-mediated phosphorylation of MdNAC72 to promote apple fruit softening. THE PLANT CELL 2023; 35:2887-2909. [PMID: 37132483 PMCID: PMC10396387 DOI: 10.1093/plcell/koad122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.
Collapse
Affiliation(s)
- Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhi Liu
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Tianxing Lv
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yajing Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
29
|
Luo Q, Wei W, Yang YY, Wu CJ, Chen JY, Lu WJ, Kuang JF, Shan W. E3 ligase MaNIP1 degradation of NON-YELLOW COLORING1 at high temperature inhibits banana degreening. PLANT PHYSIOLOGY 2023; 192:1969-1981. [PMID: 36794407 PMCID: PMC10315274 DOI: 10.1093/plphys/kiad096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Banana (Musa acuminata) fruit ripening under high temperatures (>24 °C) undergoes green ripening due to failure of chlorophyll degradation, which greatly reduces marketability. However, the mechanism underlying high temperature-repressed chlorophyll catabolism in banana fruit is not yet well understood. Here, using quantitative proteomic analysis, 375 differentially expressed proteins were identified in normal yellow and green ripening in banana. Among these, one of the key enzymes involved in chlorophyll degradation, NON-YELLOW COLORING 1 (MaNYC1), exhibited reduced protein levels when banana fruit ripened under high temperature. Transient overexpression of MaNYC1 in banana peels resulted in chlorophyll degradation under high temperature, which weakens the green ripening phenotype. Importantly, high temperature induced MaNYC1 protein degradation via the proteasome pathway. A banana RING E3 ligase, NYC1-interacting protein 1 (MaNIP1), was found to interact with and ubiquitinate MaNYC1, leading to its proteasomal degradation. Furthermore, transient overexpression of MaNIP1 attenuated MaNYC1-induced chlorophyll degradation in banana fruits, indicating that MaNIP1 negatively regulates chlorophyll catabolism by affecting MaNYC1 degradation. Taken together, the findings establish a post-translational regulatory module of MaNIP1-MaNYC1 that mediates high temperature-induced green ripening in bananas.
Collapse
Affiliation(s)
- Qi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Xiao XM, Li LL, Kuang JF, Chen JY, Lu WJ, Wei W, Shan W. Cold pretreatment promotes chlorophyll degradation of green ripening banana peel by activating MaCBF1 to MaCBR and MaSGR1. Food Chem 2023; 413:135575. [PMID: 36764160 DOI: 10.1016/j.foodchem.2023.135575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Inhibition of peel de-greening in postharvest bananas under high temperature storage, resulting in green ripening, causes significant deterioration in fruit quality. Herein, we reported that cold treatment accelerated chlorophyll degradation of postharvest banana fruit at 30 °C, which was associated with the upregulated expression of MaCBR (Chlorophyll b reductase) and MaSGR1 (Stay-green 1). Moreover, cold treatment increased the expression of C-repeat binding factor MaCBF1. MaCBF1 bound directly to the promoters of MaCBR and MaSGR1 and activated their expressions. More importantly, transient expression of MaCBF1 in bananas enhanced chlorophyll degradation and weakened the repression of de-greening caused by high temperature. In summary, the cold treatment promotes chlorophyll catabolism by activating MaCBF1-induced transcriptional activation of MaCBR and MaSGR1, and attenuates high temperature-caused green ripening in bananas. These results study expand the understanding of the molecular events of high temperature-inhibited chlorophyll degradation and provide a feasible strategy to alleviate green ripening of banana fruit.
Collapse
Affiliation(s)
- Xian-Mei Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Lu-Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
31
|
Yang Z, Qin T, Jin H, Wang J, Li C, Lim KJ, Wang Z. Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan ( Carya illinoinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4901-4914. [PMID: 36938622 DOI: 10.1021/acs.jafc.2c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pecan (Carya illinoinensis) is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination. In this study, we performed the first large-scale identification of potential phosphorylation sites and proteins at early development of pecan fruit by a label-free phosphoproteomic quantification technique. A total of 2155 phosphosites were identified from 1953 phosphopeptides covering 1311 phosphoproteins in unpollinated pistils and fruits at 5 and 9 weeks after pollination. Of these, 699 nonredundant phosphoproteins were differentially phosphorylated (DP). Furthermore, the phosphorylation intensity of DP proteins in brassinolide (BR) and auxin signaling were analyzed, and the function of CiBZR1 was investigated. Ectopic expression of CiBZR1 resulted in BR response phenotypes with curled leaves and fruit, while enlarged seed size in Arabidopsis. Subcellular localization and transcriptional activation activity assay demonstrated that CiBZR1 distributed in both the nucleus and cytoplasm with transcriptional activity. When two phosphosites mutated, CiBZR1S201P,S205G moved to the nucleus completely, while the transcriptional activity remained unchanged. Taken together, our data reveal extensive phosphoproteins and lay a foundation to comprehensively dissect the potential post-translational regulation mechanism of early development of pecan fruit.
Collapse
Affiliation(s)
- Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Hongmiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Jiani Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Caiyun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Zhu L, Chen L, Wu C, Shan W, Cai D, Lin Z, Wei W, Chen J, Lu W, Kuang J. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:150-166. [PMID: 36103229 DOI: 10.1111/jipb.13363] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
Collapse
Affiliation(s)
- Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
33
|
Li Z, Zhou Y, Liang H, Li Q, Jiang Y, Duan X, Jiang G. MaMYB13 is involved in response to chilling stress via activating expression of VLCFAs and phenylpropanoids biosynthesis-related genes in postharvest banana fruit. Food Chem 2022; 405:134957. [DOI: 10.1016/j.foodchem.2022.134957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
|
34
|
Yang Y, Wu C, Shan W, Wei W, Zhao Y, Kuang J, Chen J, Jiang Y, Lu W. Mitogen-activated protein kinase 14-mediated phosphorylation of MaMYB4 negatively regulates banana fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac243. [PMID: 36643754 PMCID: PMC9832833 DOI: 10.1093/hr/uhac243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades play crucial parts in plant growth, development processes, immune ability, and stress responses; however, the regulatory mechanism by which MAPK affects fruit ripening remains largely unexplored. Here, we reported that MaMPK14 cooperated with MaMYB4 to mediate postharvest banana fruit ripening. Transient overexpression of individual MaMPK14 and MaMYB4 in banana fruit delayed fruit ripening, confirming the negative roles in the ripening. The ripening negative regulator MaMYB4 could repress the transcription of genes associated with ethylene biosynthesis and fruit softening, such as MaACS1, MaXTH5, MaPG3, and MaEXPA15. Furthermore, MaMPK14 phosphorylated MaMYB4 at Ser160 via a direct interaction. Mutation at Ser160 of MaMYB4 reduced its interaction with MaMPK14 but did not affect its subcellular localization. Importantly, phosphorylation of MaMYB4 by MaMPK14 enhanced the MaMYB4-mediated transcriptional inhibition, binding strength, protein stability, and the repression of fruit ripening. Taken together, our results delineated the regulation pathway of MAPK module during banana fruit ripening, which involved the phosphorylation modification of MaMYB4 mediated by MaMPK14.
Collapse
Affiliation(s)
| | | | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yating Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wangjin Lu
- Corresponding author. Email address: (W. Lu). Telephone: +86-020-85285527. Fax: +86-020-85285527
| |
Collapse
|
35
|
Zhou Y, Li Z, Zhu H, Jiang Y, Jiang G, Qu H. Energy homeostasis mediated by the LcSnRK1α-LcbZIP1/3 signaling pathway modulates litchi fruit senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:698-712. [PMID: 35634876 DOI: 10.1111/tpj.15845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Cellular energy status is a key factor deciding the switch-on of the senescence of horticultural crops. Despite the established significance of the conserved energy master regulator sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) in plant development, its working mechanism and related signaling pathway in the regulation of fruit senescence remain enigmatic. Here, we demonstrate that energy deficit accelerates fruit senescence, whereas exogenous ATP treatment delays it. The transient suppression of LcSnRK1α in litchi (Litchi chinensis Sonn.) fruit inhibited the expression of energy metabolism-related genes, while its ectopic expression in tomato (Solanum lycopersicum) promoted ripening and a high energy level. Biochemical analyses revealed that LcSnRK1α interacted with and phosphorylated the transcription factors LcbZIP1 and LcbZIP3, which directly bound to the promoters to activate the expression of DARK-INDUCIBLE 10 (LcDIN10), ASPARAGINE SYNTHASE 1 (LcASN1), and ANTHOCYANIN SYNTHASE (LcANS), thereby fine-tuning the metabolic reprogramming to ensure energy and redox homeostasis. Altogether, these observations reveal a post-translational modification mechanism by which LcSnRK1α-mediated phosphorylation of LcbZIP1 and LcbZIP3 regulates the expression of metabolic reprogramming-related genes, consequently modulating litchi fruit senescence.
Collapse
Affiliation(s)
- Yijie Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Zebell S. Phosphorylated bZIPs are ripe for discovery. PLANT PHYSIOLOGY 2022; 188:1415-1416. [PMID: 35245381 PMCID: PMC8896596 DOI: 10.1093/plphys/kiab596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Sophia Zebell
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
37
|
Seale M. Banana ripening control: a non-canonical F-box protein links ethylene and ABA signaling. PLANT PHYSIOLOGY 2022; 188:939-940. [PMID: 35135000 PMCID: PMC8825439 DOI: 10.1093/plphys/kiab560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Madeleine Seale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|