1
|
Kuno M, Miyamoto A, Takano H, Homma M, Shiotani N, Uchida K, Takikawa H, Nakajima M, Mizutani M, Wakabayashi T, Sugimoto Y. CYP722A1-mediated 16-hydroxylation of carlactonoic acid regulates the floral transition in Arabidopsis. PLANT & CELL PHYSIOLOGY 2025; 66:645-657. [PMID: 40098498 DOI: 10.1093/pcp/pcaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Strigolactones (SLs) are multifunctional plant hormones and rhizosphere signals with diverse structures, roughly classified into two categories: canonical and noncanonical SLs. In Arabidopsis thaliana, SL biosynthesis mutants exhibit increased shoot branching and early flowering, underscoring their roles in developmental regulation. Shoot branching inhibition in Arabidopsis is associated with the methylation of a noncanonical SL, carlactonoic acid (CLA), catalyzed by CLA methyltransferase (CLAMT). Canonical SLs primarily function as rhizosphere signals, with their biosynthesis in dicots mediated by CYP722C enzymes. It is hypothesized that Arabidopsis does not produce canonical SL because of the lack of the CYP722C genes in its genome. Instead, Arabidopsis possesses CYP722A1, a member of the previously uncharacterized CYP722A subfamily, distinct from the CYP722C subfamily. This study demonstrates that Arabidopsis cyp722a1 mutants exhibit an earlier floral transition without excessive shoot branching. Biochemical analysis revealed that CYP722A1 catalyzes the hydroxylation of CLA to produce 16-hydroxy-CLA (16-HO-CLA), which is subsequently methylated by CLAMT to form 16-HO-MeCLA. 16-HO-CLA and 16-HO-MeCLA were detected in the wildtype; however, these compounds were absent in max1-4 mutant, deficient in CLA synthesis, and in cyp722a1 mutant. These findings show CYP722A1-dependent 16-hydroxylation activity of CLA in Arabidopsis. Moreover, they suggest that hydroxylated CLA specifically regulates floral transition, distinct from branching inhibition. Through the identification of CYP722A1 affecting floral transition, which is the distinct role of the CYP722A subfamily, this work provides insights into the structural diversification of SLs for specialized biological functions in plant development.
Collapse
Affiliation(s)
- Masaki Kuno
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ayumi Miyamoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hinako Takano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Kumar KRR, Blomberg J, Björklund S. The role of mediator subunit MED7 in Arabidopsis development. FRONTIERS IN PLANT SCIENCE 2025; 16:1542950. [PMID: 40123954 PMCID: PMC11925930 DOI: 10.3389/fpls.2025.1542950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025]
Abstract
MED7, a middle-module subunit of the transcriptional co-regulator Mediator complex, plays a critical role in gene regulation in Arabidopsis thaliana, where it is encoded by two paralogs, MED7A and MED7B. We present phenotypic analyses of homozygous MED7-silenced transgenic lines with significantly reduced expression of both MED7 paralogs under autotrophic conditions. Our findings demonstrate that MED7 is essential for proper cotyledon opening during de-etiolation, as the silenced lines showed a marked delay in this process. Additionally, these lines displayed distinct morphological alterations, including hyponastic cotyledons, elongated hypocotyls, and modified root architecture, such as shorter primary roots and impaired root hair development in light-grown seedlings. MED7 silencing also significantly hindered light-induced adventitious root (AR) formation on the hypocotyls of etiolated seedlings, leading to a notable reduction in AR production. Moreover, MED7 silencing impacted the timing of floral transition and shoot branching, resulting in delayed flowering and an increased number of primary cauline branches on the inflorescence stem. Together, these results underscore a central role for MED7 in orchestrating key developmental processes in plants.
Collapse
Affiliation(s)
- Koppolu Raja Rajesh Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Hou XH, Xu YC, Sun T, Gong YB, Li XT, Jin GT, Bian YT, Liu YN, Jiang J, Niu XM, Gu H, Guo YL. Green revolution gene drives adaptation of Arabidopsis to the extremely high altitude. SCIENCE CHINA. LIFE SCIENCES 2025; 68:859-870. [PMID: 39856442 DOI: 10.1007/s11427-024-2769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
To elucidate the process of adaptation, particularly the traits subject to natural selection and the molecular mechanisms underlying their natural variation, is one of the primary objectives of evolutionary biology. The uplifted landscape offers an excellent framework for understanding how organisms adapt to dramatic climatic gradients. To investigate the genetic basis of plant adaptation to the extremely high altitude, we first compared the genomic and phenotypic variations of two closely related Arabidopsis thaliana accessions from high altitude (Xizang, also known as "Tibet") and low altitude (Yunnan), respectively. The Xizang population represents a relict group characterized by a small effective population size. Notably, the Xizang genome has more transposable elements (TEs) and more gene loss-of-function (LoF) mutations. Differentially expressed genes were enriched in biological processes of cellular response to oxygen-containing compound, regulation of defense response, and response to light intensity. Intriguingly, the phenotypic selection analysis revealed that silique density was under natural selection. Furthermore, we genetically mapped and validated that the LoF mutation of GA20ox1, the homologous gene of green revolution in rice, resulted in a higher silique density in Xizang Arabidopsis. Given that GA20ox1 is linked to Arabidopsis adaptation to the Alps Mountains, its parallel evolution plays an important role in the adaptation to Alpine habitats. Overall, our results highlight that identifying adaptive traits and elucidating the molecular mechanisms underlying natural variation of these traits is crucial for unraveling the mystery of adaptive evolution and has significant implications for crop breeding.
Collapse
Affiliation(s)
- Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Tianshu Sun
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan-Bo Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Teng Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Tao Bian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ni Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, Moseler A, Lunn JE, Smith SM, Beveridge CA. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. THE NEW PHYTOLOGIST 2024; 244:900-913. [PMID: 39187924 DOI: 10.1111/nph.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jazmine L Humphreys
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Francois F Barbier
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier, 34060, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Philipp Westhoff
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Bonn, 53113, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Steven M Smith
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Christine A Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
5
|
Ma F, Huang X, Zhou J, Zhang N, Deng M, Zheng Y, Zhao M, Chen W, Zhou W, Zhai L, Zhong L, Pang K, Liu X, Zhong X, Ren Y, Liu Y, Sun Q, Sun J. The 'Candidatus phytoplasma ziziphi' effectors SJP1 and SJP2 destabilise the bifunctional regulator ZjTCP7 to modulate floral transition and shoot branching. PLANT, CELL & ENVIRONMENT 2024; 47:2895-2910. [PMID: 38623040 DOI: 10.1111/pce.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Phytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11-like effectors, SJP1 and SJP2, from 'Candidatus Phytoplasma ziziphi' induce shoot branching proliferation. Here, the transcription factor ZjTCP7 was identified as a central target of these two effectors to regulate floral transition and shoot branching. Ectopic expression of ZjTCP7 resulted in enhanced bolting and earlier flowering than did the control. Interaction and expression assays demonstrated that ZjTCP7 interacted with the ZjFT-ZjFD module, thereby enhancing the ability of these genes to directly bind to the ZjAP1 promoter. The effectors SJP1 and SJP2 unravelled the florigen activation complex by specifically destabilising ZjTCP7 and ZjFD to delay floral initiation. Moreover, the shoot branching of the ZjTCP7-SRDX transgenic Arabidopsis lines were comparable to those of the SJP1/2 lines, suggesting the involvement of ZjTCP7 in the regulation of shoot branching. ZjTCP7 interacted with the branching repressor ZjBRC1 to enhance suppression of the auxin efflux carrier ZjPIN3 expression. ZjTCP7 also directly bound to and upregulated the auxin biosynthesis gene ZjYUCCA2, thereby promoting auxin accumulation. Our findings confirm that ZjTCP7 serves as a bifunctional regulator destabilised by the effectors SJP1 and SJP2 to modulate plant development.
Collapse
Affiliation(s)
- Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiang Huang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Meiqi Zhao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wenmin Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Liping Zhai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lei Zhong
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Kaixue Pang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xin Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xinyue Zhong
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yifan Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yu Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, Tian X, Zeng RF, Huang XM. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi ( Litchi chinensis Sonn.). HORTICULTURE RESEARCH 2024; 11:uhae150. [PMID: 38988620 PMCID: PMC11233856 DOI: 10.1093/hr/uhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
SHORT VEGETATIVE PHASE (SVP), a member of the MADS-box transcription factor family, has been reported to regulate bud dormancy in deciduous perennial plants. Previously, three LcSVPs (LcSVP1, LcSVP2 and LcSVP3) were identified from litchi genome, and LcSVP2 was highly expressed in the terminal buds of litchi during growth cessation or dormancy stages and down-regulated during growth stages. In this study, the role of LcSVP2 in governing litchi bud dormancy was examined. LcSVP2 was highly expressed in the shoots, especially in the terminal buds at growth cessation stage, whereas low expression was showed in roots, female flowers and seeds. LcSVP2 was found to be located in the nucleus and have transcription inhibitory activity. Overexpression of LcSVP2 in Arabidopsis thaliana resulted in a later flowering phenotype compared to the wild-type control. Silencing LcSVP2 in growing litchi terminal buds delayed re-entry of dormancy, resulting in significantly lower dormancy rate. The treatment also significantly up-regulated litchi FLOWERING LOCUS T2 (LcFT2). Further study indicates that LcSVP2 interacts with an AP2-type transcription factor, SMALL ORGAN SIZE1 (LcSMOS1). Silencing LcSMOS1 promoted budbreak and delayed bud dormancy. Abscisic acid (200 mg/L), which enforced bud dormancy, induced a short-term increase in the expression of LcSVP2 and LcSMOS1. Our study reveals that LcSVP2 may play a crucial role, likely together with LcSMOS1, in dormancy onset of the terminal bud and may also serve as a flowering repressor in evergreen perennial litchi.
Collapse
|
7
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Ma F, Zhang S, Yao Y, Chen M, Zhang N, Deng M, Chen W, Ma C, Zhang X, Guo C, Huang X, Zhang Z, Li Y, Li T, Zhou J, Sun Q, Sun J. Jujube witches' broom phytoplasmas inhibit ZjBRC1-mediated abscisic acid metabolism to induce shoot proliferation. HORTICULTURE RESEARCH 2023; 10:uhad148. [PMID: 37691966 PMCID: PMC10483173 DOI: 10.1093/hr/uhad148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023]
Abstract
Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Shanqi Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yu Yao
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mengting Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ning Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mingsheng Deng
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Wei Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chi Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xinyue Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chenglong Guo
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiang Huang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhenyuan Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yamei Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Tingyi Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Junyong Zhou
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
9
|
Ahsan MU, Barbier F, Hayward A, Powell R, Hofman H, Parfitt SC, Wilkie J, Beveridge CA, Mitter N. Molecular Cues for Phenological Events in the Flowering Cycle in Avocado. PLANTS (BASEL, SWITZERLAND) 2023; 12:2304. [PMID: 37375929 DOI: 10.3390/plants12122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Reproductively mature horticultural trees undergo an annual flowering cycle that repeats each year of their reproductive life. This annual flowering cycle is critical for horticultural tree productivity. However, the molecular events underlying the regulation of flowering in tropical tree crops such as avocado are not fully understood or documented. In this study, we investigated the potential molecular cues regulating the yearly flowering cycle in avocado for two consecutive crop cycles. Homologues of flowering-related genes were identified and assessed for their expression profiles in various tissues throughout the year. Avocado homologues of known floral genes FT, AP1, LFY, FUL, SPL9, CO and SEP2/AGL4 were upregulated at the typical time of floral induction for avocado trees growing in Queensland, Australia. We suggest these are potential candidate markers for floral initiation in these crops. In addition, DAM and DRM1, which are associated with endodormancy, were downregulated at the time of floral bud break. In this study, a positive correlation between CO activation and FT in avocado leaves to regulate flowering was not seen. Furthermore, the SOC1-SPL4 model described in annual plants appears to be conserved in avocado. Lastly, no correlation of juvenility-related miRNAs miR156, miR172 with any phenological event was observed.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosanna Powell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen Hofman
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - Siegrid Carola Parfitt
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - John Wilkie
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | | | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Cheng Y, Cheng L, Hu G, Guo X, Lan Y. Auxin and CmAP1 regulate the reproductive development of axillary buds in Chinese chestnut (Castanea mollissima). PLANT CELL REPORTS 2023; 42:287-296. [PMID: 36528704 DOI: 10.1007/s00299-022-02956-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Auxin accumulation upregulates the expression of APETALA1 (CmAP1) and subsequently activates inflorescence primordium development in axillary buds of chestnut. The architecture of fruiting branches is a key determinant of chestnut yield. Normally, axillary buds at the top of mother fruiting branches develop into flowering shoots and bear fruits, and the lower axillary buds develop into vegetative shoots. Decapitation of the upper axillary buds induces the lower buds to develop into flowering shoots. How decapitation modulates the tradeoff between vegetative and reproductive development is unclear. We detected inflorescence primordia within both upper and lower axillary buds on mother fruiting branches. The level of the phytohormones 3-indoleacetic acid (IAA) and trans-zeatin (tZ) increased in the lower axillary buds in response to decapitation. Exogenous application of the synthetic analogues 1-naphthylacetic acid (NAA) or 6-benzyladenine (6-BA) blocked or promoted, respectively, the development of the inflorescence primordia in axillary buds. The transcript levels of the floral identity gene CmAP1 increased in axillary buds following decapitation. An auxin response element TGA-box is present in the CmAP1 promoter and influenced the CmAP1 promoter-driven expression of β-glucuronidase (GUS) in floral organs in Arabidopsis, suggesting that CmAP1 is induced by auxin. We propose that decapitation releases axillary bud outgrowth from inhibition caused by apical dominance. During this process, decapitation-induced accumulation of auxin induces CmAP1 expression, subsequently promoting the reproductive development of axillary buds.
Collapse
Affiliation(s)
- Yunhe Cheng
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China
| | - Lili Cheng
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China
| | - Guanglong Hu
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China
| | - Xiaomeng Guo
- College of Forestry, Shenyang Agriculture University, Shenyang, 110866, Liaoning, China
| | - Yanping Lan
- Engineering and Technology Research Center for Chestnut of National Forestry and Grassland Administration, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Ruiwangfeng No. 12, Haidian, Beijing, 100093, China.
| |
Collapse
|