1
|
Farinati S, Soria Garcia AF, Draga S, Vannozzi A, Palumbo F, Scariolo F, Gabelli G, Barcaccia G. Unlocking male sterility in horticultural crops through gene editing technology for precision breeding applications: presentation of a case study in tomato. FRONTIERS IN PLANT SCIENCE 2025; 16:1549136. [PMID: 40115958 PMCID: PMC11924944 DOI: 10.3389/fpls.2025.1549136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Plant male sterility (MS) refers to the failure of the production of functional anthers, viable pollen grains and/or fertile sperm cells. This feature has great potential in horticultural crops for the exploitation of heterosis through the development of F1 hybrid varieties. MS in plants can occur spontaneously or can be induced artificially by exploiting biotechnological tools, such as the editing of genes involved in spore formation or pollen development. The success of such an approach strongly depends both on preliminary knowledge of the involved genes and on effective procedures for in vitro transfection/regeneration of whole plants. Furthermore, according to previous studies based on CRISPR/Cas9 technology, the efficacy of targeting and the resulting mutation profile are critically influenced by intrinsic factors, such as the CRISPR target primary sequence sites and chromatin signatures, which are often associated with varying levels of chromatin accessibility across different genomic regions. This relationship underscores the complexity of CRISPR-based genome editing and highlights the need to identify a precise suitable target. Our paper reports the results obtained for site-specific in vivo mutagenesis via a CRISPR/Cas9-mediated strategy applied to the MYB80 gene, which is a promising target for implementing male sterility in horticultural crops. We highlight the main steps that play a key role in the whole experimental pipeline, which aims at the generation of CRISPR/Cas-edited DNA-free tomato plants. This goal was achieved via protoplast-based technology and by directly delivering a ribonucleoprotein complex consisting of the Cas9 protein and in vitro synthesized single guide RNAs that can target different positions of the gene under investigation. Overall findings and insights are presented and critically discussed.
Collapse
Affiliation(s)
- Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Adriana Fernanda Soria Garcia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| |
Collapse
|
2
|
Gogoi N, Susila H, Leach J, Müllner M, Jones B, Pogson BJ. Developing frameworks for nanotechnology-driven DNA-free plant genome-editing. TRENDS IN PLANT SCIENCE 2025; 30:249-268. [PMID: 39477773 DOI: 10.1016/j.tplants.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 03/08/2025]
Abstract
The bottlenecks of conventional plant genome-editing methods gave an innovative rise to nanotechnology as a delivery tool to manipulate gene(s) of interest. Studies suggest a strong correlation between the physicochemical properties of nanomaterials and their efficiency in gene delivery to different plant species/tissues. In this opinion article we highlight the need for a deeper understanding of plant-nanomaterial interactions to align their full capabilities with the strategic goals of plant genome-editing. Additionally, we emphasize DNA-free plant genome-editing approaches to potentially mitigate concerns surrounding genetically modified organisms (GMOs). Lastly, we propose a strategic integration of the principles of responsible research and innovation (RRI) in R&D. We aim to initiate a dialogue on developing collaborative and socio-technical frameworks for nanotechnology and DNA-free plant genome-editing.
Collapse
Affiliation(s)
- Neelam Gogoi
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Hendry Susila
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Joan Leach
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia; Australian National Centre for the Public Awareness of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Markus Müllner
- Key Centre for Polymers & Colloids, School of Chemistry, Faculty of Science, The University of Sydney, NSW 2006, Australia; Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Brian Jones
- Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Barry J Pogson
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
3
|
Quiroz LF, Khan M, Gondalia N, Lai L, McKeown PC, Brychkova G, Spillane C. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. HORTICULTURE RESEARCH 2025; 12:uhae292. [PMID: 39906168 PMCID: PMC11789523 DOI: 10.1093/hr/uhae292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Despite the transformative power of gene editing for crop improvement, its widespread application across species and varieties is limited by the transformation bottleneck that exists for many crops. The genetic transformation of plants is hindered by a general reliance on in vitro regeneration through plant tissue culture. Tissue culture requires empirically determined conditions and aseptic techniques, and cannot easily be translated to recalcitrant species and genotypes. Both Agrobacterium-mediated and alternative transformation protocols are limited by a dependency on in vitro regeneration, which also limits their use by non-experts and hinders research into non-model species such as those of possible novel biopharmaceutical or nutraceutical use, as well as novel ornamental varieties. Hence, there is significant interest in developing tissue culture-independent plant transformation and gene editing approaches that can circumvent the bottlenecks associated with in vitro plant regeneration recalcitrance. Compared to tissue culture-based transformations, tissue culture-independent approaches offer advantages such as avoidance of somaclonal variation effects, with more streamlined and expeditious methodological processes. The ease of use, dependability, and accessibility of tissue culture-independent procedures can make them attractive to non-experts, outperforming classic tissue culture-dependent systems. This review explores the diversity of tissue culture-independent transformation approaches and compares them to traditional tissue culture-dependent transformation strategies. We highlight their simplicity and provide examples of recent successful transformations accomplished using these systems. Our review also addresses current limitations and explores future perspectives, highlighting the significance of these techniques for advancing plant research and crop improvement.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| |
Collapse
|
4
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
5
|
Bhoomika S, Salunkhe SR, Sakthi AR, Saraswathi T, Manonmani S, Raveendran M, Sudha M. CRISPR-Cas9: Unraveling Genetic Secrets to Enhance Floral and Fruit Traits in Tomato. Mol Biotechnol 2024:10.1007/s12033-024-01290-8. [PMID: 39377911 DOI: 10.1007/s12033-024-01290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Tomato, a globally consumed vegetable, possesses vast genetic diversity, making it suitable for genetic manipulation using various genetic improvement techniques. Tomatoes are grown extensively for their market value and health benefits, primarily contributed by enhanced yield and nutritional value respectively, influenced by floral and fruit traits. Floral morphology is maintained by genes involved in meristem size control, regulation of inflorescence transition, and pollen development. SP (SELF-PRUNING) and SP5G (SELF-PRUNING 5G) determine growth habit and flowering time. RIN (RIPENING INHIBITOR) and PG (POLYGALACTURONASE) are responsible for the shelf life of fruits. In addition to this, nutrition-enriched tomatoes have been developed in recent times. In this review, we comprehensively discuss the major genes influencing floral morphology, flowering time, fruit size, fruit shape, shelf life, and nutritional value, ultimately resulting in enhanced yield. Additionally, we address the advances in CRISPR/Cas9 applied for the genetic improvement of tomatoes along with prospects of areas in which research development in terms of tomato genetic improvement has to be advanced.
Collapse
Affiliation(s)
- S Bhoomika
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - A R Sakthi
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - T Saraswathi
- Department of Medicinal and Aromatic Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Manonmani
- Department of Rice, Centre of Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Raveendran
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
6
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
7
|
Shi Y, Wang J, Yu T, Song R, Qi W. Callus-specific CRISPR/Cas9 system to increase heritable gene mutations in maize. PLANTA 2024; 260:16. [PMID: 38833022 DOI: 10.1007/s00425-024-04451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
MAIN CONCLUSION A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.
Collapse
Affiliation(s)
- Yuan Shi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tante Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China.
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, People's Republic of China.
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Masani MYA, Norfaezah J, Bahariah B, Fizree MDPMAA, Sulaiman WNSW, Shaharuddin NA, Rasid OA, Parveez GKA. Towards DNA-free CRISPR/Cas9 genome editing for sustainable oil palm improvement. 3 Biotech 2024; 14:166. [PMID: 38817736 PMCID: PMC11133284 DOI: 10.1007/s13205-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR/Cas9 genome editing system has been in the spotlight compared to programmable nucleases such as ZFNs and TALENs due to its simplicity, versatility, and high efficiency. CRISPR/Cas9 has revolutionized plant genetic engineering and is broadly used to edit various plants' genomes, including those transformation-recalcitrant species such as oil palm. This review will comprehensively present the CRISPR-Cas9 system's brief history and underlying mechanisms. We then highlighted the establishment of the CRISPR/Cas9 system in plants with an emphasis on the strategies of highly efficient guide RNA design, the establishment of various CRISPR/Cas9 vector systems, approaches of multiplex editing, methods of transformation for stable and transient techniques, available methods for detecting and analyzing mutations, which have been applied and could be adopted for CRISPR/Cas9 genome editing in oil palm. In addition, we also provide insight into the strategy of DNA-free genome editing and its potential application in oil palm.
Collapse
Affiliation(s)
- Mat Yunus Abdul Masani
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Jamaludin Norfaezah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Bohari Bahariah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
| | - Omar Abdul Rasid
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ghulam Kadir Ahmad Parveez
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
9
|
Sun S, Han X, Jin R, Jiao J, Wang J, Niu S, Yang Z, Wu D, Wang Y. Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112029. [PMID: 38354755 DOI: 10.1016/j.plantsci.2024.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
CRISPR/Cas9 system has emerged as a powerful tool in genome editing; however, generation of CRISPR-edited DNA-free plants is still challenging. In this study, Betula platyphylla (birch) was used to build a method to generate CRISPR-edited plant without foreign DNA integration using Agrobacterium-mediated transformation (CPDAT method). This technique utilizes transient genetic transformation to introduce T-DNA coding gRNA and Cas9 into birch cells, and T-DNA will express to synthesize gRNA and Cas9 protein, which will form a complex to cleave the target DNA site. The genome may be mutated due to DNA repair, and these mutations will be preserved and accumulated not dependent on whether T-DNA is integrated into the genome or not. After transient transformation, birch plants were cut into explants to induce adventitious buds without antibiotic selection pressure. Each adventitious bud can be considered as an independent potentially CRISPR-edited line for mutation detection. CRISPR-edited birch plants without foreign DNA integration are further selected by screening CRISPR-edited lines without T-DNA integration. Among 65 randomly chosen independent lines, the mutation rate was 80.00% including 40.00% of lines with both alleles mutated. In addition, 5 lines out of 65 studied lines (7.69%) were CRISPR-edited birch plants without DNA integration. In conclusion, this innovative method presents a novel strategy for generating CRISPR-edited birch plants, thereby significantly enhancing the efficiency of generating common CRISPR-edited plants. These findings offer considerable potential to develop plant genome editing techniques further.
Collapse
Affiliation(s)
- Shilin Sun
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Xue Han
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Ruoxuan Jin
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Junbo Jiao
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Jingwen Wang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Siyuan Niu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Ziyao Yang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Di Wu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China.
| |
Collapse
|
10
|
Yong J, Wu M, Carroll BJ, Xu ZP, Zhang R. Enhancing plant biotechnology by nanoparticle delivery of nucleic acids. Trends Genet 2024; 40:352-363. [PMID: 38320883 DOI: 10.1016/j.tig.2024.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Plant biotechnology plays a crucial role in developing modern agriculture and plant science research. However, the delivery of exogenous genetic material into plants has been a long-standing obstacle. Nanoparticle-based delivery systems are being established to address this limitation and are proving to be a feasible, versatile, and efficient approach to facilitate the internalization of functional RNA and DNA by plants. The nanoparticle-based delivery systems can also be designed for subcellular delivery and controlled release of the biomolecular cargo. In this review, we provide a concise overview of the recent advances in nanocarriers for the delivery of biomolecules into plants, with a specific focus on applications to enhance RNA interference, foreign gene transfer, and genome editing in plants.
Collapse
Affiliation(s)
- Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, P. R. China 518107
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| |
Collapse
|
11
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
12
|
Jeong YY, Noh YS, Kim SW, Seo PJ. Efficient regeneration of protoplasts from Solanum lycopersicum cultivar Micro-Tom. Biol Methods Protoc 2024; 9:bpae008. [PMID: 38414647 PMCID: PMC10898868 DOI: 10.1093/biomethods/bpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Protoplast regeneration has become a key platform for genetic and genome engineering. However, we lack reliable and reproducible methods for efficient protoplast regeneration for tomato (Solanum lycopersicum) cultivars. Here, we optimized cell and tissue culture methods for protoplast isolation, microcallus proliferation, shoot regeneration, and plantlet establishment of the tomato cultivar Micro-Tom. A thin layer of alginate was applied to protoplasts isolated from third to fourth true leaves and cultured at an optimal density of 1 × 105 protoplasts/ml. We determined the optimal culture media for protoplast proliferation, callus formation, de novo shoot regeneration, and root regeneration. Regenerated plantlets exhibited morphologically normal growth and sexual reproduction. The entire regeneration process, from protoplasts to flowering plants, was accomplished within 5 months. The optimized protoplast regeneration platform enables biotechnological applications, such as genome engineering, as well as basic research on plant regeneration in Solanaceae species.
Collapse
Affiliation(s)
- Yeong Yeop Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
13
|
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C. CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1304381. [PMID: 38371406 PMCID: PMC10869523 DOI: 10.3389/fpls.2024.1304381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
CRISPR/Cas is a breakthrough genome editing system because of its precision, target specificity, and efficiency. As a speed breeding system, it is more robust than the conventional breeding and biotechnological approaches for qualitative and quantitative trait improvement. Tomato (Solanum lycopersicum L.) is an economically important crop, but its yield and productivity have been severely impacted due to different abiotic and biotic stresses. The recently identified SlHyPRP1 and SlDEA1 are two potential negative regulatory genes in response to different abiotic (drought and salinity) and biotic stress (bacterial leaf spot and bacterial wilt) conditions in S. lycopersicum L. The present study aimed to evaluate the drought, salinity, bacterial leaf spot, and bacterial wilt tolerance response in S. lycopersicum L. crop through CRISPR/Cas9 genome editing of SlHyPRP1 and SlDEA1 and their functional analysis. The transient single- and dual-gene SlHyPRP1 and SlDEA1 CRISPR-edited plants were phenotypically better responsive to multiple stress factors taken under the study. The CRISPR-edited SlHyPRP1 and SlDEA1 plants showed a higher level of chlorophyll and proline content compared to wild-type (WT) plants under abiotic stress conditions. Reactive oxygen species accumulation and the cell death count per total area of leaves and roots under biotic stress were less in CRISPR-edited SlHyPRP1 and SlDEA1 plants compared to WT plants. The study reveals that the combined loss-of-function of SlHyPRP1 along with SlDEA1 is essential for imparting significant multi-stress tolerance (drought, salinity, bacterial leaf spot, and bacterial wilt) in S. lycopersicum L. The main feature of the study is the detailed genetic characterization of SlDEA1, a poorly studied 8CM family gene in multi-stress tolerance, through the CRISPR/Cas9 gene editing system. The study revealed the key negative regulatory role of SlDEA1 that function together as an anchor gene with SlHyPRP1 in imparting multi-stress tolerance in S. lycopersicum L. It was interesting that the present study also showed that transient CRISPR/Cas9 editing events of SlHyPRP1 and SlDEA1 genes were successfully replicated in stably generated parent-genome-edited line (GEd0) and genome-edited first-generation lines (GEd1) of S. lycopersicum L. With these upshots, the study's key findings demonstrate outstanding value in developing sustainable multi-stress tolerance in S. lycopersicum L. and other crops to cope with climate change.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Remya S
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - G. Narahari Sastry
- Advanced Computational and Data Science Division, CSIR-NEIST, Jorhat, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
15
|
Lee SY, Kang B, Venkatesh J, Lee JH, Lee S, Kim JM, Back S, Kwon JK, Kang BC. Development of virus-induced genome editing methods in Solanaceous crops. HORTICULTURE RESEARCH 2024; 11:uhad233. [PMID: 38222822 PMCID: PMC10782499 DOI: 10.1093/hr/uhad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024]
Abstract
Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as Arabidopsis thaliana and Nicotiana spp. In this study, we developed two VIGE methods for Solanaceous plants. First, we used the tobacco rattle virus (TRV) vector to deliver sgRNAs into a transgenic tomato (Solanum lycopersicum) line of cultivar Micro-Tom expressing Cas9. Second, we devised a transgene-free GE method based on a potato virus X (PVX) vector to deliver Cas9 and sgRNAs. We designed and cloned sgRNAs targeting Phytoene desaturase in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (Solanum tuberosum) and eggplant (Solanum melongena). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bomi Kang
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seyoung Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Back
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Li Y, Huang C, Liu Y, Zeng J, Yu H, Tong Z, Yuan X, Sui X, Fang D, Xiao B, Zhao S, Yuan C. CRISPR/Cas9-mediated seamless gene replacement in protoplasts expands the resistance spectrum to TMV-U1 strain in regenerated Nicotiana tabacum. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2641-2653. [PMID: 37610064 PMCID: PMC10651143 DOI: 10.1111/pbi.14159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
CRISPR/Cas-based genome editing is now extensively used in plant breeding and continues to evolve. Most CRISPR/Cas current applications in plants focus on gene knock-outs; however, there is a pressing need for new methods to achieve more efficient delivery of CRISPR components and gene knock-ins to improve agronomic traits of crop cultivars. We report here a genome editing system that combines the advantages of protoplast technologies with recent CRISPR/Cas advances to achieve seamless large fragment insertions in the model Solanaceae plant Nicotiana tabacum. With this system, two resistance-related regions of the N' gene were replaced with homologous fragments from the N'alata gene to confer TMV-U1 resistance in the T0 generation of GMO-free plants. Our study establishes a reliable genome-editing tool for efficient gene modifications and provides a detailed description of the optimization process to assist other researchers adapt this system for their needs.
Collapse
Affiliation(s)
- Yanli Li
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
- BGI‐ShenzhenShenzhenGuangdongChina
| | - Changjun Huang
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Yong Liu
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Jianmin Zeng
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Haiqin Yu
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Zhijun Tong
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Xinjie Yuan
- Institute of Vegetables and FlowersJiangxi Academy of Agricultural SciencesNanchangChina
| | - Xueyi Sui
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Dunhuang Fang
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | - Bingguang Xiao
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| | | | - Cheng Yuan
- National Tobacco Genetic Engineering Research CenterYunnan Academy of Tobacco Agricultural SciencesKunmingYunnanChina
| |
Collapse
|
17
|
Nagy B, Öktem A, Ferenc G, Ungor D, Kalac A, Kelemen-Valkony I, Fodor E, Nagy I, Dudits D, Ayaydin F. CRISPR/Cas9 Mutagenesis through Introducing a Nanoparticle Complex Made of a Cationic Polymer and Nucleic Acids into Maize Protoplasts. Int J Mol Sci 2023; 24:16137. [PMID: 38003326 PMCID: PMC10671792 DOI: 10.3390/ijms242216137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Presently, targeted gene mutagenesis attracts increasing attention both in plant research and crop improvement. In these approaches, successes are largely dependent on the efficiency of the delivery of gene editing components into plant cells. Here, we report the optimization of the cationic polymer poly(2-hydroxypropylene imine) (PHPI)-mediated delivery of plasmid DNAs, or single-stranded oligonucleotides labelled with Cyanine3 (Cy3) or 6-Carboxyfluorescein (6-FAM)-fluorescent dyes into maize protoplasts. Co-delivery of the GFP-expressing plasmid and the Cy3-conjugated oligonucleotides has resulted in the cytoplasmic and nuclear accumulation of the green fluorescent protein and a preferential nuclear localization of oligonucleotides. We show the application of nanoparticle complexes, i.e., "polyplexes" that comprise cationic polymers and nucleic acids, for CRISPR/Cas9 editing of maize cells. Knocking out the functional EGFP gene in transgenic maize protoplasts was achieved through the co-delivery of plasmids encoding components of the editing factors Cas9 (pFGC-pcoCas9) and gRNA (pZmU3-gRNA) after complexing with a cationic polymer (PHPI). Several edited microcalli were identified based on the lack of a GFP fluorescence signal. Multi-base and single-base deletions in the EGFP gene were confirmed using Sanger sequencing. The presented results support the use of the PHPI cationic polymer in plant protoplast-mediated genome editing approaches.
Collapse
Affiliation(s)
- Bettina Nagy
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.N.); (D.D.); (F.A.)
| | - Ayşegül Öktem
- Laboratory of Cellular Imaging, Core Facilities, HUN-REN Biological Research Centre, 6726 Szeged, Hungary (I.K.-V.)
- Department of Medical Microbiology, University Medical Center, University of Groningen, 9700 Groningen, The Netherlands
| | - Györgyi Ferenc
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.N.); (D.D.); (F.A.)
| | - Ditta Ungor
- Department of Physical Chemistry and Materials Science, University of Szeged, 6720 Szeged, Hungary;
| | - Aladina Kalac
- Laboratory of Cellular Imaging, Core Facilities, HUN-REN Biological Research Centre, 6726 Szeged, Hungary (I.K.-V.)
| | - Ildikó Kelemen-Valkony
- Laboratory of Cellular Imaging, Core Facilities, HUN-REN Biological Research Centre, 6726 Szeged, Hungary (I.K.-V.)
| | - Elfrieda Fodor
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (E.F.); (I.N.)
| | - István Nagy
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (E.F.); (I.N.)
- SeqOmics Biotechnology Ltd., 6782 Mórahalom, Hungary
| | - Dénes Dudits
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.N.); (D.D.); (F.A.)
| | - Ferhan Ayaydin
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.N.); (D.D.); (F.A.)
- Laboratory of Cellular Imaging, Core Facilities, HUN-REN Biological Research Centre, 6726 Szeged, Hungary (I.K.-V.)
- Functional Cell Biology and Immunology Advanced Core Facility (FCBI), Hungarian Centre of Excellence for Molecular Medicine (HCEMM), 6720 Szeged, Hungary
- Faculty of Medicine, Albert Szent-Györgyi Health Centre, Interdisciplinary R&D and Innovation Centre of Excellence, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
18
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
19
|
Surya Krishna S, Harish Chandar SR, Ravi M, Valarmathi R, Lakshmi K, Prathima PT, Manimekalai R, Viswanathan R, Hemaprabha G, Appunu C. Transgene-Free Genome Editing for Biotic and Abiotic Stress Resistance in Sugarcane: Prospects and Challenges. AGRONOMY 2023; 13:1000. [DOI: 10.3390/agronomy13041000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Sugarcane (Saccharum spp.) is one of the most valuable food and industrial crops. Its production is constrained due to major biotic (fungi, bacteria, viruses and insect pests) and abiotic (drought, salt, cold/heat, water logging and heavy metals) stresses. The ever-increasing demand for sugar and biofuel and the rise of new pest and disease variants call for the use of innovative technologies to speed up the sugarcane genetic improvement process. Developing new cultivars through conventional breeding techniques requires much time and resources. The advent of CRISPR/Cas genome editing technology enables the creation of new cultivars with improved resistance/tolerance to various biotic and abiotic stresses. The presence of genome editing cassette inside the genome of genome-edited plants hinders commercial exploitation due to regulatory issues. However, this limitation can be overcome by using transgene-free genome editing techniques. Transgene-free genome editing approaches, such as delivery of the RNPs through biolistics or protoplast fusion, virus-induced genome editing (VIGE), transient expression of CRISPR/Cas reagents through Agrobacterium-mediated transformation and other approaches, are discussed. A well-established PCR-based assay and advanced screening systems such as visual marker system and Transgene killer CRISPR system (TKC) rapidly identify transgene-free genome edits. These advancements in CRISPR/Cas technology speed up the creation of genome-edited climate-smart cultivars that combat various biotic and abiotic stresses and produce good yields under ever-changing conditions.
Collapse
Affiliation(s)
- Sakthivel Surya Krishna
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - S R Harish Chandar
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Maruthachalam Ravi
- Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - Ramanathan Valarmathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Kasirajan Lakshmi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | | | - Ramaswamy Manimekalai
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Rasappa Viswanathan
- ICAR—Indian Institute of Sugarcane Research, Lucknow 226002, Uttar Pradesh, India
| | - Govindkurup Hemaprabha
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| |
Collapse
|
20
|
Tiwari JK, Singh AK, Behera TK. CRISPR/Cas genome editing in tomato improvement: Advances and applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1121209. [PMID: 36909403 PMCID: PMC9995852 DOI: 10.3389/fpls.2023.1121209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 06/12/2023]
Abstract
The narrow genetic base of tomato poses serious challenges in breeding. Hence, with the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (CRISPR/Cas9) genome editing, fast and efficient breeding has become possible in tomato breeding. Many traits have been edited and functionally characterized using CRISPR/Cas9 in tomato such as plant architecture and flower characters (e.g. leaf, stem, flower, male sterility, fruit, parthenocarpy), fruit ripening, quality and nutrition (e.g., lycopene, carotenoid, GABA, TSS, anthocyanin, shelf-life), disease resistance (e.g. TYLCV, powdery mildew, late blight), abiotic stress tolerance (e.g. heat, drought, salinity), C-N metabolism, and herbicide resistance. CRISPR/Cas9 has been proven in introgression of de novo domestication of elite traits from wild relatives to the cultivated tomato and vice versa. Innovations in CRISPR/Cas allow the use of online tools for single guide RNA design and multiplexing, cloning (e.g. Golden Gate cloning, GoldenBraid, and BioBrick technology), robust CRISPR/Cas constructs, efficient transformation protocols such as Agrobacterium, and DNA-free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex, Cas9 variants like PAM-free Cas12a, and Cas9-NG/XNG-Cas9, homologous recombination (HR)-based gene knock-in (HKI) by geminivirus replicon, and base/prime editing (Target-AID technology). This mini-review highlights the current research advances in CRISPR/Cas for fast and efficient breeding of tomato.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- Division of Vegetable Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anand Kumar Singh
- Division of Horticulture, Indian Council of Agricultural Research, Krishi Anusandhan Bhawan - II, Pusa, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
21
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
22
|
Sandgrind S, Li X, Ivarson E, Wang ES, Guan R, Kanagarajan S, Zhu LH. Improved fatty acid composition of field cress ( Lepidium campestre) by CRISPR/Cas9-mediated genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1076704. [PMID: 36755695 PMCID: PMC9901296 DOI: 10.3389/fpls.2023.1076704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The wild species field cress (Lepidium campestre) has the potential to become a novel cover and oilseed crop for the Nordic climate. Its seed oil is however currently unsuitable for most food, feed, and industrial applications, due to the high contents of polyunsaturated fatty acids (PUFAs) and erucic acid (C22:1). As the biosynthesis of these undesirable fatty acids is controlled by a few well-known major dominant genes, knockout of these genes using CRISPR/Cas9 would thus be more effective in improving the seed oil quality. In order to increase the level of the desirable oleic acid (C18:1), and reduce the contents of PUFAs and C22:1, we targeted three important genes FATTY ACID ELONGASE1 (FAE1), FATTY ACID DESATURASE2 (FAD2), and REDUCED OLEATE DESATURASE1 (ROD1) using a protoplast-based CRISPR/Cas9 gene knockout system. By knocking out FAE1, we obtained a mutated line with almost no C22:1, but an increase in C18:1 to 30% compared with 13% in the wild type. Knocking out ROD1 resulted in an increase of C18:1 to 23%, and a moderate, but significant, reduction of PUFAs. Knockout of FAD2, in combination with heterozygous FAE1fae1 genotype, resulted in mutated lines with up to 66% C18:1, very low contents of PUFAs, and a significant reduction of C22:1. Our results clearly show the potential of CRISPR/Cas9 for rapid trait improvement of field cress which would speed up its domestication process. The mutated lines produced in this study can be used for further breeding to develop field cress into a viable crop.
Collapse
|
23
|
Wu FH, Hsu CT, Lin CS. Targeted Insertion in Nicotiana benthamiana Genomes via Protoplast Regeneration. Methods Mol Biol 2023; 2653:297-315. [PMID: 36995634 DOI: 10.1007/978-1-0716-3131-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Insertion of a specific sequence in a targeted region for precise editing is still a major challenge in plants. Current protocols rely on inefficient homology-directed repair or non-homologous end-joining with modified double-stranded oligodeoxyribonucleotides (dsODNs) as donors. We developed a simple protocol that eliminates the need for expensive equipment, chemicals, modifications of donor DNA, and complicated vector construction. The protocol uses polyethylene glycol (PEG)-calcium to deliver low-cost, unmodified single-stranded oligodeoxyribonucleotides (ssODNs) and CRISPR/Cas9 ribonucleoprotein (RNP) complexes into Nicotiana benthamiana protoplasts. Regenerated plants were obtained from edited protoplasts with an editing frequency of up to 50% at the target locus. The inserted sequence was inherited to the next generation; this method thus opens the possibility for the future exploration of genomes by targeted insertion in plants.
Collapse
Affiliation(s)
- Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
24
|
Li S, Zhao R, Ye T, Guan R, Xu L, Ma X, Zhang J, Xiao S, Yuan D. Isolation, purification and PEG-mediated transient expression of mesophyll protoplasts in Camellia oleifera. PLANT METHODS 2022; 18:141. [PMID: 36550558 PMCID: PMC9773467 DOI: 10.1186/s13007-022-00972-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Camellia oleifera (C. oleifera) is a woody edible oil crop of great economic importance. Because of the lack of modern biotechnology research, C. oleifera faces huge challenges in both breeding and basic research. The protoplast and transient transformation system plays an important role in biological breeding, plant regeneration and somatic cell fusion. The objective of this present study was to develop a highly efficient protocol for isolating and purifying mesophyll protoplasts and transient transformation of C. oleifera. Several critical factors for mesophyll protoplast isolation from C. oleifera, including starting material (leaf age), pretreatment, enzymatic treatment (type of enzyme, concentration and digestion time), osmotic pressure and purification were optimized. Then the factors affecting the transient transformation rate of mesophyll protoplasts such as PEG molecular weights, PEG4000 concentration, plasmid concentration and incubation time were explored. RESULTS The in vitro grown seedlings of C. oleifera 'Huashuo' were treated in the dark for 24 h, then the 1st to 2nd true leaves were picked and vacuumed at - 0.07 MPa for 20 min. The maximum yield (3.5 × 107/g·FW) and viability (90.9%) of protoplast were reached when the 1st to 2nd true leaves were digested in the enzymatic solution containing1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10 and 0.25% (w/v) Snailase and 0.4 M mannitol for 10 h. Moreover, the protoplast isolation method was also applicable to the other two cultivars, the protoplast yield for 'TXP14' and 'DP47' was 1.1 × 107/g·FW and 2.6 × 107/g·FW, the protoplast viability for 'TXP14' and 'DP47' was 90.0% and 88.2%. The purification effect was the best when using W buffer as a cleaning agent by centrifugal precipitation. The maximum transfection efficiency (70.6%) was obtained with the incubation of the protoplasts with 15 µg plasmid and 40% PEG4000 for 20 min. CONCLUSION In summary, a simple and efficient system for isolation and transient transformation of C. oleifera mesophyll protoplast is proposed, which is of great significance in various aspects of C. oleifera research, including the study of somatic cell fusion, genome editing, protein function, signal transduction, transcriptional regulation and multi-omics analyses.
Collapse
Affiliation(s)
- Sufang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Rui Zhao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Tianwen Ye
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Rui Guan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 23053, Skåne, Sweden
| | - Linjie Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiaoling Ma
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jiaxi Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Shixin Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
25
|
Tirnaz S, Zandberg J, Thomas WJW, Marsh J, Edwards D, Batley J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. FRONTIERS IN PLANT SCIENCE 2022; 13:1008904. [PMID: 36466237 PMCID: PMC9712971 DOI: 10.3389/fpls.2022.1008904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Global agricultural industries are under pressure to meet the future food demand; however, the existing crop genetic diversity might not be sufficient to meet this expectation. Advances in genome sequencing technologies and availability of reference genomes for over 300 plant species reveals the hidden genetic diversity in crop wild relatives (CWRs), which could have significant impacts in crop improvement. There are many ex-situ and in-situ resources around the world holding rare and valuable wild species, of which many carry agronomically important traits and it is crucial for users to be aware of their availability. Here we aim to explore the available ex-/in- situ resources such as genebanks, botanical gardens, national parks, conservation hotspots and inventories holding CWR accessions. In addition we highlight the advances in availability and use of CWR genomic resources, such as their contribution in pangenome construction and introducing novel genes into crops. We also discuss the potential and challenges of modern breeding experimental approaches (e.g. de novo domestication, genome editing and speed breeding) used in CWRs and the use of computational (e.g. machine learning) approaches that could speed up utilization of CWR species in breeding programs towards crop adaptability and yield improvement.
Collapse
|
26
|
Wu H, Zhang K, Zhang Z, Wang J, Jia P, Cong L, Li J, Duan Y, Ke F, Zhang F, Liu Z, Lu F, Wang Y, Li Z, Chang M, Zou J, Zhu K. Cell-penetrating peptide: A powerful delivery tool for DNA-free crop genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111436. [PMID: 36037982 DOI: 10.1016/j.plantsci.2022.111436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Genome editing system based on the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) technology is a milestone for biology. However, public concerns regarding genetically modified organisms (GMOs) and recalcitrance in the crop of choice for regeneration have limited its application. Cell-penetrating peptides (CPPs) are derived from protein transduction domains (PTDs) that can take on various cargoes across the plant wall, and membrane of target cells. Selected CPPs show mild cytotoxicity and are a suitable delivery tool for DNA-free genome editing. Moreover, CPPs may also be applied for the transient delivery of morphogenic transcription factors, also known as developmental regulators (DRs), to overcome the bottleneck of the crop of choice regeneration. In this review, we introduce a brief history of cell-penetrating peptides and discuss the practice of CPP-mediated DNA-free transfection and the prospects of this potential delivery tool for improving crop genome editing.
Collapse
Affiliation(s)
- Han Wu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| | - Kuangye Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhipeng Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Pengxiang Jia
- Zhejiang Wanli University, 315100 Ningbo, Zhejiang Province, China
| | - Ling Cong
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Jia Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Youhou Duan
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Fei Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhiqiang Liu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Feng Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Yanqiu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhihua Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jianqiu Zou
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| | - Kai Zhu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| |
Collapse
|
27
|
Kumar M, Tripathi PK, Ayzenshtat D, Marko A, Forotan Z, Bocobza SE. Increased rates of gene-editing events using a simplified RNAi configuration designed to reduce gene silencing. PLANT CELL REPORTS 2022; 41:1987-2003. [PMID: 35849200 DOI: 10.1007/s00299-022-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
An optimal RNAi configuration that could restrict gene expression most efficiently was determined. This approach was also used to target PTGS and yielded higher rates of gene-editing events. Although it was characterized long ago, transgene silencing still strongly impairs transgene overexpression, and thus is a major barrier to plant crop gene-editing. The development of strategies that could prevent transgene silencing is therefore essential to the success of gene editing assays. Transgene silencing occurs via the RNA silencing process, which regulates the expression of essential genes and protects the plant from viral infections. The RNA silencing machinery thereby controls central biological processes such as growth, development, genome integrity, and stress resistance. RNA silencing is typically induced by aberrant RNA, that may lack 5' or 3' processing, or may consist in double-stranded or hairpin RNA, and involves DICER and ARGONAUTE family proteins. In this study, RNAi inducing constructs were designed in eleven different configurations and were evaluated for their capacity to induce silencing in Nicotiana spp. using transient and stable transformation assays. Using reporter genes, it was found that the overexpression of a hairpin consisting of a forward tandem inverted repeat that started with an ATG and that was not followed downstream by a transcription terminator, could downregulate gene expression most potently. Furthermore, using this method, the downregulation of the NtSGS3 gene caused a significant increase in transgene expression both in transient and stable transformation assays. This SGS3 silencing approach was also employed in gene-editing assays and caused higher rates of gene-editing events. Taken together, these findings suggested the optimal genetic configuration to cause RNA silencing and showed that this strategy may be used to restrict PTGS during gene-editing experiments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Pankaj Kumar Tripathi
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Samuel E Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel.
| |
Collapse
|
28
|
Liu Y, Andersson M, Granell A, Cardi T, Hofvander P, Nicolia A. Establishment of a DNA-free genome editing and protoplast regeneration method in cultivated tomato (Solanum lycopersicum). PLANT CELL REPORTS 2022; 41:1843-1852. [PMID: 35773498 PMCID: PMC9395478 DOI: 10.1007/s00299-022-02893-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
We have established a DNA-free genome editing method via ribonucleoprotein-based CRISPR/Cas9 in cultivated tomato and obtained mutant plants regenerated from transfected protoplasts with a high mutation rate. The application of genome editing as a research and breeding method has provided many possibilities to improve traits in many crops in recent years. In cultivated tomato (Solanum lycopersicum), so far only stable Agrobacterium-mediated transformation carrying CRISPR/Cas9 reagents has been established. Shoot regeneration from transfected protoplasts is the major bottleneck in the application of DNA-free genome editing via ribonucleoprotein-based CRISPR/Cas9 method in cultivated tomato. In this study, we report the implementation of a transgene-free breeding method for cultivated tomato by CRISPR/Cas9 technology, including the optimization of protoplast isolation and overcoming the obstacle in shoot regeneration from transfected protoplasts. We have identified that the shoot regeneration medium containing 0.1 mg/L IAA and 0.75 mg/L zeatin was the best hormone combination with a regeneration rate of up to 21.3%. We have successfully obtained regenerated plants with a high mutation rate four months after protoplast isolation and transfection. Out of 110 regenerated M0 plants obtained, 35 (31.8%) were mutated targeting both SP and SP5G genes simultaneously and the editing efficiency was up to 60% in at least one allele in either SP or SP5G genes.
Collapse
Affiliation(s)
- Ying Liu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden.
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Antonio Granell
- Instituto de Biología Molecular Y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Teodoro Cardi
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098, Pontecagnano, Italy
- Institute of Biosciences and Bioresources, CNR-IBBR, via Università 133, 80055, Portici, Italy
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Alessandro Nicolia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098, Pontecagnano, Italy
| |
Collapse
|
29
|
Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity. Int J Mol Sci 2022; 23:9809. [PMID: 36077206 PMCID: PMC9456013 DOI: 10.3390/ijms23179809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 01/23/2023] Open
Abstract
Precise editing of the plant genome has long been desired for functional genomic research and crop breeding. Prime editing is a newly developed precise editing technology based on CRISPR-Cas9, which uses an engineered reverse transcriptase (RT), a catalytically impaired Cas9 endonuclease (nCas9), and a prime editing guide RNA (pegRNA). In addition, prime editing has a wider range of editing types than base editing and can produce nearly all types of edits. Although prime editing was first established in human cells, it has recently been applied to plants. As a relatively new technique, optimization will be needed to increase the editing efficiency in different crops. In this study, we successfully edited a mutant GFP in rice, peanut, chickpea, and cowpea protoplasts. In rice, up to 16 times higher editing efficiency was achieved with a dual pegRNA than the single pegRNA containing vectors. Edited-mutant GFP protoplasts have also been obtained in peanut, chickpea, and cowpea after transformation with the dual pegRNA vectors, albeit with much lower editing efficiency than in rice, ranging from 0.2% to 0.5%. These initial results promise to expedite the application of prime editing in legume breeding programs to accelerate crop improvement.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Aya Bridgeland
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Samra Irum
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
Rather GA, Ayzenshtat D, Teper-Bamnolker P, Kumar M, Forotan Z, Eshel D, Bocobza S. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato. PLANTA 2022; 256:14. [PMID: 35713718 DOI: 10.1007/s00425-022-03933-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
An efficient method of DNA-free gene-editing in potato protoplasts was developed using linearized DNA fragments, UBIQUITIN10 promoters of several plant species, kanamycin selection, and transient overexpression of the BABYBOOM transcription factor. Plant protoplasts represent a reliable experimental system for the genetic manipulation of desired traits using gene editing. Nevertheless, the selection and regeneration of mutated protoplasts are challenging and subsequent recovery of successfully edited plants is a significant bottleneck in advanced plant breeding technologies. In an effort to alleviate the obstacles related to protoplasts' transgene expression and protoplasts' regeneration, a new method was developed. In so doing, it was shown that linearized DNA could efficiently transfect potato protoplasts and that UBIQUITIN10 promoters from various plants could direct transgene expression in an effective manner. Also, the inhibitory concentration of kanamycin was standardized for transfected protoplasts, and the NEOMYCIN PHOSPHOTRANSFERASE2 (NPT2) gene could be used as a potent selection marker for the enrichment of transfected protoplasts. Furthermore, transient expression of the BABYBOOM (BBM) transcription factor promoted the regeneration of protoplast-derived calli. Together, these methods significantly increased the selection for protoplasts that displayed high transgene expression, and thereby significantly increased the rate of gene editing events in protoplast-derived calli to 95%. The method developed in this study facilitated gene-editing in tetraploid potato plants and opened the way to sophisticated genetic manipulation in polyploid organisms.
Collapse
Affiliation(s)
- Gulzar A Rather
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science, The Institute of Postharvest and Food Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Dani Eshel
- Department of Postharvest Science, The Institute of Postharvest and Food Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel.
| |
Collapse
|
31
|
Marin-Montes IM, Rodríguez-Pérez JE, Robledo-Paz A, de la Cruz-Torres E, Peña-Lomelí A, Sahagún-Castellanos J. Haploid Induction in Tomato ( Solanum lycopersicum L.) via Gynogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1595. [PMID: 35736746 PMCID: PMC9230027 DOI: 10.3390/plants11121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
The generation of new hybrid varieties of tomato (Solanum lycopersicum L.) is the most widely used breeding method for this species and requires at least seven self-fertilization cycles to generate stable parent lines. The development of doubled haploids aims at obtaining completely homozygous lines in a single generation, although, to date, routine commercial application has not been possible in this species. In contrast, obtaining doubled haploid lines via gynogenesis has been successfully implemented in recalcitrant crops such as melon, cucumber, pumpkin, loquat and walnut. This review provides an overview of the requirements and advantages of gynogenesis as an inducer of haploidy in different agricultural crops, with the purpose of assessing the potential for its application in tomato breeding. Successful cases of gynogenesis variants involving in vitro culture of unfertilized ovules, use of 60Co-irradiated pollen, in vivo haploid inducers and wide hybridization are presented, suggesting that these methodologies could be implemented in tomato breeding programs to obtain doubled haploids.
Collapse
Affiliation(s)
- Ivan Maryn Marin-Montes
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Juan Enrique Rodríguez-Pérez
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Alejandrina Robledo-Paz
- Posgrado en Recursos Genéticos y Productividad, Colegio de Postgraduados, Montecillo 56230, Mexico;
| | | | - Aureliano Peña-Lomelí
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Jaime Sahagún-Castellanos
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| |
Collapse
|
32
|
Thiruppathi D. CRISPR keeps going "wild": a new protocol for DNA-free genome editing of tetraploid wild tomatoes. PLANT PHYSIOLOGY 2022; 189:10-11. [PMID: 35244184 PMCID: PMC9070849 DOI: 10.1093/plphys/kiac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 06/12/2023]
|
33
|
Chen H, Neubauer M, Wang JP. Enhancing HR Frequency for Precise Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:883421. [PMID: 35592579 PMCID: PMC9113527 DOI: 10.3389/fpls.2022.883421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Gene-editing tools, such as Zinc-fingers, TALENs, and CRISPR-Cas, have fostered a new frontier in the genetic improvement of plants across the tree of life. In eukaryotes, genome editing occurs primarily through two DNA repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is the primary mechanism in higher plants, but it is unpredictable and often results in undesired mutations, frameshift insertions, and deletions. Homology-directed repair (HDR), which proceeds through HR, is typically the preferred editing method by genetic engineers. HR-mediated gene editing can enable error-free editing by incorporating a sequence provided by a donor template. However, the low frequency of native HR in plants is a barrier to attaining efficient plant genome engineering. This review summarizes various strategies implemented to increase the frequency of HDR in plant cells. Such strategies include methods for targeting double-strand DNA breaks, optimizing donor sequences, altering plant DNA repair machinery, and environmental factors shown to influence HR frequency in plants. Through the use and further refinement of these methods, HR-based gene editing may one day be commonplace in plants, as it is in other systems.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Matthew Neubauer
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
34
|
Puchta H, Jiang J, Wang K, Zhao Y. Updates on gene editing and its applications. PLANT PHYSIOLOGY 2022; 188:1725-1730. [PMID: 35225345 PMCID: PMC8968428 DOI: 10.1093/plphys/kiac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/08/2023]
Affiliation(s)
- Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|