1
|
Wang X, Qu R, Wang S, Peng J, Guo J, Cui G, Chen T, Chen M, Shen Y. Genome-wide identification of the SmPHR gene family in Salvia miltiorrhiza and SmPHR7-mediated response to phosphate starvation in Arabidopsis thaliana. PLANT CELL REPORTS 2025; 44:73. [PMID: 40072562 DOI: 10.1007/s00299-025-03461-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
KEY MESSAGE This study reveals the transcripts of S. miltiorrhiza in response to phosphate deficiency, identifies 18 SmPHRs in the genome, and tentatively establishes a role for SmPHR7 in regulating phosphate starvation. Phosphorus is essential for plant growth and development, and phosphate deficiency is a common nutritional stress. Salvia miltiorrhiza (Danshen) is a traditional Chinese herb whose main active medicinal secondary metabolite is used in the treatment of heart disease. However, the physiological and molecular effects of phosphate starvation in S. miltiorrhiza have not been well studied. Here, we first investigated the effect of phosphate starvation on the growth and major medicinal compounds. Biomass decreased with lower phosphate concentrations, while the accumulation of compounds varied in S. miltiorrhiza. Transcriptome analysis showed that phosphate starvation affected the expression of genes involved in processes such as glycolysis/gluconeogenesis, glycerolipid metabolism, and phenylpropanoid biosynthesis. Phosphate starvation response (PHR) transcription factors play an important role in the phosphate starvation response, and we identified 18 PHR family genes in S. miltiorrhiza, distributed across 8 chromosomes. The expression levels of different SmPHR family members in roots and shoots differ in response to phosphate starvation. SmPHR7, which is highly expressed in response to phosphate starvations, was selected for further functional characterization. SmPHR7 has transcriptional activation activity and is localized in the nucleus. Furthermore, the expression of SmPHR7 in the Arabidopsis thaliana mutant phr (SmPHR7-OX) is shown to partially rescue the phosphate starvation phenotype. The expression of the Pi starvation-induced (PSI) gene in SmPHR7-OX showed a significant induction compared to the phr mutant under phosphate starvation. The identification of the SmPHR gene family significantly contributes to a broader understanding of phosphate starvation signaling in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xinxin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Renjun Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shiwei Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jiaming Peng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Meilan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ye Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
2
|
Shou M, Lin Q, Xu Y, Zhu R, Shi M, Kai G. New insights of advanced biotechnological engineering strategies for tanshinone biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112384. [PMID: 39756484 DOI: 10.1016/j.plantsci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S. miltiorrhiza plants. Recently, multiple biotechnological strategies have been applied to improve tanshinone production. In this review, advances in bioactivities, biosynthesis pathway and regulation, transcriptional regulatory network, epigenetic modification and synthetic biology are summarized, and future perspectives are discussed, which will help develop high-quality S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Minyu Shou
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinzhe Lin
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Xu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Shi
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Zhu R, Peng L, Xu Y, Liu C, Shao L, Liu T, Shou M, Lin Q, Wang B, Shi M, Kai G. Abscisic acid enhances SmAPK1-mediated phosphorylation of SmbZIP4 to positively regulate tanshinone biosynthesis in Salvia miltiorrhiza. THE NEW PHYTOLOGIST 2025; 245:1124-1144. [PMID: 39562534 DOI: 10.1111/nph.20274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Tanshinones, isolated from Salvia miltiorrhiza, is efficient to treat cardiovascular and cerebrovascular diseases. Abscisic acid (ABA) treatment is found to promote tanshinone biosynthesis; however, the underlying mechanism has not been fully elucidated. A protein kinase namely SmAPK1 was identified as an important positive regulator of ABA-induced tanshinone accumulation in S. miltiorrhiza. Using SmAPK1 as bait, a basic region leucine zipper (bZIP) family transcription factor SmbZIP4 was screened from the cDNA library. Functional identification reveals that SmbZIP4 negatively regulates tanshinone biosynthesis in hairy roots and transgenic plants through directly targeting SmGGPPS and SmCYP76AK1. SmAPK1 phosphorylates the Ser97 and Thr99 site of SmbZIP4, leading to its degradation via the 26S proteasome pathway, which is promoted by ABA-induced enhancement of SmAPK1 kinase activity. Degradation of SmbZIP4 upregulates the expression levels of SmGGPPS and SmCYP76AK1, resulting in increased tanshinone content. Taken together, our results reveal new molecular mechanism by which SmAPK1-SmbZIP4 module plays a crucial role in ABA-induced tanshinone accumulation. This study sheds new insights in the biosynthesis of bioactive compounds in medicinal plants.
Collapse
Affiliation(s)
- Ruiyan Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lulu Peng
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Xu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changle Liu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lili Shao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingyao Liu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Minyu Shou
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinzhe Lin
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Biao Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
5
|
Li Y, Chen J, Zhi J, Huang D, Zhang Y, Zhang L, Duan X, Zhang P, Qiu S, Geng J, Feng J, Zhang K, Yang X, Gao S, Xia W, Zhou Z, Qiao Y, Li B, Li Q, Li T, Chen W, Xiao Y. The ABC transporter SmABCG1 mediates tanshinones export from the peridermic cells of Salvia miltiorrhiza root. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:135-149. [PMID: 39575678 DOI: 10.1111/jipb.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Plants have mechanisms to transport secondary metabolites from where they are biosynthesized to the sites where they function, or to sites such as the vacuole for detoxification. However, current research has mainly focused on metabolite biosynthesis and regulation, and little is known about their transport. Tanshinone, a class diterpenoid with medicinal properties, is biosynthesized in the periderm of Salvia miltiorrhiza roots. Here, we discovered that tanshinone can be transported out of peridermal cells and secreted into the soil environment and that the ABC transporter SmABCG1 is involved in the efflux of tanshinone ⅡA and tanshinone Ⅰ. The SmABCG1 gene is adjacent to the diterpene biosynthesis gene cluster in the S. miltiorrhiza genome. The temporal-spatial expression pattern of SmABCG1 is consistent with tanshinone accumulation profiles. SmABCG1 is located on the plasma membrane and preferentially accumulates in the peridermal cells of S. miltiorrhiza roots. Heterologous expression in Xenopus laevis oocytes demonstrated that SmABCG1 can export tanshinone ⅡA and tanshinone Ⅰ. CRISPR/Cas9-mediated mutagenesis of SmABCG1 in S. miltiorrhiza hairy roots resulted in a significant decrease in tanshinone contents in both hairy roots and the culture medium, whereas overexpression of this gene resulted in increased tanshinone contents. CYP76AH3 transcript levels increased in hairy roots overexpressing SmABCG1 and decreased in knockout lines, suggesting that SmABCG1 may affect the expression of CYP76AH3, indirectly regulating tanshinone biosynthesis. Finally, tanshinone ⅡA showed cytotoxicity to Arabidopsis roots. These findings offer new perspectives on plant diterpenoid transport and provide a new genetic tool for metabolic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Yajing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Doudou Huang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xinyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310000, China
| | - Pan Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaran Geng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingxian Feng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ke Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Yang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenwen Xia
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Srivastava G, Vyas P, Kumar A, Singh A, Bhargav P, Dinday S, Ghosh S. Unraveling the role of cytochrome P450 enzymes in oleanane triterpenoid biosynthesis in arjuna tree. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2687-2705. [PMID: 39072959 DOI: 10.1111/tpj.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated β-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed β-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Poonam Vyas
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Anamika Singh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandeep Dinday
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Li Y, Cao J, Zhang Y, Liu Y, Gao S, Zhang P, Xia W, Zhang K, Yang X, Wang Y, Zhang L, Li B, Li T, Xiao Y, Chen J, Chen W. The methyl jasmonate-responsive transcription factor SmERF106 promotes tanshinone accumulation in Salvia miltiorrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108932. [PMID: 39018777 DOI: 10.1016/j.plaphy.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Understanding the regulatory biosynthesis mechanisms of active compounds in herbs is vital for the preservation and sustainable use of natural medicine resources. Diterpenoids, which play a key role in plant growth and resistance, also serve as practical products for humans. Tanshinone, a class of abietane-type diterpenes unique to the Salvia genus, such as Salvia miltiorrhiza, is an excellent model for studying diterpenoids. In this study, we discovered that a transcription factor, SmERF106, responds to MeJA induction and is located in the nucleus. It exhibits a positive correlation with the expression of SmKSL1 and SmIDI1, which are associated with tanshinone biosynthesis. We performed DNA affinity purification sequencing (DAP-seq) to predict genes that may be transcriptionally regulated by SmERF106. Our cis-elements analysis suggested that SmERF106 might bind to GCC-boxes in the promoters of SmKSL1 and SmIDI1. This indicates that SmKSL1 and SmIDI1 could be potential target genes regulated by SmERF106 in the tanshinone biosynthesis pathway. Their interaction was then demonstrated through a series of in vitro and in vivo binding experiments, including Y1H, EMSA, and Dual-LUC. Overexpression of SmERF106 in the hairy root of S. miltiorrhiza led to a significant increase in tanshinone content and the transcriptional levels of SmKSL1 and SmIDI1. In summary, we found that SmERF106 can activate the transcription of SmKSL1 and SmIDI1 in response to MeJA induction, thereby promoting tanshinone biosynthesis. This discovery provides new insights into the regulatory mechanisms of tanshinones in response to JA and offers a potential gene tool for tanshinone metabolic engineering strategy.
Collapse
Affiliation(s)
- Yajing Li
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajia Cao
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Liu
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pan Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwen Xia
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zhang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Yang
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, 201203, China.
| | - Ying Xiao
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wansheng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
8
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Homma M, Uchida K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. 2-oxoglutarate-dependent dioxygenases and BAHD acyltransferases drive the structural diversification of orobanchol in Fabaceae plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1392212. [PMID: 38699535 PMCID: PMC11063326 DOI: 10.3389/fpls.2024.1392212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Strigolactones (SLs), a class of plant apocarotenoids, serve dual roles as rhizosphere-signaling molecules and plant hormones. Orobanchol, a major naturally occurring SL, along with its various derivatives, has been detected in the root exudates of plants of the Fabaceae family. Medicaol, fabacyl acetate, and orobanchyl acetate were identified in the root exudates of barrel medic (Medicago truncatula), pea (Pisum sativum), and cowpea (Vigna unguiculata), respectively. Although the biosynthetic pathway leading to orobanchol production has been elucidated, the biosynthetic pathways of the orobanchol derivatives have not yet been fully elucidated. Here, we report the identification of 2-oxoglutarate-dependent dioxygenases (DOXs) and BAHD acyltransferases responsible for converting orobanchol to these derivatives in Fabaceae plants. First, the metabolic pathways downstream of orobanchol were analyzed using substrate feeding experiments. Prohexadione, an inhibitor of DOX inhibits the conversion of orobanchol to medicaol in barrel medic. The DOX inhibitor also reduced the formation of fabacyl acetate and fabacol, a precursor of fabacyl acetate, in pea. Subsequently, we utilized a dataset based on comparative transcriptome analysis to select a candidate gene encoding DOX for medicaol synthase in barrel medic. Recombinant proteins of the gene converted orobanchol to medicaol. The candidate genes encoding DOX and BAHD acyltransferase for fabacol synthase and fabacol acetyltransferase, respectively, were selected by co-expression analysis in pea. The recombinant proteins of the candidate genes converted orobanchol to fabacol and acetylated fabacol. Furthermore, fabacol acetyltransferase and its homolog in cowpea acetylated orobanchol. The kinetics and substrate specificity analyses revealed high affinity and strict recognition of the substrates of the identified enzymes. These findings shed light on the molecular mechanisms underlying the structural diversity of SLs.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
10
|
Zhu B, Wang M, Pang Y, Hu X, Sun C, Zhou H, Deng Y, Lu S. The Smi-miR858a- SmMYB module regulates tanshinone and phenolic acid biosynthesis in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2024; 11:uhae047. [PMID: 38706582 PMCID: PMC11069429 DOI: 10.1093/hr/uhae047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
Tanshinones and phenolic acids are two major classes of bioactive compounds in Salvia miltiorrhiza. Revealing the regulatory mechanism of their biosynthesis is crucial for quality improvement of S. miltiorrhiza medicinal materials. Here we demonstrated that Smi-miR858a-Smi-miR858c, a miRNA family previously known to regulate flavonoid biosynthesis, also played critical regulatory roles in tanshinone and phenolic acid biosynthesis in S. miltiorrhiza. Overexpression of Smi-miR858a in S. miltiorrhiza plants caused significant growth retardation and tanshinone and phenolic acid reduction. Computational prediction and degradome and RNA-seq analyses revealed that Smi-miR858a could directly cleave the transcripts of SmMYB6, SmMYB97, SmMYB111, and SmMYB112. Yeast one-hybrid and transient transcriptional activity assays showed that Smi-miR858a-regulated SmMYBs, such as SmMYB6 and SmMYB112, could activate the expression of SmPAL1 and SmTAT1 involved in phenolic acid biosynthesis and SmCPS1 and SmKSL1 associated with tanshinone biosynthesis. In addition to directly activating the genes involved in bioactive compound biosynthesis pathways, SmMYB6, SmMYB97, and SmMYB112 could also activate SmAOC2, SmAOS4, and SmJMT2 involved in the biosynthesis of methyl jasmonate, a significant elicitor of plant secondary metabolism. The results suggest the existence of dual signaling pathways for the regulation of Smi-miR858a in bioactive compound biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Butuo Zhu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Meizhen Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yongqi Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xiangling Hu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hong Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
11
|
Lv X, Zhang W, Chu S, Zhang H, Wu Y, Zhu Y, Yang D, Zhu Y, Mans DRA, Chen H, Liang Z. Endophytic fungus Penicillium steckii DF33 promoted tanshinones biosynthesis in Salvia miltiorrhiza by regulating the expression of CYP450 genes. Gene 2024; 899:148094. [PMID: 38142897 DOI: 10.1016/j.gene.2023.148094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Salvia miltiorrhiza, a prominent traditional Chinese medicinal resource, has been extensively employed in the management of cardiovascular and cerebrovascular ailments. Ensuring the consistency of S. miltiorrhiza raw materials revolves around the imperative task of maintaining stable tanshinones content and composition. An effective approach in this regard involves the utilization of endophytic fungi as inducers. Within this context, our study spotlights an endophytic fungus, Penicillium steckii DF33, isolated from the roots of S. miltiorrhiza. Remarkably, this fungus has demonstrated a significant capacity to boost the biosynthesis and accumulation of tanshinones. The primary objective of this investigation is to elucidate the underlying regulatory mechanism by which DF33 enhances and regulates the biosynthesis and accumulation of tanshinones. This is achieved through its influence on the differential expression of crucial CYP450 genes within the S. miltiorrhiza hairy roots system. The results revealed that the DF33 elicitor not only promotes the growth of hairy roots but also enhances the accumulation of tanshinones. Notably, the content of cryptotanshinone was reached 1.6452 ± 0.0925 mg g-1, a fourfold increase compared to the control group. Our qRT-PCR results further demonstrate that the DF33 elicitor significantly up-regulates the expression of most key enzyme genes (GGPPS, CPS1, KSL1, CYP76AH1, CYP76AH3, CYP76AK1, CYP71D411) involved in the tanshinone biosynthesis pathway. This effect is particularly pronounced in certain critical CYP450 genes and Tanshinone ⅡA synthase (SmTⅡAS), with their expression levels peaking at 7 days or 14 days, respectively. In summary, endophytic P. steckii DF33 primarily enhances tanshinone biosynthesis by elevating the expression levels of pivotal enzyme genes associated with the modification and transformation stages within the tanshinone biosynthesis pathway. These findings underscore the potential of employing plant probiotics, specifically endophytic and root-associated microbes, to facilitate the biosynthesis and transformation of vital constituents in medicinal plants, and this approach holds promise for enhancing the quality of traditional Chinese medicinal materials.
Collapse
Affiliation(s)
- Xiaoman Lv
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Wenyi Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Haihua Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yongqun Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yun Zhu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yonghong Zhu
- Tianjin Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Dennis R A Mans
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo 9212, Suriname
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
12
|
Bielecka M, Stafiniak M, Pencakowski B, Ślusarczyk S, Jastrzębski JP, Paukszto Ł, Łaczmański Ł, Gharibi S, Matkowski A. Comparative transcriptomics of two Salvia subg. Perovskia species contribute towards molecular background of abietane-type diterpenoid biosynthesis. Sci Rep 2024; 14:3046. [PMID: 38321199 PMCID: PMC10847172 DOI: 10.1038/s41598-024-53510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Tanshinones, are a group of diterpenoid red pigments present in Danshen - an important herbal drug of Traditional Chinese Medicine which is a dried root of Salvia miltiorrhiza Bunge. Some of the tanshinones are sought after as pharmacologically active natural products. To date, the biosynthetic pathway of tanshinones has been only partially elucidated. These compounds are also present in some of the other Salvia species, i.a. from subgenus Perovskia, such as S. abrotanoides (Kar.) Sytsma and S. yangii B.T. Drew. Despite of the close genetic relationship between these species, significant qualitative differences in their diterpenoid profile have been discovered. In this work, we have used the Liquid Chromatography-Mass Spectrometry analysis to follow the content of diterpenoids during the vegetation season, which confirmed our previous observations of a diverse diterpenoid profile. As metabolic differences are reflected in different transcript profile of a species or tissues, we used metabolomics-guided transcriptomic approach to select candidate genes, which expression possibly led to observed chemical differences. Using an RNA-sequencing technology we have sequenced and de novo assembled transcriptomes of leaves and roots of S. abrotanoides and S. yangii. As a result, 134,443 transcripts were annotated by UniProt and 56,693 of them were assigned as Viridiplantae. In order to seek for differences, the differential expression analysis was performed, which revealed that 463, 362, 922 and 835 genes indicated changes in expression in four comparisons. GO enrichment analysis and KEGG functional analysis of selected DEGs were performed. The homology and expression of two gene families, associated with downstream steps of tanshinone and carnosic acid biosynthesis were studied, namely: cytochromes P-450 and 2-oxoglutarate-dependend dioxygenases. Additionally, BLAST analysis revealed existence of 39 different transcripts related to abietane diterpenoid biosynthesis in transcriptomes of S. abrotanoides and S. yangii. We have used quantitative real-time RT-PCR analysis of selected candidate genes, to follow their expression levels over the vegetative season. A hypothesis of an existence of a multifunctional CYP76AH89 in transcriptomes of S. abrotanoides and S. yangii is discussed and potential roles of other CYP450 homologs are speculated. By using the comparative transcriptomic approach, we have generated a dataset of candidate genes which provides a valuable resource for further elucidation of tanshinone biosynthesis. In a long run, our investigation may lead to optimization of diterpenoid profile in S. abrotanoides and S. yangii, which may become an alternative source of tanshinones for further research on their bioactivity and pharmacological therapy.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland.
| | - Marta Stafiniak
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/113, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Rudolfa Weigla 12, Wrocław, Poland
| | - Shima Gharibi
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, Wrocław, Poland
| |
Collapse
|
13
|
Zhang S, Qi X, Zhu R, Ye D, Shou M, Peng L, Qiu M, Shi M, Kai G. Transcriptome Analysis of Salvia miltiorrhiza under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:161. [PMID: 38256715 PMCID: PMC10819027 DOI: 10.3390/plants13020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Phenolic acids are one of the major secondary metabolites accumulated in Salvia miltiorrhiza with various pharmacological activities. Moderate drought stress can promote the accumulation of phenolic acids in S. miltiorrhiza, while the mechanism remains unclear. Therefore, we performed transcriptome sequencing of S. miltiorrhiza under drought treatment. A total of 47,169 unigenes were successfully annotated in at least one of the six major databases. Key enzyme genes involved in the phenolic acid biosynthetic pathway, including SmPAL, SmC4H, Sm4CL, SmTAT, SmHPPR, SmRAS and SmCYP98A14, were induced. Unigenes annotated as laccase correlated with SmRAS and SmCYP98A14 were analyzed, and seven candidates that may be involved in the key step of SalB biosynthesis by RA were obtained. A total of 15 transcription factors significantly up-regulated at 2 h and 4 h potentially regulating phenolic acid biosynthesis were screened out. TRINITY_DN14213_c0_g1 (AP2/ERF) significantly transactivated the expression of SmC4H and SmRAS, suggesting its role in the regulation of phenolic acid biosynthesis. GO and KEGG enrichment analysis of differential expression genes showed that phenylpropanoid biosynthesis and plant hormone signal transduction were significantly higher. The ABA-dependent pathway is essential for resistance to drought and phenolic acid accumulation. Expression patterns in drought and ABA databases showed that four PYLs respond to both drought and ABA, and three potential SnRK2 family members were annotated and analyzed. The present study presented a comprehensive transcriptome analysis of S. miltiorrhiza affected by drought, which provides a rich source for understanding the molecular mechanism facing abiotic stress in S. miltiorrhiza.
Collapse
Affiliation(s)
- Siwei Zhang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
| | - Xinlan Qi
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
| | - Ruiyan Zhu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongdong Ye
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
| | - Minyu Shou
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
| | - Lulu Peng
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Sustainable Utilization of Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (X.Q.); (D.Y.); (M.S.); (L.P.)
- State Key Laboratory of Phytochemistry and Sustainable Utilization of Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| |
Collapse
|
14
|
Chen X, Zhang X, Sun W, Hou Z, Nie B, Wang F, Yang S, Feng S, Li W, Wang L. LcSAO1, an Unconventional DOXB Clade 2OGD Enzyme from Ligusticum chuanxiong Catalyzes the Biosynthesis of Plant-Derived Natural Medicine Butylphthalide. Int J Mol Sci 2023; 24:17417. [PMID: 38139246 PMCID: PMC10743894 DOI: 10.3390/ijms242417417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Butylphthalide, a prescription medicine recognized for its efficacy in treating ischemic strokes approved by the State Food and Drug Administration of China in 2005, is sourced from the traditional botanical remedy Ligusticum chuanxiong. While chemical synthesis offers a viable route, limitations in the production of isomeric variants with compromised bioactivity necessitate alternative strategies. Addressing this issue, biosynthesis offers a promising solution. However, the intricate in vivo pathway for butylphthalide biosynthesis remains elusive. In this study, we examined the distribution of butylphthalide across various tissues of L. chuanxiong and found a significant accumulation in the rhizome. By searching transcriptome data from different tissues of L. chuanxiong, we identified four rhizome-specific genes annotated as 2-oxoglutarate-dependent dioxygenase (2-OGDs) that emerged as promising candidates involved in butylphthalide biosynthesis. Among them, LcSAO1 demonstrates the ability to catalyze the desaturation of senkyunolide A at the C-4 and C-5 positions, yielding the production of butylphthalide. Experimental validation through transient expression assays in Nicotiana benthamiana corroborates this transformative enzymatic activity. Notably, phylogenetic analysis of LcSAO1 revealed that it belongs to the DOXB clade, which typically encompasses genes with hydroxylation activity, rather than desaturation. Further structure modelling and site-directed mutagenesis highlighted the critical roles of three amino acid residues, T98, S176, and T178, in substrate binding and enzyme activity. By unraveling the intricacies of the senkyunolide A desaturase, the penultimate step in the butylphthalide biosynthesis cascade, our findings illuminate novel avenues for advancing synthetic biology research in the realm of medicinal natural products.
Collapse
Affiliation(s)
- Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Xiaopeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Wenkai Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Fengjiao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Shourui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| |
Collapse
|
15
|
Ren L, Luo L, Hu Z, Ma Y, Wang J, Cheng Y, Jin B, Chen T, Tang J, Cui G, Guo J, Huang L. Functional characterization of CYP81C16 involved in the tanshinone biosynthetic pathway in Salvia miltiorrhiza. Chin J Nat Med 2023; 21:938-949. [PMID: 38143107 DOI: 10.1016/s1875-5364(23)60484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 12/26/2023]
Abstract
Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Linglong Luo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Yatian Cheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| |
Collapse
|
16
|
Liu C, Cheng M, Ma C, Chen J, Tan H. Identification of novel flavin-dependent monooxygenase from Strobilanthes Cusia reveals molecular basis of indoles' biosynthetic logic. BMC PLANT BIOLOGY 2023; 23:527. [PMID: 37904107 PMCID: PMC10617207 DOI: 10.1186/s12870-023-04557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Strobilanthes cusia (Nees) Kuntze is a traditional medical plant distributed widely in south China. The indole compounds that originated from the plant are responsible for its pharmacological activities. However, the reason why indole ingredients are accumulated in this herb and how it is biosynthesized has remained largely unknown. RESULTS In this study, metabolic and transcriptional profiling measurement experiments of different S. cusia organs were carried out to understand the underlying molecular basis of indoles' biosynthetic logic. A metabolic investigation demonstrated that the indoles are primarily accumulated mainly in aerial parts, particularly in leaves. RNA-seq was employed to reveal the organ specific accumulation of indoles in different S. cusia organs. Meanwhile, a flavin-dependent monooxygenase gene (ScFMO1) was found in S. cusia, and it has capacity to produce indoxyl from indole by the fermentation assay. Finally, we assessed the outcomes of transient expression experiment in tobacco and confirmed that ScFMO1 localizes in cytoplasm. CONCLUSIONS Our results suggest that ScFMO1 plays a key role in biosynthesis of indoles (Indigo, indirubin, indican, etc.), it will be useful for illuminating the molecular basis of the medicinal indoles' biosynthesis and developing strategies for improving their yields.
Collapse
Affiliation(s)
- Chang Liu
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Mengya Cheng
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chao Ma
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junfeng Chen
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hexin Tan
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China.
| |
Collapse
|
17
|
Zhu H, Ren X, Huang Y, Su T, Yang L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023; 13:852. [PMID: 37512559 PMCID: PMC10384431 DOI: 10.3390/metabo13070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Euphorbia stracheyi Boiss was used for hemostasis, analgesia, and muscular regeneration in traditional Chinese medicine. To study the chemical constituents of E. stracheyi, the ethyl acetate part of the methanol extract of the whole plant was separated by silica gel, sephadex LH-20 column chromatography, and semi-preparative HPLC. The isolation led to the characterization of a new lathyrane type diterpenoid, euphostrachenol A (1), as well as eleven known compounds (2-11), including a lathyrane, three ingenane-type and two abietane-type diterpenoids, two ionones, and two flavonoids. The structures of these compounds were established using 1D- and 2D-NMR experiments, mass spectrometry, and X-ray crystallographic experiments. The MTT method was used to determine the cytotoxic activity of five cancer cell lines (Leukemia HL-60, lung cancer A-549, liver cancer SMMC-7721, breast cancer MCF-7, and colon cancer SW480) on the isolated compounds. However, only compound 4 showed moderate cytotoxicity against these cell lines, with IC50 values ranging from 10.28 to 29.70 μM, while the others were inactive. Our chemical investigation also confirmed the absence of jatrophane-type diterpenoids in the species, which may be related to its special habitat.
Collapse
Affiliation(s)
- Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiangxiang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yanbo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
18
|
Xia J, Lou G, Zhang L, Huang Y, Yang J, Guo J, Qi Z, Li Z, Zhang G, Xu S, Song X, Zhang X, Wei Y, Liang Z, Yang D. Unveiling the spatial distribution and molecular mechanisms of terpenoid biosynthesis in Salvia miltiorrhiza and S. grandifolia using multi-omics and DESI-MSI. HORTICULTURE RESEARCH 2023; 10:uhad109. [PMID: 37577405 PMCID: PMC10419090 DOI: 10.1093/hr/uhad109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Salvia miltiorrhiza and S. grandifolia are rich in diterpenoids and have therapeutic effects on cardiovascular diseases. In this study, the spatial distribution of diterpenoids in both species was analyzed by a combination of metabolomics and mass spectrometry imaging techniques. The results indicated that diterpenoids in S. miltiorrhiza were mainly abietane-type norditerpenoid quinones with a furan or dihydrofuran D-ring and were mainly distributed in the periderm of the roots, e.g. cryptotanshinone and tanshinone IIA. The compounds in S. grandifolia were mainly phenolic abietane-type tricyclic diterpenoids with six- or seven-membered C-rings, and were widely distributed in the periderm, phloem, and xylem of the roots, e.g. 11-hydroxy-sugiol, 11,20-dihydroxy-sugiol, and 11,20-dihydroxy-ferruginol. In addition, the leaves of S. grandifolia were rich in tanshinone biosynthesis precursors, such as 11-hydroxy-sugiol, while those of S. miltiorrhiza were rich in phenolic acids. Genes in the upstream pathway of tanshinone biosynthesis were highly expressed in the root of S. grandifolia, and genes in the downstream pathway were highly expressed in the root of S. miltiorrhiza. Here, we describe the specific tissue distributions and mechanisms of diterpenoids in two Salvia species, which will facilitate further investigations of the biosynthesis of diterpenoids in plant synthetic biology.
Collapse
Affiliation(s)
- Jie Xia
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| | - Ganggui Lou
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| | - Lan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| | - Yanbo Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, 200000, Shanghai, China
| | - Jian Yang
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, 100000, Beijing, China
| | - Juan Guo
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, 100000, Beijing, China
| | - Zhechen Qi
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, 310000, Hangzhou, China
| | - Guoliang Zhang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, 310000, Hangzhou, China
| | - Shengchun Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, 310000, Hangzhou, China
| | - Xijiao Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, 310000, Hangzhou, China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| | - Yukun Wei
- Shanghai Botanical Garden, Shanghai, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 310000, Hangzhou, China
| |
Collapse
|
19
|
Li J, Li C, Deng Y, Wei H, Lu S. Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad114. [PMID: 37577393 PMCID: PMC10419789 DOI: 10.1093/hr/uhad114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
Salvia miltiorrhiza is a model medicinal plant with significant economic and medicinal value. Its roots produce a group of diterpenoid lipophilic bioactive components, termed tanshinones. Biosynthesis and regulation of tanshinones has attracted widespread interest. However, the methylome of S. miltiorrhiza has not been analysed and the regulatory mechanism of DNA methylation in tanshinone production is largely unknown. Here we report single-base resolution DNA methylomes from roots and leaves. Comparative analysis revealed differential methylation patterns for CG, CHG, and CHH contexts and the association between DNA methylation and the expression of genes and small RNAs. Lowly methylated genes always had higher expression levels and 24-nucleotide sRNAs could be key players in the RdDM pathway in S. miltiorrhiza. DNA methylation variation analysis showed that CHH methylation contributed mostly to the difference. Go enrichment analysis showed that diterpenoid biosynthetic process was significantly enriched for genes with downstream overlapping with hypoCHHDMR in July_root when comparing with those in March_root. Tanshinone biosynthesis-related enzyme genes, such as DXS2, CMK, IDI1, HMGR2, DXR, MDS, CYP76AH1, 2OGD25, and CYP71D373, were less CHH methylated in gene promoters or downstream regions in roots collected in July than those collected in March. Consistently, gene expression was up-regulated in S. miltiorrhiza roots collected in July compared with March and the treatment of DNA methylation inhibitor 5-azacytidine significantly promoted tanshinone production. It suggests that DNA methylation plays a significant regulatory role in tanshinone biosynthesis in S. miltiorrhiza through changing the levels of CHH methylation in promoters or downstreams of key enzyme genes.
Collapse
Affiliation(s)
- Jiang Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
20
|
Pan X, Chang Y, Li C, Qiu X, Cui X, Meng F, Zhang S, Li X, Lu S. Chromosome-level genome assembly of Salvia miltiorrhiza with orange roots uncovers the role of Sm2OGD3 in catalyzing 15,16-dehydrogenation of tanshinones. HORTICULTURE RESEARCH 2023; 10:uhad069. [PMID: 37293533 PMCID: PMC10244880 DOI: 10.1093/hr/uhad069] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023]
Abstract
Salvia miltiorrhiza is well known for its clinical practice in treating heart and cardiovascular diseases. Its roots, used for traditional Chinese medicine materials, are usually brick-red due to accumulation of red pigments, such as tanshinone IIA and tanshinone I. Here we report a S. miltiorrhiza line (shh) with orange roots. Compared with the red roots of normal S. miltiorrhiza plants, the contents of tanshinones with a single bond at C-15,16 were increased, whereas those with a double bond at C-15,16 were significantly decreased in shh. We assembled a high-quality chromosome-level genome of shh. Phylogenomic analysis showed that the relationship between two S. miltiorrhiza lines with red roots was closer than the relationship with shh. It indicates that shh could not be the mutant of an extant S. miltiorrhiza line with red roots. Comparative genomic and transcriptomic analyses showed that a 1.0 kb DNA fragment was deleted in shh Sm2OGD3m. Complementation assay showed that overexpression of intact Sm2OGD3 in shh hairy roots recovered furan D-ring tanshinone accumulation. Consistently, in vitro protein assay showed that Sm2OGD3 catalyzed the conversion of cyptotanshinone, 15,16-dihydrotanshinone I and 1,2,15,16-tetrahydrotanshinone I into tanshinone IIA, tanshinone I and 1,2-dihydrotanshinone I, respectively. Thus, Sm2OGD3 functions as tanshinone 15,16-dehydrogenase and is a key enzyme in tanshinone biosynthesis. The results provide novel insights into the metabolic network of medicinally important tanshinone compounds.
Collapse
Affiliation(s)
- Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yujie Chang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xinyun Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xian’en Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | | |
Collapse
|
21
|
Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1178-1201. [PMID: 36891828 PMCID: PMC11166267 DOI: 10.1111/tpj.16177] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.
Collapse
Affiliation(s)
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, Molecular Plant Sciences Building, 1066 Bogue Street, East Lansing, Michigan, 48824, USA
| |
Collapse
|
22
|
Yang M, Zhou M, Shu M, Han Z, Ma R, Chen Y, Zheng T, Chen H. The Blinin Accumulation Promoted by CbMYB32 Involved in Conyza blinii Resistance to Nocturnal Low Temperature. Int J Mol Sci 2023; 24:ijms24087143. [PMID: 37108302 PMCID: PMC10139108 DOI: 10.3390/ijms24087143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Blinin, a unique terpenoid from Conyza blinii (C. blinii), benefits our health even though this is not its primary function. Physiological and ecological studies have found that the great secondary metabolites participate in important biological processes and relate to species evolution, environmental adaptation, and so on. Moreover, our previous studies have shown that the metabolism and accumulation of blinin has a close correspondence with nocturnal low temperature (NLT). To find out the transcriptional regulation linker in the crosstalk between blinin and NLT, RNA-seq, comparative analysis, and co-expression network were performed. The results indicated that CbMYB32 is located in a nucleus without independent transcriptional activation activity and is probably involved in the metabolism of blinin. Furthermore, we compared the silence and overexpression of CbMYB32 with wild C. blinii. Compared with the overexpression and the wildtype, the CbMYB32 silence line lost more than half of the blinin and detected more peroxide under NLT. Finally, as a characteristic secret of C. blinii, it is reasonable to infer that blinin participates in the NLT adaptation mechanism and has contributed to the systematic evolution of C. blinii.
Collapse
Affiliation(s)
- Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mengdan Shu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhengqi Han
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiqi Ma
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuting Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Traditional Chinese Medicine Planting Institute, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
23
|
Igamberdiev AU, Bykova NV. Mitochondria in photosynthetic cells: Coordinating redox control and energy balance. PLANT PHYSIOLOGY 2023; 191:2104-2119. [PMID: 36440979 PMCID: PMC10069911 DOI: 10.1093/plphys/kiac541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 05/21/2023]
Abstract
In photosynthetic tissues in the light, the function of energy production is associated primarily with chloroplasts, while mitochondrial metabolism adjusts to balance ATP supply, regulate the reduction level of pyridine nucleotides, and optimize major metabolic fluxes. The tricarboxylic acid cycle in the light transforms into a noncyclic open structure (hemicycle) maintained primarily by the influx of malate and the export of citrate to the cytosol. The exchange of malate and citrate forms the basis of feeding redox energy from the chloroplast into the cytosolic pathways. This supports the level of NADPH in different compartments, contributes to the biosynthesis of amino acids, and drives secondary metabolism via a supply of substrates for 2-oxoglutarate-dependent dioxygenase and for cytochrome P450-catalyzed monooxygenase reactions. This results in the maintenance of redox and energy balance in photosynthetic plant cells and in the formation of numerous bioactive compounds specific to any particular plant species. The noncoupled mitochondrial respiration operates in coordination with the malate and citrate valves and supports intensive fluxes of respiration and photorespiration. The metabolic system of plants has features associated with the remarkable metabolic plasticity of mitochondria that permit the use of energy accumulated during photosynthesis in a way that all anabolic and catabolic pathways become optimized and coordinated.
Collapse
|
24
|
Wang CY, Qin F, Wang CG, Kim D, Li JJ, Chen XL, Wang HS, Lee SK. Novel lignans from Zanthoxylum nitidum and antiproliferation activity of sesaminone in osimertinib-resistant non-small cell lung cancer cells. Bioorg Chem 2023; 134:106445. [PMID: 36893545 DOI: 10.1016/j.bioorg.2023.106445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Seven previously undescribed tetrahydrofuran lignans with different configurations and unusual isopentenyl substitutions, nitidumlignans D-J (corresponding to compounds 1, 2, 4, 6, 7, 9 and 10), along with 14 known lignans, were isolated from Zanthoxylum nitidum. Notably, compound 4 is an uncommon naturally occurring furan-core lignan derived from tetrahydrofuran aromatization. The antiproliferation activity of the isolated compounds (1-21) was determined in various human cancer cell lines. The structure-activity study revealed that the steric positioning and chirality of the lignans exert important effects on their activity and selectivity. In particular, compound 3 (sesaminone) exhibited potent antiproliferative activity in cancer cells, including acquired osimertinib-resistant non-small-cell lung cancer (HCC827-osi) cells. Compound 3 also inhibited colony formation and induced the apoptotic death of HCC827-osi cells. The underlying molecular mechanisms revealed that 3 downregulated the activation of the c-Met/JAK1/STAT3 and PI3K/AKT/mTOR signaling pathways in the HCC827-osi cells. In addition, the combination of 3 and osimertinib exhibited synergistic effects on the antiproliferative activity against HCC827-osi cells. Overall, these findings inform the structure elucidation of novel lignans isolated from Z. nitidum, and sesaminone was identified as a potential compound for exerting antiproliferative effects on osimertinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Gu Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xian-Lan Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
26
|
De La Peña R, Hodgson H, Liu JCT, Stephenson MJ, Martin AC, Owen C, Harkess A, Leebens-Mack J, Jimenez LE, Osbourn A, Sattely ES. Complex scaffold remodeling in plant triterpene biosynthesis. Science 2023; 379:361-368. [PMID: 36701471 PMCID: PMC9976607 DOI: 10.1126/science.adf1017] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Triterpenes with complex scaffold modifications are widespread in the plant kingdom. Limonoids are an exemplary family that are responsible for the bitter taste in citrus (e.g., limonin) and the active constituents of neem oil, a widely used bioinsecticide (e.g., azadirachtin). Despite the commercial value of limonoids, a complete biosynthetic route has not been described. We report the discovery of 22 enzymes, including a pair of neofunctionalized sterol isomerases, that catalyze 12 distinct reactions in the total biosynthesis of kihadalactone A and azadirone, products that bear the signature limonoid furan. These results enable access to valuable limonoids and provide a template for discovery and reconstitution of triterpene biosynthetic pathways in plants that require multiple skeletal rearrangements and oxidations.
Collapse
Affiliation(s)
- Ricardo De La Peña
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hannah Hodgson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Michael J Stephenson
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Azahara C Martin
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Charlotte Owen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, 4505 Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA
| | - Luis E Jimenez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Bryson AE, Lanier ER, Lau KH, Hamilton JP, Vaillancourt B, Mathieu D, Yocca AE, Miller GP, Edger PP, Buell CR, Hamberger B. Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory. Nat Commun 2023; 14:343. [PMID: 36670101 PMCID: PMC9860074 DOI: 10.1038/s41467-023-35845-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.
Collapse
Affiliation(s)
- Abigail E Bryson
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Emily R Lanier
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Kin H Lau
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Davis Mathieu
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Garret P Miller
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
28
|
Lin C, Zhang L, Zhang X, Wang X, Wang C, Zhang Y, Wang J, Li X, Song Z. Spatiotemporal and Transcriptional Characterization on Tanshinone Initial Synthesis in Salvia miltiorrhiza Roots. Int J Mol Sci 2022; 23:ijms232113607. [PMID: 36362395 PMCID: PMC9655840 DOI: 10.3390/ijms232113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Tanshinones are the bioactive constituents of Danshen (Salvia miltiorrhiza Bunge), which is used in Traditional Chinese Medicine to treat cardiovascular and other diseases, and they synthesize and accumulate in the root periderm of S. miltiorrhiza. However, there is no relevant report on the initial stage of tanshinone synthesis, as well as the root structure and gene expression characteristics. The present study aims to provide new insights into how these bioactive principles begin to synthesize by characterizing possible differences in their biosynthesis and accumulation during early root development from both spatial and temporal aspects. The morphological characteristics and the content of tanshinones in roots of S. miltiorrhiza were investigated in detail by monitoring the seedlings within 65 days after germination (DAGs). The ONT transcriptome sequencing was applied to investigate gene expression patterns. The periderm of the S. miltiorrhiza storage taproot initially synthesized tanshinone on about 30 DAGs. Three critical stages of tanshinone synthesis were preliminarily determined: preparation, the initial synthesis, and the continuous rapid synthesis. The difference of taproots in the first two stages was the smallest, and the differentially expressed genes (DEGs) were mainly enriched in terpene synthesis. Most genes involved in tanshinone synthesis were up regulated during the gradual formation of the red taproot. Plant hormone signal transduction and ABC transport pathways were widely involved in S. miltiorrhiza taproot development. Five candidate genes that may participate in or regulate tanshinone synthesis were screened according to the co-expression pattern. Moreover, photosynthetic ferredoxin (FD), cytochrome P450 reductase (CPR), and CCAAT binding transcription factor (CBF) were predicted to interact with the known downstream essential enzyme genes directly. The above results provide a necessary basis for analyzing the initial synthesis and regulation mechanism of Tanshinones.
Collapse
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Lin Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xia Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xin Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Chaoyang Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yufeng Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Jianhua Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| |
Collapse
|
29
|
REN J, WU Y, ZHU Z, CHEN R, ZHANG L. Biosynthesis and regulation of diterpenoids in medicinal plants. Chin J Nat Med 2022; 20:761-772. [DOI: 10.1016/s1875-5364(22)60214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/03/2022]
|
30
|
Li W, Huang T, Xu S, Che B, Yu Y, Zhang W, Tang K. Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules 2022; 27:molecules27175594. [PMID: 36080361 PMCID: PMC9457553 DOI: 10.3390/molecules27175594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor of the male urinary system in Europe and America. According to the data in the World Cancer Report 2020, the incidence rate of PCa ranks second in the prevalence of male malignant tumors and varies worldwide between regions and population groups. Although early PCa can achieve good therapeutic results after surgical treatment, due to advanced PCa, it can adapt and tolerate androgen castration-related drugs through a variety of mechanisms. For this reason, it is often difficult to achieve effective therapeutic results in the treatment of advanced PCa. Tanshinone is a new fat-soluble phenanthraquinone compound derived from Salvia miltiorrhiza that can play a therapeutic role in different cancers, including PCa. Several studies have shown that Tanshinone can target various molecular pathways of PCa, including the signal transducer and activator of transcription 3 (STAT3) pathway, androgen receptor (AR) pathway, phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, and mitogen-activated protein kinase (MAPK) pathway, which will affect the release of pro-inflammatory cytokines and affect cell proliferation, apoptosis, tumor metabolism, genomic stability, and tumor drug resistance. Thus, the occurrence and development of PCa cells are inhibited. In this review, we summarized the in vivo and in vitro evidence of Tanshinone against prostate cancer and discussed the effect of Tanshinone on nuclear factor kappa-B (NF-κB), AR, and mTOR. At the same time, we conducted a network pharmacology analysis on the four main components of Tanshinone to further screen the possible targets of Tanshinone against prostate cancer and provide ideas for future research.
Collapse
|
31
|
Hu Z, Ren L, Bu J, Liu X, Li Q, Guo W, Ma Y, Wang J, Chen T, Wang L, Jin B, Tang J, Cui G, Guo J, Huang L. Functional Characterization of a 2OGD Involved in Abietane-Type Diterpenoids Biosynthetic Pathway in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2022; 13:947674. [PMID: 35873989 PMCID: PMC9301305 DOI: 10.3389/fpls.2022.947674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 06/10/2023]
Abstract
Salvia miltiorrhiza is one of the most commonly used Chinese medicinal herbs. Tanshinones, the most abundant lipid-soluble bioactive constituents of S. miltiorrhiza, are a class of structural highly oxidized abietane-type diterpenoids with multiple pharmacological activities. Although several enzymes, including diterpene synthase, cytochrome P450, and Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD), have been functionally characterized in biosynthesis of abietane-type diterpenoids, the highly oxidized structure and complex secondary metabolic network of tanshinones imply that more oxidases should be characterized. Here, we identified a new 2OGD (Sm2OGD25) from S. miltiorrhiza. Molecular cloning and functional studies in vitro showed that Sm2OGD25 could catalyze the hydroxylation of sugiol at C-15 and C-16 positions to produce hypargenin B and crossogumerin C, respectively. The phylogenetic analysis of the DOXC family demonstrated that Sm2OGD25 belongs to the DOXC54 clade. Furthermore, structural modeling and site-directed mutagenesis characterization revealed the importance of the hydrogen-bonding residue Y339 and the hydrophobic residues (V122, F129, A144, A208, F303, and L344) in substrate binding and enzyme activity. This study will promote further studies on the catalytic characterization of plant 2OGDs and the secondary metabolic biosynthesis network of diterpenoids.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Ren
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qishuang Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wending Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Su Y, Lin C, Zhang J, Hu B, Wang J, Li J, Wang S, Liu R, Li X, Song Z, Wang J. One-Step Regeneration of Hairy Roots to Induce High Tanshinone Plants in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2022; 13:913985. [PMID: 35668807 PMCID: PMC9163987 DOI: 10.3389/fpls.2022.913985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 06/12/2023]
Abstract
Salvia miltiorrhiza is a traditional Chinese medicinal plant of Labiatae, which has been widely utilized to treat a variety of cardiovascular and cerebrovascular diseases. However, due to the long growth cycle, low content of active ingredients, and serious quality deterioration of S. miltiorrhiza, the use of biotechnology to improve S. miltiorrhiza to meet the growing demand for clinical applications has become a research hotspot. In this study, a novel one-step hairy root regeneration method was developed, which could rapidly obtain hairy roots and regenerated plants with high tanshinone content. By optimizing the parameters of Agrobacterium rhizogenes transformation in S. miltiorrhiza, it was finally established that the explants were infected in Ar.qual (OD600 = 0.6) for 10 min, co-cultured for 3 days, and then screened on the screening medium containing 7.5 mg/l hygromycin, the maximum transformation frequency can reach 73.85%. GFP and PCR detection yielded a total of 9 positive transgenic hairy root lines and 11 positive transgenic regenerated plants. SmGGPPS1 was successfully overexpressed in positive transgenic regenerated plants, according to the results of qRT-PCR. The content of tanshinone IIA and cryptotanshinone were dramatically enhanced in transgenic regenerated plants and hairy roots by Ultra Performance Liquid Chromatography analysis. Based on the Agrobacterium-mediated transformation of S. miltiorrhiza, this study developed a new method for regenerating plants with transgenic hairy roots. This method provides a foundation for the breeding of S. miltiorrhiza and the sustainable development of medicinal plant resources, as well as provides a useful reference for the application of other species.
Collapse
Affiliation(s)
- Yuekai Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Caicai Lin
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jin Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Taishan Academy of Forestry Sciences, Tai’an, China
| | - Bei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jie Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jingyu Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shiqi Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Ruihao Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xia Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Zhenqiao Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jianhua Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
33
|
Wang Z, Peters RJ. Tanshinones: Leading the way into Lamiaceae labdane-related diterpenoid biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102189. [PMID: 35196638 PMCID: PMC8940693 DOI: 10.1016/j.pbi.2022.102189] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Tanshinones are the bioactive diterpenoid constituents of the traditional Chinese medicinal herb Danshen (Salvia miltiorrhiza), and are examples of the phenolic abietanes widely found within the Lamiaceae plant family. Due to the significant interest in these labdane-related diterpenoid natural products, their biosynthesis has been intensively investigated. In addition to providing the basis for metabolic engineering efforts, this work further yielded pioneering insights into labdane-related diterpenoid biosynthesis in the Lamiaceae more broadly. This includes stereochemical foreshadowing of aromatization, with novel protein domain loss in the relevant diterpene synthase, as well as broader phylogenetic conservation of the relevant enzymes. Beyond such summary of more widespread metabolism, formation of the furan ring that characterizes the tanshinones also has been recently elucidated. Nevertheless, the biocatalysts for the pair of demethylations remain unknown, and the intriguing potential connection of these reactions to the further aromatization observed in the tanshinones are speculated upon here.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
34
|
Zhou X, Liu Z. Unlocking plant metabolic diversity: A (pan)-genomic view. PLANT COMMUNICATIONS 2022; 3:100300. [PMID: 35529944 PMCID: PMC9073316 DOI: 10.1016/j.xplc.2022.100300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 05/28/2023]
Abstract
Plants produce a remarkable diversity of structurally and functionally diverse natural chemicals that serve as adaptive compounds throughout their life cycles. However, unlocking this metabolic diversity is significantly impeded by the size, complexity, and abundant repetitive elements of typical plant genomes. As genome sequencing becomes routine, we anticipate that links between metabolic diversity and genetic variation will be strengthened. In addition, an ever-increasing number of plant genomes have revealed that biosynthetic gene clusters are not only a hallmark of microbes and fungi; gene clusters for various classes of compounds have also been found in plants, and many are associated with important agronomic traits. We present recent examples of plant metabolic diversification that have been discovered through the exploration and exploitation of various genomic and pan-genomic data. We also draw attention to the fundamental genomic and pan-genomic basis of plant chemodiversity and discuss challenges and future perspectives for investigating metabolic diversity in the coming pan-genomics era.
Collapse
Affiliation(s)
- Xuan Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|